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Abstract

The border correlation function β : A∗ → A∗, for A = {a, b}, specifies which
conjugates (cyclic shifts) of a given word w of length n are bordered, in other
words, β(w) = c0c1 . . . cn−1, where ci = a or b according to whether the i-th
cyclic shift σi(w) of w is unbordered or bordered. Except for some special
cases, no binary word w has two consecutive unbordered conjugates (σi(w)
and σi+1(w)). We show that this is optimal: in every cyclically overlap-free
word every other conjugate is unbordered. We also study the relationship
between unbordered conjugates and critical points, as well as, the dynamic
system given by iterating the function β. We prove that, for each word w of
length n, the sequence w, β(w), β2(w), . . . terminates either in bn or in the
cycle of conjugates of the word abkabk+1 for n = 2k + 3.
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1 Introduction

A word w is said to be unbordered (or self-uncorrelated [13]), if the only
border of w is the word itself, that is, if w = uv = vu′ for a nonempty word
v, then v = w and, consequently, u = u′ = ε, the empty word. A word
u is a factor of a word w, if w = w1uw2 for some (possibly empty) words
w1 and w2. Unbordered words and factors of words play a significant role
in some proofs concerning combinatorial properties of words. The questions
involving periodicity of finite and infinite words are naturally related to the
border structure of words see, e.g., [3, 4, 5, 6, 7, 11]. As another example, we
mention that the existence of borders in words appear in the study of coding
properties of sets of words as well as in unavoidability studies of words; see,
e.g., [1, 13].

In this paper we study the border structure of words with respect to
conjugation. We shall consider solely binary words. To this end, we fix our
alphabet to be A = {a, b}. Let A∗ denote the monoid of all finite words over
A including the empty word, denoted by ε. Let σ : A∗ → A∗ be the (cyclic)
shift function of words, where σ(ε) = ε and σ(cw) = wc for all w ∈ A∗ and
c ∈ A. The border correlation function β : A∗ → A∗ is defined such that
β(w) specifies which conjugates of w are unbordered: Let w ∈ A∗ be a word
of length n. Then β(w) = c0c1 . . . cn−1, where

ci =

{

a if σi(w) is unbordered,

b if σi(w) is bordered.

Let β(ε) = ε. For example, let w = aabab. Then

σ0(w) = w = aabab, σ1(w) = ababa, σ2(w) = babaa,

σ3(w) = abaab, σ4(w) = baaba,

and hence β(w) = ababb, since only σ0(w) and σ2(w) are unbordered. While
we consider only binary words in this paper, note that β can be applied to
words over any alphabet and yields always a binary word.

It is rather easy to show (see Lemma 1) that the image β(w) of a binary
word w cannot have two consecutive a’s (except for some trivial words), that
is, for no i are both σi(w) and σi+1(w) unbordered. In Section 2 we show
that the bound given by this fact is optimal. Indeed, we prove that in every
cyclically overlap-free word every other conjugate (that is, either σi(w) or
σi+1(w) for each i) is unbordered.

A word w ∈ A∗ is overlap-free, if it does not have self-overlapping factors,
that is, w does not have a factor of the form cxcxc where c ∈ A and x ∈ A∗.
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Moreover, w is cyclically overlap-free, if all its conjugates are overlap-free.
The cyclically overlap-free binary words were characterized by Thue [15]; see
Section 2.

There is a close relationship between unbordered conjugates of a word
and its critical points, when critical points are considered independent of
cyclic shifts. This relation is elaborated on in Section 3.

In Section 4 we shall study the dynamic system given by the border
correlation function β. We prove that, for each word w of length n, the
sequence w, β(w), β2(w), . . . terminates either in the word bn or in the cycle
of the conjugates of the word abkabk+1 for k = (n − 3)/2.

The border correlation function provides a similarity function among the
strings. Related functions of similarity are the auto-correlation function of
Guibas and Odlyzko [8], and the border-array function of Moore, Smyth, and
Miller [12].

We end this section with some definitions and notation needed in the rest
of the paper. We refer to Lothaire’s book [11] for more basic and general
definitions of combinatorics on words.

We denote the length of a word w by |w|. Also, if w ∈ A∗ and c ∈ A,
then |w|c denotes the number of occurrences of letter c in w. For instance,
we have for w = abaab that |w|a = 3 and |w|b = 2. Suppose w = uv. Then
u is called a prefix of w, denoted by u ≤ w, and v is called a suffix of w.
A nonempty word u ∈ A∗ is a border of a word w ∈ A∗, if w = uv = v′u for
some suitable nonempty words v and v′ in A∗.

We call two words u and v conjugates, denoted by u ∼ v, if u = σk(v)
for some k ≥ 0. Two conjugates u and v are called adjacent, if σ(u) = v.
Clearly, ∼ is an equivalence relation. Let [u] = {v | u ∼ v} denote the
conjugate class of u. A word w is primitive if it is not a proper power of
another word, that is, w = uk implies u = w and k = 1. A word w is called
a Lyndon word if it is primitive and minimal among all its conjugates with
respect to some lexicographic order. In the binary case A = {a, b}, there are
two orders given by a C b and its inverse b C

−1 a. It is well known (see, e.g.,
Lothaire [11]), that each primitive word w has a unique Lyndon conjugate
with respect to a given order. For example, consider w = abaabb. Then
aabbab and bbabaa are conjugates of w and they are minimal with respect to
the order C and C

−1, respectively. These words are thus Lyndon words.

2 Optimal words for border correlation

Let w be a nonempty word of length n in A∗. If it is not primitive, that is,
w = uk for some u and k ≥ 2, then it is immediate that all conjugates of w
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are nonprimitive, and thus bordered. Therefore, β(w) = bn in this case. It
is also clear that β is invariant under renaming. That is, if w′ is obtained
from w by exchanging the letters a and b, then β(w′) = β(w). Therefore β is
not injective, and thus not surjective, that is, there are at most 2n−1 words
of length n that are β-images. In fact, this number is much lower as we will
show later with Corollary 7.

The following lemma gives some useful properties of the images β(w). By
the second case of the lemma, β(w) does not contain two adjacent letters
a unless w is a conjugate of the special words abn−1 or ban−1. Notice that
β(abn−1) = aabn−2 = β(ban−1).

Lemma 1. Let w ∈ A∗ of length n ≥ 4.

(i) If w is primitive, then |β(w)|a ≥ 2.

(ii) For each i = 0, 1, . . . , n−1, σi(w) or σi+1(w) is bordered, or w ∈ [abn−1]
or w ∈ [ban−1].

(iii) The word w can have at most b|w|/2c unbordered conjugates.

Proof. For (i), we notice, as mentioned in the introduction, that each primi-
tive word w has two Lyndon conjugates. Since Lyndon words are unbordered
(see Lothaire [11]), the claim follows.

For (ii), assume that w is not a conjugate of abn−1 nor of ban−1, and
hence, it has at least two occurrences of a and of b. Let w′ = σi(w) be
any unbordered conjugate of w. Without loss of generality, we assume that
w′ begins with a, and, consequently, w′ = abkxabj, where j > k ≥ 0 and
the word xa begins with a, since w′ is unbordered. (We may have x = ε.)
Now, σ(w′) = bkxabja has a border bka, and hence, σi+1(w) is bordered, as
required.

The claim (iii) is clear from (ii).

In particular, if the length of w is an odd number ≥ 5, then w has two
adjacent conjugates that are both bordered.

Example 2. Consider w = abbabaa. Although the image β(w) = bababab
does not contain b2 as a factor, it has a conjugate that does so. Indeed, the
adjacent conjugates σ6(w) = aabbaba and σ7(w) = w are both bordered.

Lemma 1 (iii) states that a word of length 4 or more has at most b|w|/2c
many conjugates. The next example shows such words.
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Example 3. There are words for which the maximum number b|w|/2c of un-
bordered conjugates is obtained. Every second conjugate of w is unbordered,
for instance, in the following cases w = aabb and w = abaabbaababb. In these
examples, β(w) = (ab)|w|/2. However, there is no word of length 10 that has
5 unbordered conjugates (see Theorem 6). Also, e.g., for w = aabbbab of odd
length, we have β(w) = ababbab, and hence, |β(w)|a = 3 = b|w|/2c in this
case.

There is a close relationship between overlap-free binary words and the
maximum number of unbordered conjugates. Theorems 5 and 6 clarify this
relation. Before we prove these theorems, let us recall that the Thue-Morse
morphism [14, 15] τ : A∗ → A∗ is defined by τ(a) = ab and τ(b) = ba.

The following result is due to Thue [15] (see also [9]).

Lemma 4. Let w ∈ A∗ be a cyclically overlap-free word.

(i) τ(w) is cyclically overlap-free.

(ii) τ−1(w) is cyclically overlap-free if w ∈ {ab, ba}∗.

(iii) Either w or σ(w) has a factorization in terms of ab and ba, that is,
w ∈ {ab, ba}∗.

(iv) For some u ∈ {a, b, aab, abb} and n ≥ 0, w ∈ [τ n(u)]. In particular,
|w| = 2n or 3 · 2n for some n ≥ 0.

Note, that cyclically overlap-free words longer than 3 are of even length.
Theorem 5 shows that cyclically overlap-free binary words have a maximum
number of unbordered conjugates. In the theorem, “every other conjugate
of w is unbordered” means, by Lemma 1(iii), that β(w) is (ab)n/2 or (ba)n/2

for some even n.

Theorem 5. Let w ∈ A∗ and |w| > 3. Every other conjugate of w is
unbordered, if and only if w is a cyclically overlap-free word.

Proof. Let w be a word of length n that contains an overlapping factor, i.e.,
w = ucxcxcv, where c ∈ A and u, v, x ∈ A∗. Let i = |ucx|. Then the
conjugates σi(w) = cxcvucx and σi+1(w) = xcvucxc are both bordered, with
borders cx and xc, respectively.

In the other direction, suppose that w is cyclically overlap-free word such
that both σ(w) and σ2(w) are bordered. Clearly, |w| ≥ 4. We derive a
contradiction which proves the claim. Let u be the shortest border of σ(w)
and v be the shortest border of σ2(w). Note that in general the shortest
border of a word g is not longer than b|x|/2c
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We shall assume that a ≤ w. The case b ≤ w is symmetric, and it can be
thus omitted.

Case 1: Assume first that aa ≤ w. Then u = a, and σ(w) ∈ {ab, ba}∗

by Lemma 4(iii). It follows that aab ≤ w, and hence w = aabw0b where
w0 ∈ {ab, ba}∗ and the τ -factorization of σ(w) is given by σ(w) = (ab)w0(ba).
Now, σ2(w) = bw0baa. Note that v 6= baa for the border v of σ2(w), because
w0 ∈ {ab, ba}∗. Consequently, v = bv′baa for some v′ ∈ A∗. Since we have
σ2(w) = vzv for some nonempty z, and σ(w) ∈ {ab, ba}∗, w has a conjugate
vvby (where z = by). This is a contradiction, since v begins with b and so
vvb is not overlap-free.

Case 2: Assume that ab ≤ w. We have that bb is a suffix of w, since w is
unbordered. Therefore again σ(w) ∈ {ab, ba}∗ which implies that u = ba, and
also aba ≤ w, say w = abaw0b. We have w = abaw1bb, since w is unbordered.
Moreover, w = abaw2abb, since σ(w) ∈ {ab, ba}∗. Actually, w = abaabw3abb,
since τ−1(σ(w)) is cyclically overlap-free by Lemma 4(ii) and thus it is also in
{ab, ba}∗. We have the following τ -factorization σ(w) = (ba)(ab)w3(ab)(ba),
where w3 ∈ {ab, ba}∗. Now, the shortest border v of σ2(w) is either (2a)
v = aabbab or (2b) v = aabv′abbab for some word v′. In Case (2a), we have
σ2(w) = aabbabw4aabbab, where w4 6= ε (otherwise, τ−1(σ(w)) /∈ {ab, ba}∗).
Hence, σ(w) = (ba)(ab)(ba)(bw4a)(ab)(ba) and so w4 = aw5b, that is,

σ(w) = (ba)(ab)(ba)(ba)w5(ba)(ab)(ba) ,

and thus τ−1(σ(w) = babbτ−1(w5)bab, and therefore babbabb is a factor in
a conjugate of the preimage τ−1(σ(w)) contradicting the overlap-freeness
requirement. In Case (2b), we have that vvay occurs in a conjugate of w.
This is a contradiction, since v begins with a, and thus vva is an overlapping
factor. This completes the proof of the theorem.

The next theorem shows that words (of even length) with a maximum
number of unbordered conjugates are cyclically overlap-free with two excep-
tions.

Theorem 6. Let n ≥ 1. Every word of length 2n that has n unbordered
conjugates is either cyclically overlap-free or a conjugate of abbb or aaab.

Proof. Note that β(abbb) = aabb and β(aaab) = abba. The claim follows
easily now from Lemma 1 and Theorem 5.

Theorems 5 and 6 show that every word with a maximum number of
unbordered conjugates is cyclically overlap-free, except for the conjugates of
abbb and aaab. By Lemma 4(iv), each such word has length either 2n or 3 ·2n

for some n ≥ 1.
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Lemma 6 and Theorem 5 give an upper bound on the number of β-images.
Let An denote all words over A of length n, and let Bn denote the number
of all β-images of length n. Let Fn be the n-th Fibonacci number so that
F0 = 1 and F1 = 1 and Fn = Fn−1 + Fn−2, for all n ≥ 3.

Corollary 7. Let M = {2i | i ≥ 0} \ {2j, 3 · 2j | j ≥ 0}. Then for all n ≥ 3

β(An) ⊆
[

aabn−2
]

∪
{

w
∣

∣ |w|a ≥ 2, a2 not in ww
}

\
{

(ab)k, (ba)k
∣

∣ k ∈ M
}

(1)
and

Bn ≤ Fn + Fn−2 − m (2)

where m = 2, if n ∈ M, and m = 0 otherwise.

Proof. Clearly, (1) follows from Lemma 6 and Theorem 5. We show how (2)
follows from (1).

Let An denote the set of words of length n that have no factors a2. Now,

(i) each w ∈ An−1 yields an element wb ∈ An, and all elements of An

ending in b can be so obtained;

(ii) each w ∈ An−1 ending with b yields wa ∈ An, and all elements of An

ending in a can be so obtained.

By case (i), the number of required words w in case (ii) is equal to |An−2|.
Therefore, |An| = |An−1|+ |An−2|. Since |A1| = 2, we have that |An| = Fn+1

for all n ≥ 1.
Moreover, for n ≥ 5, the words w ∈ An that begin and end in a are of

the form w = abvba, where v ∈ An−4. Hence the number of these words is
Fn−3. We conclude that there are Fn+1 − Fn−3 = Fn + Fn−2 words of length
n with n ≥ 5 whose conjugates do not have the factor a2.

We do not consider the n different words of length n with exactly one a.
Therefore, {w | |w|a ≥ 2, a2 not in ww} has Fn +Fn−2−n elements. Clearly,
[aabn−2] has n elements. The claim then follows for n ≥ 5 from Lemma 1.
By inspection, we see that (2) holds for n = 3 and 4, and thus the claim
follows for all n ≥ 3.

Remark 8. We have calculated Bn for all n ≤ 30 using a computer; see
Table 1.

It is remarkable that the bound (2) given in Corollary 7 is tight for all
n ≤ 30 except if n = 12. That is Bn = Fn + Fn−2 − m for all 3 ≤ n ≤ 30
except if n = 12 where m = 2, if n ∈ M, and m = 0 otherwise. Actually,
there exists no word w such that β(w) ∈ [abababbababb]. We have that
B12 = F12 + F10 − 12.
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n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
m 1 2 4 7 11 18 29 47 76 121 199 310 521 841 1364

n 16 17 18 19 20 21 22 23 24
m 2207 3571 5776 9349 15125 24476 39601 64079 103682

n 25 26 27 28 29 30
m 167761 271441 439204 710645 1149851 1860496

Table 1: The number m of β-images for lengths 1 ≤ n ≤ 30

3 Unbordered Conjugates and Critical Fac-

torizations

In this section we investigate the relation between the border correlation
function and critical factorizations. First we introduce the critical points of
words.

Let w = a0a1 . . . an−1 ∈ A∗, where ai ∈ A for each i. An integer 1 ≤ q ≤ n
is a period of w, if ai = ai+q for all 0 ≤ i < n − q. The smallest period of w
is denoted by ∂(w). For instance, ∂(w) = |w|, if and only if w is unbordered.
It is easy to see that q, with 1 ≤ q ≤ |w|, is a period of w, if and only if there
is a word v of length q such that w is a factor of vn for some n ≥ 1. Let for
example w = abaababa. Then the periods of w are 5, 7, and 8 = |w|. In this
example, ∂(w) = 5.

An integer p with 1 ≤ p < |w| is called a point in w. Intuitively, a point p
denotes the place between ap−1 and ap in w above. A nonempty word u is
called a repetition word at point p if w = xy with |x| = p and there exist x′

and y′ such that u is a suffix of x′x and a prefix of yy′. For a point p in w,
let

∂(w, p) = min{|u| | u is a repetition word at p}

denote the local period at point p in w. Let for example w = abaabab. Now,
for instance, ∂(w, 2) = 3, since the shortest repetition word at p = 3 is aab.
Indeed, aw = (aab)(aab)ab. The shortest repetition words of w for the points
p = 1, 2, . . . , 6 are, respectively, ba, aab, aba, babaa, ab, and ba. We notice that
∂(w) = 5 = ∂(w, 4).

Note that the repetition word of length ∂(w, p) at point p is necessar-
ily unbordered and ∂(w, p) ≤ ∂(w). A factorization w = uv, with u, v 6= ε
and |u| = p, is called critical, if ∂(w, p) = ∂(w), and, if this holds, then p is
called critical point.

We recall the critical factorization theorem next [11] (see also [10]).
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Theorem 9. Every word w, with |w| ≥ 2, has at least one critical factoriza-
tion w = uv, with u, v 6= ε and |u| < ∂(w), i.e., ∂(w, |u|) = ∂(w).

The following lemma is a consequence of the critical factorization theo-
rem. It is proven in [2].

Lemma 10. Let w = uv be unbordered and |u| be a critical point. Then vu
is unbordered.

There is no direct relationship between critical points and unbordered
conjugates in general, since, for instance, the number of critical points is
not invariant under cyclic shifts whereas the border correlation function is;
see Remark 15 in the next section. Moreover, if w = uv such that vu is
unbordered, then |u| is not a critical point in general.

Example 11. Consider the conjugate class of w = ababa

[w] = {ababa, babaa, abaab, baaba, aabab}

with 4, 1, 2, 2, and 1 critical points, respectively. However, the word w has
exactly two unbordered conjugates babaa and aabab.

In general, it is not so that there is a word w′ in the conjugate class
of some word w such that the critical points of w′ mark the unbordered
conjugates of w like babaa and aabab in the above example.

Example 12. Consider the conjugate class of w = abbabaab. We have
exactly two critical points for every w′ ∈ [w] but four unbordered conjugates
in [w].

However, if critical points are considered modulo cyclic shifts, the situ-
ation changes. Let w be a word of length n. We call an integer p, with
0 ≤ p < n, an internal critical point of w, if p + n is a critical point of www.
The following lemma shows that internal critical points are invariant under
cyclic shifts.

Lemma 13. Let w be a word of length n. The point p is internal critical of
w, if and only if the point

q =

{

p − i if p ≥ i ,

p + n − i otherwise ,

with 0 ≤ i < n, is an internal critical point of u = σi(w).
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Proof. Clearly, www contains all conjugates of ww. Moreover, it follows
from σ(ww) = σ(w)σ(w) that uuu also contains all conjugates of ww. In
fact, let v ∈ [w] such that v = σj(w) with 0 ≤ j < n, then vv = σj(ww) and
www = xvvz where |x| = j. In particular, uuu = x′vvz′, where |x′| = j − i,
if j ≥ i, and |x′| = j + n − i otherwise.

Surely, the implication directions of the claim are symmetric to each other.
Assume p is an internal critical point of w. Let v be the shortest repetition
word at point p + n in www. We have that v is a conjugate of w, since
p + n is critical. So, www = xvvz where |x| = p. Now, uuu = x′vvz′ where
|x′| = p − i, if p ≥ i, and |x′| = p + n − i otherwise, and hence, the point
q + n is critical, and this proves the claim.

Theorem 14. Let w be a primitive word of length n, and let 0 ≤ p < n.
Then the following statements are equivalent:

• p is an internal critical point of w.

• the conjugate σp(w) is unbordered.

Proof. Assume p is an internal critical point of w. Then www = xvvz where
|x| = p and v is an unbordered factor of length n in ww. Hence, σp(w) = v.

Assume v = σp(w) is an unbordered conjugate of w. Then www = xvvz
with |x| = p, and p + n is a critical point of www. Hence, p is an internal
critical point of w.

4 Iterations of the Border Correlation Func-

tion

In this section we investigate iterations of the border correlation function.
We start by considering the β-graph Gβ(n) for each n ≥ 1. It is the directed
graph with the set An = {w | |w| = n,w ∈ A∗} as vertices, and with edges
determined by the border correlation function β, that is, there is a (directed)
edge u → v, if and only if β(u) = v. Note that every vertex has exactly one
outgoing edge. In order to avoid trivial exceptions, we assume in this section
that n ≥ 3.

Remark 15. It is straightforward to see that β(σ(w)) = σ(β(w)), that is, the
following diagram commutes.

w
β

−−−→ u

σ





y





y

σ

w′ β
−−−→ u′
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So, the β-graph Gβ(n) consists of components where each component con-
tains exactly one cycle, since for all members of one conjugate class [w] the
images are mapped to the conjugate class [β(w)] and every vertex has not
more than one outgoing edge.

In the following we show that any cycle in the graph Gβ(n) consists of
exactly one conjugate class. Moreover, we describe all conjugate classes that
form a cycle.

Let κ : A∗ → N where κ(w) denotes the minimum k such that abka occurs
in any conjugate of w, or w is a conjugate of abk, or w = bk. Note that k = 0,
if, and only if, a2 occurs in w or σ(w). Let µ : A∗ → N × N be defined such
that µ(w) = (|w|a, |w| − κ(w)). Note that µ(w) = µ(σ(w)). Let < denote
the extension of the ordering of natural numbers to the lexicographic order
on N × N; in other words, (p, q) < (r, s) if p < r, or p = r and q < s.

Theorem 16. Let w be a word not in b∗ and not in [abk] ∪ [abkabk+1], for
all k ≥ 0. Then µ(β(w)) < µ(w).

Proof. Let w be a word of length n that is not in b∗ ∪ [abn−1] and not in
[abkabk+1], for k = (n−3)/2. Note that a occurs at least twice in w. If w is not
primitive, then β(w) = bn and, in this case, it is clear that µ(β(w)) < µ(w).
Assume then that w is primitive. Because µ(w) = µ(σ(w)), we can choose
any conjugate of w without changing its µ image. Therefore, we can assume
that w begins with a and that it is unbordered. For example, we may take
the Lyndon word in the conjugate class [w] with respect to the order a C b.
We have now a unique factorization in the form w = B1B2 · · ·Br, where each
Bi = abki with r ≥ 2 and ki ≥ 0 for all 1 ≤ i ≤ r. Let m be the minimum of
all ki.

Note that |β(w)|a ≤ |w|a by Lemma 1. So, every occurrence of the letter
a in w implies at most one a in β(w), because if the i-th letter of w be
a, then not both σi−1(w) and σi(w) can be unbordered conjugates of w by
Lemma 1(ii). If an occurrence of a in w does not imply an a in β(w), we say
that this occurrence of a is dropped.

The claim follows, if |β(w)|a < |w|a, and therefore, we can assume that
|β(w)|a = |w|a, that is, no occurrence of a is dropped: for every i ≥ 1, if the
i-th letter in w is an a, then either σi−1(w) or σi(w) is unbordered. Since w
begins with a and is unbordered, we have that β(w) = B ′

1B
′
2 · · ·B

′
r, where

B′
i = abk′

i and k′
i > 0 for all 1 ≤ i ≤ r. Note that the a in B ′

i corresponds
to the unbordered conjugate of w, if w is factored either before or after the
occurrence of a in Bi. We show that κ(w) < κ(β(w)) in this case.

Let i + 1 be modulo r in the following, and let j = |B1B2 · · ·Bi|. If
ki = ki+1 then the a in Bi+1 is dropped, that is, neither σj(w) nor σj+1(w)
is bordered; a contradiction. So, assume that ki 6= ki+1.
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Note that if ki > ki+1 then σj+1(w) is bordered and σj(w) is unbordered
by assumption, and if ki < ki+1 then σj(w) is bordered and σj+1(w) is un-
bordered by assumption.

If ki > ki+1 then k′
i = ki, in case ki−1 > ki, and k′

i = ki − 1, in case
ki−1 < ki.

If ki < ki+1 then k′
i = ki + 1.

Now, we have that |ki − k′
i| ≤ 1. If ki = m then k′

i = k + 1. However, we
get k′

i = m, if and only if ki−1 = m and ki = k + 1 and ki+1 = m, and r ≥ 4,
since w 6∈ [abkabk+1] and, by assumption, |β(w)|a = |w|a. Therefore, we also
have ki−2 > m and bm+1abmabm+1abma occurs in a conjugate of w, and both
σj(w) and σj+1(w) are bordered; a contradiction.

So, k′
` > m, for all 1 ≤ ` ≤ r, if |β(w)|a = |w|a, and therefore we have

µ(β(w)) < µ(w).

Lemma 17. Let w ∈ [abkabk+1] with k ≥ 0. Then

[abkabk+1] = {βi(w) | 0 ≤ i < |w|} .

Proof. We have that w = brabsabt, where either r + t = k and s = k + 1,
or r + t = k + 1 and s = k. Now β(w) = br+1abs−1abt = σs(w) in the
former case and β(w) = brabs+1abt−1 = σs+1(w) in the latter case. That is,
β(w) = σk+1(w), and the claim follows, since 2k + 3 and k + 1 are relatively
prime.

Note that the proof of Lemma 17 gives βj(σi(abkabk+1)) = σm(abkabk+1)
where m is i + j(k + 1) modulo (2k + 3).

We are now ready to show that iterations of β on any binary word result
in a word of a certain shape.

Theorem 18. For every word w, there exists an i ≥ 0 such that β i(w) ∈ b∗

or βi(w) ∈ [abkabk+1].

Proof. Let w be a word of length n. Note that β(w) = bn, if w is not
primitive. Assume thus that w is primitive. Note that if µ(w) 6= µ(u) then
[w] 6= [u], and that β(w) 6∈ [abn−1], since w has at least two unbordered
conjugates. If w ∈ [abn−1] then β(w) ∈ [aabn−2]. If w ∈ [abkabk+1] then
β(w) ∈ [abkabk+1] by Lemma 17.

Suppose now that w is different from bn and w is not in [abn−1]∪[abkabk+1]
for k = (n − 3)/2. Since the values of µ strictly decrease after an application
of β, by Theorem 16, we conclude that there exists an i ≥ 1 such that
βi(w) = bn or βi(w) ∈ [abkabk+1].

11



Observe that by Theorem 18 for every word w of even length there exists
an i ≥ 0 such that β(w) = b|w|.

Consider then the graph G∼
β (n), which consists of the conjugate classes

[w], for |w| = n, as its vertices and there is an edge [u] → [v] if β(u) = v.
By the above results, this graph is well defined, and it consists of trees when
disregarding reflexive loops [u] → [u]. (See Figure 1 for the graph G∼

β (7).)

[bbbbbbb] [abbabbb] [aaabbbb]oo

[aaaaaaa]

OO

[aaabaab]

88ppppppppppp

[aaaabab]

ffNNNNNNNNNN

[aaaabbb]

kkVVVVVVVVVVVVVVVVVVVVVV

[ababbbb]

OO

[aabbabb]oo

[aabbbbb]

33hhhhhhhhhhhhhhhhhhhhhhh

[aaaaabb]

88ppppppppppp

[aababab]

OO

[aabaabb]

kkVVVVVVVVVVVVVVVVVVVVVV

[abbbbbb]

OO

[aaaaaab]

ggNNNNNNNNNNN

[abababb]

^^<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<

[aababbb]

33hhhhhhhhhhhhhhhhhhhhhh

[aaababb]

88qqqqqqqqqqq

[aabbbab]

OO

[aaabbab]

ffNNNNNNNNNN

Figure 1: The graph G∼
β (7). We have omitted the loops of the vertices [b7]

and [abbabbb].

5 Discussion

We have investigated the border correlation function β of binary words. The
shape of β images for words with a minimal and maximal number of unbor-
dered conjugates has been clarified. Nevertheless, the set β(A∗) has not been
completely described. Corollary 7 seems to give a very good estimation. All
β-images up to length 30 have been checked and only words of length 12
seem to be exceptional.

Apart from the border correlation function β one could investigate an
extension β ′ : A∗ → N

∗ of that function such that a word w of length n is
mapped to m0m1 · · ·mn−1 where mi is the length of the shortest border of

12



σi(w) for all 0 ≤ i < n. We just notice here that β ′ is injective, since,
if u = wau′ and v = wbv′, then clearly the shortest borders of the |w|-th
conjugates au′w and bv′w are different, because one of them is equal to 1,
and the other is not.
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