
Chapter 4

Partitions of Integers

4.1 The Basic Partition Problem

Shortly after De Moivre used generating functions to find a formula for the
n-th Fibonacci number, Euler used them to solve problems about partitions
of integers.

Let us suppose that we are given an integer n and we wish to find the
number of ways of expressing n as the sum of positive integers. If we regard
the order of the summands as important, so that two sums differing only in
the order of their summands are nonetheless counted as different sums, then
the answer is 2n−1. To see this, imagine n ones arranged in a line, with a
space between each of the ones. For each space we have the choice either
of leaving it blank or inserting a comma. Since there are n − 1 spaces and
we have two choices for the disposition of each space, we conclude there are
2n−1 ways of arranging our blank spaces and commas. Since the number of
such arrangements is in one-one correspondence with the number of ordered
partitions, we are finished.

Things become considerably more complicated when we consider un-
ordered partitions. By this we mean that two partitions of n that differ
only in the order of their summands are to be considered identical. Let us
denote by p(n) the number of unordered partitions of the integer n. By the
basic partition problem we mean the determination of p(n). From now on
we will drop the term “unordered” from our description of “partition”.

For example, we find that p(n) = 1 while p(2) = 2, namely 2 and 1 + 1.
Moving on, we find p(3) = 3 (3, 2 + 1 and 1 + 1 + 1). We also have p(5) = 7
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(5, 4 + 1, 3 + 2, 3 + 1 + 1, 2 + 2 + 1, 2 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1). This
grows tedious.
As a beginning we may define a generating function

G(x) =
∞
∑

n=0

p(n)xn.

Partitions of integers arise naturally upon multiplication of power series. For
example, we note that

(

∞
∑

i=0

xi

)(

∞
∑

k=0

xk

)

=
∞
∑

j=0

cjx
j,

where cj equals the number of ways of partitioning j into the sum of two
integers, where the order of the summands is taken to be important.
That is not quite what we want, but it suggests that we might be able

to realize G(n) as the product of several other generating functions. Define
the notation pk(n) to denote the number of partitions of n into summands
drawn from the set {1, 2, 3, · · · , k}. Suppose we had chosen slightly different
geometric series for our product. For example, observe that

(

1

1− x

)(

1

1− x2

)

=
∞
∑

n=0

p2(n)x
n.

By the same logic,

(

1

1− x

)(

1

1− x2

)(

1

1− x3

)

=
∞
∑

n=0

p3(n)x
n.

We could continue this process for any number of summands. If we desire
to have no restrictions on the number of summands we may utilize, we can
write

G(x) =
∞
∏

i=1

1

1− xi
.

This formula assumes that the summands we are interested in are drawn from
the set of all positive integers. If instead we had a set of positive integers
{a1, a2, · · · , ak} and wanted to find the number of ways of expressing n as
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a sum of integers drawn from that set, the appropriate generating function
would be

(

1

1− xa−1

)(

1

1− xa2

)

· · ·
(

1

1− xak

)

.

As an application of this last formula, consider the problem of making
change. To keep things simple, we will assume we have pennies, nickles,
dimes and quarters. Let n denote the quantity for which we desire change.
To avoid having to deal with decimals, we will assume that the monetary
values of everything have been multiplied by one hundred. Then accoridng
to our formula, the number of ways of making change for n is

(

1

1− x

)(

1

1− x5

)(

1

1− x10

)(

1

1− x25

)

.

4.2 The Size of p(n)

The problem of counting the number of unordered partitions of a number n
has intrigued mathematicians for over a century, and a substantial body of
work has developed to address it. Fundamental in this regard is a formula
obtained by Hardy and Ramanujan in the early twentieth century. They
showed that

p(n) ≈ 1

4n
√
3
eπ
√

2n
3 .

This result was later improved by Rademacher, who obtained a formula
which, when rounded to the nearest integer, would produce p(n). Rademach-
er’s formula is one of the crowning achievments of analytic number theo-
ry, but its proof is far too complicated to be included here. The Hardy-
Ramanujan bound is likewise difficult to prove, so we will content ourselves
with a more accessible result.

Specifically, we will show that for all n, we have that p(n) < e

(

π2

6
+1

)√
n
.

To do that we set G(x) =
∏∞

i=1
1

1−xi and take logarithms of both sides. When
we do, we obtain

logG(x) = −(log(1− x) + log(1− x2) + log(1− x3) + · · · ).

We can now use the Taylor expansion

− log(1− y) = y +
y2

2
+
y3

3
+ · · ·
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to obtain

logG(x) =
∞
∑

i=1

xi

i
+

∞
∑

j=1

x2j

j
+

∞
∑

k=1

x3k

k
+ · · ·

=
∞
∑

i=1

xi +
∞
∑

j=1

x2j

2
+

∞
∑

k=1

x3j

3
+ · · ·

=

(

x

1− x

)

+
1

2

(

x2

1− x2

)

+
1

3

(

x3

1− x3

)

+ · · ·

Further progress will only be made once we have better understood the

function
xn

1− xn
. We will restrict our attention to values of x strictly between

zero and one. For any such x we have that

xn−1 < xn−2 < xn−3 < · · · < x2 < x < 1.

Since the average of a set of numbers is larger than the smallest of those
numbers, we can write

xn−1

1 + x+ x2 + · · ·+ xn−1
<
1

n
.

It follows that

xn

1− xn
=

x

1− x
· xn−1

1 + x+ x2 + · · ·+ xn−1
<

x

n(1− x)
.

If we assemble the pieces we have constructed thus far, we see that we
have

logG(x) <

(

x

1− x

) ∞
∑

n=1

1

n2
=

x

1− x
ζ(2),

where ζ denotes the Riemann zeta function defined in the previous chapter.
Since we know that ζ(2) = π2

6
, we see that

logG(x) <
π2

6

(

x

1− x

)

.

Since the sum defining G(x) consists entirely of positive terms, we know
that G(x) is larger than any one of its terms. Therefore, G(x) > p(n)xn for
any n. Taking logarithms of both sides leads to the discovery that

log p(n) < logG(x)− n log x <
π2

6

(

x

1− x

)

− n log x.
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But we also know that for any real number y > 1, we have log y < y − 1. It
follows that

− log(x) = log 1
x
<
1

x
− 1 = 1− x

x
.

Our inequality now becomes

log p(n) <
π2

6

(

x

1− x

)

+ n

(

1− x

x

)

.

If we now take x =

√
n√

n+ 1
, then we obtain

log p(n) <

(

π2

6
+ 1

)√
n,

from which the result follows.

4.3 Restricted Partitions

Our change-making example from section one suggests a new investigative
direction for us to pursue. Suppose that instead of partitioning an integer
into summands drawn from the full set of positive integers, we require instead
that our summands be drawn our summands from various other sets.

In light of the result we established in section one, we can write down the
following generating functions:

• The generating function for pk(n), the number of partitions of n using
summands not exceeding k is

1

(1− x)(1− x2)(1− x3) · · · (1− xk)
.

• The generating function for po(n), the number of partitions of n using
odd summands, is

1

(1− x)(1− x3)(1− x5) · · · .
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• The generating function for pe(n), the number of partitions of n using
even summands, is

1

(1− x2)(1− x4)(1− x6) · · · .

In everything we have considered so far we have allowed the possibility
of repeated summands in our partition. Let us suppose that we desire to
contemplate partitions using distinct summands only. We will denote the
number of such partitions of n by the notation pd(n).
The answer comes from the binomial theorem. There we saw that in

expanding a binomial such as (1 + x) to the power n, we effectively had
to choose either an x or a 1 out of each term in the expansion. Thus, the
coefficient of the term xk was the number of ways of choosing k x’s out of
our n terms.
But what if instead of expanding (1 + x), we considered a sequence of

binomials of the form (1 + xki), where {ki} is a sequence of distinct positive
integers? In this case, every power of x in the resulting product would appear
precisely as many times as it could be expressed as a sum of elements in {ki}.
Since the (ki)’s are distinct, our coefficients will record the number of ways
of expressing an integer n as the sum of distinct elements drawn from the
(ki)’s.
Therefore, if we took our sequence to be the set of all postive integers,

we would obtain

pd(n) = (1 + x)(1 + x2)(1 + x3)(1 + x4) · · · =
∞
∏

k=1

(1 + xk).

If instead we had sought the number of ways of expressing n as a sum of
distinct powers of two, which we will denote by pt(n), we would have found
that

pt(n) = (1 + x)(1 + x2)(1 + x4)(1 + x8) · · · =
∞
∏

k=1

(1 + x(2k)).

In glancing over all of these generating functions, you might have noticed
that some of them bear striking similarities to others. This suggests that
there are intriguing relationships among them to be found.
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For example, notice that for any integer k we have that (1+xk) =
1− x2k

1− xk
.

If we multiply over all possible values of k, we obtain

∞
∏

k=1

(1 + xk) =
∞
∏

k=1

(

1− x2k

1− xk

)

=
∞
∏

k=1

1

1− x2k−1
.

But the expression on the left is just pd(n) and the expression on the right
is po(n). It follows that these quantities are equal, and the number of ways
of partitioning an integer into the sum of distinct integers is equal to the
number of ways of expressing it as the sum of odd integers. Had we chosen
the number six, for example, we would find that po(6) = 4 {5+1, 3+3, 1+
1+1+3, 1+1+1+1+1+1}. Similarly, pd(6) = 4 {6, 5+1, 4+2, 1+2+3}.
We also know that for any integer n there is precisely one base two ex-

pansion of n. Since a base two expansion involves expressing an integer as
the sum of distinct powers of two, we see that pt(n) must be the generating
function for the sequence consisting entirely of ones. We already have a name
for this function, leading us to conclude that

∞
∏

k=1

(1 + xk) =
∞
∑

k=1

xn =
1

1− x
.

4.4 Ferrers Diagrams

Sometimes a geometric approach can shed light on partition problems, and
we now consider a useful heuristic that has been developed for treating them.
Let us consider the partition 5+3+3+1 of 12. We can depict this partition
geometrically via the first of the two diagrams below:

¤ ¤ ¤ ¤ ¤

¤ ¤ ¤

¤ ¤ ¤

¤

¤ ¤ ¤ ¤

¤ ¤ ¤

¤ ¤ ¤

¤

¤

The second diagram corresponds to the partition 4 + 3 + 3 + 1 + 1. It was
obtained from the first by reflecting it across the line at forty-five degrees.
The partition on the left is said to be conjugate to the one on the right. More
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precisely, let (p1, p2, · · · , pk) be a partition of some integer n into k parts.
Then the partition given by (r1, r2, · · · , rs), where ri denotes the number of
the (pj)’s larger than i, is the conjugate of (p1, p2, · · · , pk).
Now suppose that we are given a partition of n into k parts. Then its

conjugate consists entirely of summands no greater than k. We also note
that every partition is conjugate to precisely one other. Therefore, we have
established a one-one correspondence between partitions of n into k parts
and partitions of n with summands not exceeding k. We conclude that the
numbers of such partitions are equal.
As an especially clever application of a Ferrers diagram, we address the

problem of finding the reciprocal of the generating function for the partition
numbers. Earlier we saw that

G(x) =
∞
∑

k=1

p(n)xn =
∞
∏

k=1

1

(1− xk)
.

We then set
1

G(x)
=

∞
∏

k=1

(1− xk) =
∞
∑

k=1

cnx
n,

and seek a formula for the coefficients cn. When we carry out the above mul-
tiplication, we find that the coefficient of xn will be related to the number of
ways of expressing n as the sum of distinct integers. In fact, we know from
our previous work that

∏

k(1 + xk) is the generating function for pd(n). To
take the minus sign in to consideration, we make a distinction between par-
titions of n into an even number of distinct summands and those possessing
an odd number of distinct summands. We will denote the former by Qe(n)
and the latter by Qo(n). Then we have that

cn = Qe(n)−Qo(n).

How are we to evaluate this difference?
Since our interest is in the difference between Qe(n) and Qo(n), we will

attempt to establish a one-one correspondence between these two sets. To-
wards that end, consider the Ferrers diagram below:

¤ ¤ ¤ ¤ ¤ ¤ ¥

¤ ¤ ¤ ¤ ¤ ¥

¤ ¤ ¤ ¤ ¥

¤ ¤ ¤

£ £
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This corresponds to the partition 7 + 6+ 5+ 3+ 2 of 23. In general, given a
Ferrers diagram, we will define its slope, denoted by S, to be the number of
squares appearing in a forty-five degree line beginning with the northeastern-
most square in the diagram. In this case the slope is three, as indicated by
the three black squares in the diagram. We will also refer call the three
squares themselves the slope; we trust this will cause no confusion.
We will also define the base of the partition, denoted by B, to be the size

of its smallest summand. Here that quantity is two, indicated by the boxes
with ×’s in them. The squares making up the smallest summand will also
be called the base.
We now define two operations that might be carried out on a Ferrers

diagram. If, as in the present case, we have B ≤ S then we construct a
new Ferrers diagram by removing the base, and placing its squares at the
far eastern side of the diagram. This creates a new slope. The effect of this
change on the above diagram is given below:

¤ ¤ ¤ ¤ ¤ ¤ ¥

¤ ¤ ¤ ¤ ¤ ¥

¤ ¤ ¤ ¤ ¥

¤ ¤ ¤

£ £

=⇒
¤ ¤ ¤ ¤ ¤ ¤ ¥ £

¤ ¤ ¤ ¤ ¤ ¥ £

¤ ¤ ¤ ¤ ¥

¤ ¤ ¤

On the other hand, if we have a partition for which B > S, we produce a new
Ferrer diagram by moving the squares that form the slope to the extreme
south end of the diagram. An example of this operation is shown in the
diagram below:

¤ ¤ ¤ ¤ ¤ ¤ ¥

¤ ¤ ¤ ¤ ¤ ¥

¤ ¤ ¤ ¤

£ £ £

=⇒

¤ ¤ ¤ ¤ ¤ ¤

¤ ¤ ¤ ¤ ¤

¤ ¤ ¤ ¤

£ £ £

¥ ¥

As long as the set of squares forming the slope is disjoint from the set of
squares forming the base, it is always possible to carry out one of these two
operations. The result of either operation is to transform a given partition of
n into distinct summands into a different such partition. What changes is the
parity of the number of parts in the partition. We note further that for any
such diagram only one of the two operations can be carried out. Furthermore,
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applying the first operation to a given diagram produces a new diagram to
which the second operation can be applied. Finally, we note that if we apply
the first operation to a diagram and then apply the second operation to this
new diagram, we arrive back at our original diagram. In that sense we can
say the two operations are inverses of each other.

For what sorts of diagrams is it impossible to carry out either of our
operations? We need two conditions. The first is that the set of squares
forming the slope must intersect the set of squares forming the base. If this
happens, the second condition is that B = S or B = S + 1. These cases are
illustrated respectively in the two diagrams below:

¤ ¤ ¤ ¤ ¡

¤ ¤ ¤ ¡

¡ ¡ ¡

¤ ¤ ¤ ¤ ¤ ¡

¤ ¤ ¤ ¤ ¡

¡ ¡ ¡ ¡

We next determine the values of n for which diagrams such as the above
are possible. Let us set ε = 0 or 1. Then we have S = B + ε. Since we
are assuming that the slope intersects the base, we know the partition must
comprise consecutive numbers. We also know that the total number of terms
in the partition is equal to S. With that in mind we compute

n = (k + ε) + (k + ε+ 1) + (k + ε+ 2) + · · ·+ (2k + ε− 1)

=
k

2
(3k + 2ε− 1) = k

2
(3k ± 1).

It follows that if k is not of the form
3k2 ± k

2
then ck = 0.

When k is of the form
3k2 ± k

2
, then we have precisely one partition of

k for which it is impossible to carry out either of the two operations defined
above. Whether that partition belongs to Qe(k) or Qo(k) will depend on the
parity of k. Regardless, its contribution to the difference Qe(k)−Qo(k) will
be (−1)k. It follows that ck = (−1)k in these cases.
We can summarize all of our new found wisdom in the following identity,

first proved by Euler:

∞
∏

i=1

(1− xi) = 1 +
∞
∑

k=1

(−1)k(x 3k2−k
2 + x

3k2+k
2 ).
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4.5 Summary

In this chapter we defined the following terms:

Definition 12. By an ordered partition of an integer n we mean any way

of expressing n as the sum of positive integers, where two partitions differ-

ing only in the number of summands are nonetheless to be considered equal.

Repeated summands are allowed. If we do not regard two such partition-

s as different, then we talk about unordered partitions. The number of

unordered partitions of an integer n is denoted by p(n).

Definition 13. We also defined the following sorts of partition functions:

• By pk(n) we mean all the partitions of n using summands not exceeding

k.

• By po(n) we mean all partitions of n using odd summands only.

• By pe(n) we mean all partitions of n using even summands only.

• By pd(n) we mean all partitions of n using distinct summands.

• By pt(n) we mean all partitions of n using distinct powers of two.

Definition 14. A Ferrers diagram is a way of presenting a geometric

picture of a particular partition. The summands in the partition are presented

in horizontal rows, in decreasing order starting from the top, with each row

comprising a number of squares equal to the particular summand. Thus, the

partition 6 + 4 + 3 + 2 + 1 of 16 would have the Ferrers diagram:

¤ ¤ ¤ ¤ ¤ ¤

¤ ¤ ¤ ¤

¤ ¤ ¤

¤ ¤

¤

Definition 15. Given a partition (p1, p2, · · · , pk) of an integer n, its conju-

gate partition is the partition (r1, r2, · · · , rs) where ri denotes the number
of the (pj)’s larger than i. Thus, the partition conjugate to 6 + 4 + 3 + 2 + 1
is 5 + 4 + 3 + 2 + 1 + 1. The Ferrers diagrams of conjugate partitions are

related by a reflection across the forty-five degree line.
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We also proved the following theorems.

Theorem 4.5.1. If S = {a1, a2, · · · , ak} is a set of positive integers, then

the generating function G(x) for the number of ways of expressing an integer
n as the sum of elements of S is

G(x) =
k
∏

i=1

1

1− xai
.

Theorem 4.5.2. We also have the following generating functions:

•
∑∞

n=1 p(n)x
n =

∏∞
i=1

1
1−xi .

• ∑∞
n=1 pk(n)x

n =
∏k

i=1
1

1−xi .

• ∑∞
n=1 po(n)x

n =
∏∞

i=1
1

1−x2i−1 .

• ∑∞
n=1 pd(n)x

n =
∏∞

i=1(1 + xk).

Theorem 4.5.3. The partition numbers p(n) satisfy the bound

p(n) < e

(

π2

6
+1

)√
n
.

Theorem 4.5.4. The number of partitions of n into distinct summands is

equal to the number of partitions of n into odd summands. Thus, for all n,

we have po(n) = pd(n).

Theorem 4.5.5. The following equation is true:

∞
∏

i=1

(1− xi) = 1 +
∞
∑

k=1

(−1)k(x 3k2−k
2 + x

3k2+k
2 ).

4.6 Problems

1. Prove that the number of partitions of an integer n is equal to the
number of partitions of n+ 1 whose smallest part is 1.

2. Let p∗(n) denote the number of partitions of n whose summands all
exceed one. Prove that p∗(n) = p(n)− p(n− 1).
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3. Recall that we defined the quantity pk(n) to be the number of partitions
of n with summands no larger than k. Let k and n be integers with
1 < k < n. Prove that

pk(n) = pk−1(n) + pk(n− k).

4. Prove that for any integer n, we have p(n+ 2) + p(n) ≥ 2p(n+ 1).

5. In how many ways can 100 identical apples be placed into 20 identical
bags if we require that each bag has at least 3 apples? A formula is
fine; there is no need to come up with the exact number.

6. A given partition of an integer k is said to be self-conjugate if it is
equal to its own conjugate. Prove that the number of self-conjugate
partitions of k is equal to the number of partitions of k into distinct,
odd summands.

7. Prove that the number of partitions of m is equal to the number of
partitions of 2m into m parts.

8. Prove that the number of partitions of n into exactly r parts where
partitions differing in the order of their summands are to be considered
different is

(

n−1
r−1

)

.

9. Find the number of ordered quadruples (x1, x2, x3, x4) of positive odd
integers such that x1 + x2 + x3 + x4 = 98.

10. Prove that the number of partitions of (a−c) into exactly (b−1) parts,
none of which is larger than c is equal to the number of partitions of
(a− b) into (c− 1) parts none of which is larger than b. (HINT: Begin
by taking the Ferrers diagram of any partition of (a − c) into exactly
(b− 1) parts, none of which is larger than c. Add one more part of size
c to create a partition of a into b parts, the largest of which is c. Go
on from there.)

11. Prove that the number of partitions of n with no summand greater
than k is equal to the number of partitions of n + k with exactly k

parts.



74 CHAPTER 4. PARTITIONS OF INTEGERS

12. Given a partition P of a positive integer n, we say P is perfect if
it contains precisely one partition of every number less than n. For
example, the perfect partitions of 7 are (1, 1, 1, 1, 1, 1, 1), (4, 1, 1, 1),
(4, 2, 1) and (2, 2, 2, 1). Prove that the number of perfect partitions of
an integer n is equal to the number of ordered factorizations of n + 1.
Factors of one are not counted. By an ordered factorization, we mean
that two factorizations of n+1 differing only in the order of the factors
are nonetheless to be considered as different factorizations. When n = 7
we consider the ordered factorizations of 8 and find that there are four
of them: 8, 4(2), 2(4) and 2(2)(2).


