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We describe a chapter in a forthcoming book based on original historical sour-
ces, emerging from an upper level capstone undergraduate mathematics course.
Each chapter tells an important mathematical story spanning several centuries,
examined in-depth through original sources. The chapter featured here follows
the development of the connection between the continuous and the discrete,
in the context of two interlocked themes: the search for formulas for sums of
numerical powers in relation to integration, and Euler’s summation formula in
relation to infinite series. Further material is at math.nmsu.edu/~history .

For more than a decade several faculty at New Mexico State University have
been teaching courses based on student study of original historical sources to
learn great mathematics via the rich insights and motivation such sources can
provide. Two of our courses have evolved to follow entire themes through orig-
inal sources from many centuries (Laubenbacher & Pengelley, 1992, 1996),
and a book based on the original sources for our lower division course already
exists (Laubenbacher & Pengelley, 1998). We are completing a second book of
annotated original sources, emerging from a capstone course for college juniors
and seniors with substantial mathematics background (Knoebel, Laubenbacher,
Lodder, & Pengelley, to appear). Here we describe one of its five independent
chapter themes in the context of the pedagogy of teaching based on original
sources. A detailed description of the topics for the entire book is available at
our web site (Laubenbacher & Pengelley, 1999).

Following a mathematical theme over a long period via original sources is a
motivating and unifying experience for students, since one sees how a breadth
of mathematical areas and techniques all come together (de Guzmán, 1993).
Original sources also expose one to the thrill of exploring the unknown that
motivates most mathematicians, and shows that mathematics is a living, breath-
ing, human subject, often raising more questions than it answers. In all these
respects, teaching with original sources creates a mathematical experience not
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as narrow as traditional courses (Laubenbacher, Pengelley, & Siddoway, 1994).
More information on our work and that of others teaching with original histor-
ical sources is at (Laubenbacher & Pengelley, 1999).

Each chapter in our forthcoming book begins with a comprehensive intro-
duction that tells an important mathematical story extending over several cen-
turies. The chapter introduction refers to the individual sections of the chapter
for in-depth study of the high points of that story through studying original
sources. Each subsequent section features original source material surrounded
by connecting mathematical and historical annotation, and extensive exercises
based on the original sources. A supplementary web site devoted to the book
will contain sample materials, and additional source translations we have made,
along with more exercises and topics for further exploration.

In this paper we summarize the story told through original sources from our
chapter on the relationship between the continuous and the discrete, hinging
historically on two interlocking themes: the search for formulas for sums of
numerical powers, and Euler’s development of his summation formula in rela-
tion to sums of infinite series.

Sums of powers and Euler’s summation formula: two inter-
locked themes
Historically our story begins in ancient times with the Greek discrete approxi-
mations used to obtain continuous areas and volumes by the method of exhaus-
tion; in particular, Archimedes determined sums of squares to find the area in-
side a spiral. This was followed by medieval approaches in India and the Arab
world producing individual formulas for sums of cubes and fourth powers. By
the mid-seventeenth century Fermat and Pascal realized the general connection
between the figurate and binomial coefficient numbers and sums of numerical
powers, with application to computing areas under higher parabolas. Jakob
Bernoulli, during his work on probability with combination numbers, was the
first to conjecture a general pattern for the polynomial formulas for sums of
powers, introducing the Bernoulli numbers into mathematics. Motivated by
the Basel Problem of determining the infinite sum of the reciprocal squares,
Euler then discovered the general connection between integration and discrete
sums of either finite or infinite series, embodied in the Euler-Maclaurin sum-
mation formula. This achievement allowed him to solve the Basel Problem,
prove Bernoulli’s conjectured general formula for sums of powers, and obtain
spectacular numerical approximations for sums of infinite series. It also in-
augurated the study of the zeta function, at the heart of the development of
modern mathematics. Our book chapter follows these two interlocked themes
comprehensively; here we briefly sketch the progression via original sources,
along with some pedagogical comments.

The Basel Problem
In the 1670s James Gregory and Gottfried Leibniz discovered (as essentially
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had the mathematicians of Kerala in southern India two centuries before) that
(Katz, 1998, pp. 493ff,527)

1− 1
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+
1
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7
+ · · · = π

4
.

Since aside from geometric series, very few infinite series then had a known
sum, this beautiful and astonishing result spurred Leibniz and the brothers
Jakob and Johann Bernoulli to seek the sums of other series, and particularly
the reciprocal squares
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The latter came to be known as the Basel Problem, and Jakob expressed his
eventual frustration with its elusive nature in the comment “If someone should
succeed in finding what till now withstood our efforts and communicate it to
us, we shall be much obliged to him.” (Young, 1992, p. 345) In the early 1730s
Leonhard Euler solved the problem, proving that its sum is exactlyπ2/6, in
part by first broadening the context to produce a general “summation formula”
for

∑n
i=1 f(i), with n possibly infinite. His new setting thus encompassed

both the Basel Problem,
∑∞

i=1
1
i2 , and the problem of finding precise formulas

for sums of powers,
∑n

i=1 ik ≈ ∫ n

0
xk dx, which had been studied from an-

tiquity for solving area and volume problems. The summation formula Euler
developed helped him resolve both questions. This is a spectacular pedagogi-
cal illustration of how generalization and abstraction can lead to the combined
solution of seemingly independent problems.

Archimedes: The area inside a spiral and sums of squares
The Pythagoreans, in the sixth centuryB.C.E., knew that

1 + 2 + 3 + · · ·+ n =
n(n + 1)

2
.

As a first original source, we can read Archimedes (third centuryB.C.E.),
expressing in his bookOn spirals(Archimedes, 1952) a “formula” for a sum
of squares by

If a series of any number of lines be given, which exceed one another by
an equal amount, and the difference be equal to the least, and if other
lines be given equal in number to these and in quantity to the greatest,
the squares on the lines equal to the greatest, plus the square on the
greatest and the rectangle contained by the least and the sum of all
those exceeding one another by an equal amount will be the triplicate of
all the squares on the lines exceeding one another by an equal amount.

Students can interpret and transform this into the equivalent modern formula-
tion

12 + 22 + 32 + · · ·+ n2 =
n(n + 1)(2n + 1)

6
.
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Archimedes applied this to deduce the area inside what we call an Archimedean
spiral by the classical Greek method of exhaustion:

The area bounded by the first turn of the spiral and the initial line is
equal to one-third of the first circle.

The ability to sum yet higher powers was key to finding areas and vol-
umes of other geometric objects, and we find sums of cubes understood in
work of Nicomachus of Gerasa (first centuryB.C.E.), Āryabhat.a in India (499
C.E.), and al-Karaj̄ı in the Arab world (c. 1000) (Boyer, 1943)(Heath, 1963,
p. 68f)(Katz, 1998, p. 212f,251ff):

n∑

i=1

i3 =
(

n(n + 1)
2

)2

.

The first evidence of a general relationship between various exponents is in the
work of Abū ‘Al ı̄ al-H. asan ibn al-Haytham (965–1039), who needed a formula
for a sum of fourth powers in order to find the volume of a general paraboloid
of revolution (Katz, 1998, p. 255f). Although not stated in full generality, his
discovery was essentially the recursive relationship

(n + 1)
n∑

i=1

ik =
n∑

i=1

ik+1 +
n∑

p=1

(
p∑

i=1

ik

)
.

Pierre de Fermat and Blaise Pascal: Figurate numbers, the
arithmetical triangle, and sums of powers
In his correspondence of 1636, Pierre de Fermat called the problem of find-
ing formulas for sums of powers “what is perhaps the most beautiful problem
of all arithmetic”, and claimed a recursive solution using figurate numbers,
which could then be applied to integrate the “higher parabolas”xk (Boyer,
1943)(Katz, 1998, p. 481ff). The only details Fermat gave were his claims
about “figurate numbers” that

The last number multiplied by the next larger number is double the col-
lateral triangle;
the last number multiplied by the triangle of the next larger is three times
the collateral pyramid;
the last number multiplied by the pyramid of the next larger is four times
the collateral triangulo-triangle;
and so on indefinitely in this same manner.

Interpreting and understanding what Fermat meant by this is a delightful
mystery for students and instructor to unravel, and naturally leads to under-
standing how figurate numbers, which are formed from arrays of dots, are one
and the same as combination numbers and binomial coefficient numbers. In
brief, as an example, ifFn,2 denotes the number of dots evenly spaced in an
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equilateral triangle withn dots on a side, andFn,3 is the number of dots in
an analogous triangular pyramid, and so on to higher dimensions, then Fermat
claims that these figurate numbers obey equations such as

nFn+1,1 = 2Fn,2 andnFn+1,2 = 3Fn,3.

SoFn,3 =
n

3
Fn+1,2 =

n

3
n + 1

2
Fn+2,1 =

n

3
n + 1

2
n + 2

1

andFi,2 =
i

2
Fi+1,1 =

i

2
i + 1

1
.

Moreover, since a triangular pyramid of dots consists of a sloping pile of trian-
gles of dots, we have

Fn,3 =
n∑

i=1

Fi,2.

Thus
n (n + 1) (n + 2)

3 · 2 · 1 =
n∑

i=1

i(i + 1)
2

=
1
2

n∑

i=1

i2 +
1
2

n∑

i=1

i,

from which we easily deduce the formula for a sum of squares from knowing
a formula for a sum of first powers.

Next we read the words of Blaise Pascal, who in 1654, also with the aim
of applications to integration, wrote an entire treatise onSums of Numerical
Powers(Pascal, 1976, v. III, pp. 341–367), beginning with

Given, starting with the unit, some consecutive numbers, for example 1,
2, 3, 4, one knows, by the methods the Ancients made known to us, how
to find the sum of their squares, and also the sum of their cubes; but
these methods, applicable only to the second and third degrees, do not
extend to higher degrees. In this treatise, I will teach how to calculate
not only the sum of squares and of cubes, but also the sum of the fourth
powers and those of higher powers up to infinity: and that, not only for
a sequence of consecutive numbers beginning with the unit, but for ...

Pascal uses generalizable example, binomial expansions, and telescoping
sums to obtain a recursive relationship (Boyer, 1943), which in modern formu-
lation says

(k + 1)
n∑

i=1

ik = (n + 1)k+1 − 1−
k−1∑

j=0

(
k + 1

j

) n∑

i=1

ij .

Clearly one can solve here, if tediously and one exponent at a time, for an
explicit formula for the sum ofk-th powers, by using at each stage the already
known formulas for lower exponents. One can also discern some patterns in
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the sums of powers formulas for the first few values ofk, which students can
prove by mathematical induction for generalk from Pascal’s equation. This
leads us to hope there is a pattern to the remaining coefficients.

Jakob Bernoulli: A pattern emerges
In 1713 Jakob Bernoulli’s posthumous book on the nascent field of probability
appeared,The Art of Conjecturing, and in a section on permutations and com-
binations, we find him first list the formulas forSums of Powersup to exponent
ten (using the notation

∫
for the discrete sum from1 to n), and then claim a

general pattern to the formulas (Bernoulli, 1975, vol. 3, pp. 164–167):

∫
n =

1
2
nn +

1
2
n.

∫
nn =

1
3
n3 +

1
2
nn +

1
6
n.

∫
n3 =

1
4
n4 +

1
2
n3 +

1
4
nn.

∫
n4 =

1
5
n5 +

1
2
n4 +

1
3
n3 ∗ − 1

30
n.

∫
n5 =

1
6
n6 +

1
2
n5 +

5
12

n4 ∗ − 1
12

nn.

∫
n6 =

1
7
n7 +

1
2
n6 +

1
2
n5 ∗ −1

6
n3 ∗+

1
42

n.

∫
n7 =

1
8
n8 +

1
2
n7 +

7
12

n6 ∗ − 7
24

n4 ∗+
1
12

nn.

∫
n8 =

1
9
n9 +

1
2
n8 +

2
3
n7 ∗ − 7

15
n5 ∗+

2
9
n3 ∗ − 1

30
n.

∫
n9 =

1
10

n10 +
1
2
n9 +

3
4
n8 ∗ − 7

10
n6 ∗+

1
2
n4 ∗ − 3

20
nn.

∫
n10 =

1
11

n11 +
1
2
n10 +

5
6
n9 ∗ −1n7 ∗+1n5 ∗ −1

2
n3 ∗+

5
66

n.

Indeed, a pattern can be seen in the progressions herein which can
be continued by means of this rule: Suppose that c is the value of any
power; then the sum of all nc or∫

nc =
1

c + 1
nc+1 +

1
2
nc +

c

2
Anc−1 +

c · c− 1 · c− 2
2 · 3 · 4 Bnc−3

+
c · c− 1 · c− 2 · c− 3 · c− 4

2 · 3 · 4 · 5 · 6 Cnc−5

+
c · c− 1 · c− 2 · c− 3 · c− 4 · c− 5 · c− 6

2 · 3 · 4 · 5 · 6 · 7 · 8 Dnc−7 . . . ,

where the value of the power n continues to decrease by two until it
reaches n or nn. The uppercase letters A, B, C, D, etc., in order,
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denote the coefficients of the final term of
∫

nn,

∫
n4,

∫
n6,

∫
n8, etc.,

namely

A =
1
6
, B = − 1

30
, C =

1
42

, D = − 1
30

.

These coefficients are such that, when arranged with the other coeffi-
cients of the same order, they add up to unity: so, for D, which we said
signified − 1

30 , we have

1
9

+
1
2

+
2
3
− 7

15
+

2
9
(+D)− 1

30
= 1.

These special numbers in his conjecture are the first occurrence of the “Bernoulli
numbers”, which today play such an important role in modern mathematics.

We could now conceivably return, in anticipation, to Euler’s broader context
of

∑n
i=1 f(i), for which Bernoulli’s claim engages the test functionf(x) =

xk, and venture a rash generalization based on Bernoulli’s conjecture:

n∑

i=1

f(i) ≈ C +
∫ n

f(x)dx +
f(n)

2
+ A

f ′(n)
2!

+ B
f ′′′(n)

4!
+ · · ·?

Leonhard Euler: Dances between continuous and discrete
Euler calculated without any apparent effort, just as men breathe, as
eagles sustain themselves in the air.

Arago (Young, 1992, p. 354)

Around the year 1730, the 23-year old Euler, along with his frequent corre-
spondents Christian Goldbach and Daniel Bernoulli, developed ways to find
increasingly accurate fractional or decimal estimates for the sum of the series
of reciprocal squares; but these estimates were challenging, since the series
converges very slowly. They were likely trying to guess the exact value of the
sum, hoping to recognize that their approximations hinted something familiar,
perhaps involvingπ, like Leibniz’s series which summed toπ/4. Euler hit
gold with the discovery of his summation formula. One of his first major uses
of it was in a paper submitted to the St. Petersburg Academy of Sciences on
the 13th of October, 1735, in which he approximated the sum of reciprocal
squares correct to twenty decimal places! Only seven and a half weeks later
Euler astonished his contemporaries when he presented another paper, solving
the famous Basel Problem, demonstrating by a completely different method
that the precise sum of the series isπ2/6: “Now, however, quite unexpect-
edly, I have found an elegant formula for1 + 1

4 + 1
9 + 1

16+ etc., depending
upon the quadrature of the circle [i.e., uponπ].” (Weil, 1983, p. 261) And
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Johann Bernoulli reacted with “And so is satisfied the burning desire of my
brother [Jakob] who, realizing that the investigation of the sum was more dif-
ficult than anyone would have thought, openly confessed that all his zeal had
been mocked. If only my brother were alive now.” (Young, 1992, p. 345)

In our course and our book, one reads Euler’s mature view of the subject,
presented in 1755 in part two of his bookFoundations of Differential Calcu-
lus1 (Euler, 1911–, vol. 10)(Euler, 1981). He devotes chapters 5 and 6 of
part two to his summation formula and its applications; we have translated ex-
tensive excerpts from these chapters at (Euler, 2000b). Among other things,
Euler derives his summation formula, analyzes the generating function for
Bernoulli numbers in relation to power series from calculus, derives proper-
ties of the Bernoulli numbers, shows that they grow supergeometrically, proves
Bernoulli’s formulas for sums of powers, and finds the exact sums of all infinite
series of reciprocal even powers in terms of Bernoulli numbers.

Our rash guess above was correct for Euler’s summation formula, which we
can write, using his notation for the Bernoulli numbers, as

n∑

i=1

f(i) ≈ C +
∫ n

f(x)dx +
f(n)

2
+ A

f ′(n)
2!

−B
f ′′′(n)

4!
+ · · · .

Let us see how Euler uses it to approximate the sum in the Basel Problem: He
writes

After considering the harmonic series we wish to turn to examining
the series of reciprocals of the squares, letting

s = 1 +
1
4

+
1
9

+
1
16

+ · · ·+ 1
xx

.

Since the general term of this series is z = 1
xx , then

∫
zdx = −1

x , the
differentials of z are

dz

2dx
= − 1

x3
,

ddz

2 · 3dx2
=

1
x4

,
d3z

2 · 3 · 4dx3
= − 1

x5
etc.,

and the sum is

s = C − 1
x

+
1

2xx
− A

x3
+

B

x5
− C

x7
+

D

x9
− E

x11
+ etc.,

where the added constant C is determined from one case in which the
sum is known. We therefore wish to set x = 1. Since then s = 1, one
has

C = 1 + 1− 1
2

+ A−B + C−D + E− etc.,

but this series alone does not give the value of C, since it diverges
strongly. Above we demonstrated that the sum of the series to infinity

1Part one has recently appeared in English translation (Euler, 2000a), but not part two.
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is = ππ
6 , and therefore setting x = ∞, and s = ππ

6 , we have C = ππ
6 ,

because then all other terms vanish. Thus it follows that

1 + 1− 1
2

+ A−B + C−D + E−etc. =
ππ

6
.

If the sum of this series were not known, then one would need to deter-
mine the value of the constant C from another case, in which the sum
were actually found. To this aim we set x = 10 and actually add up ten
terms, obtaining

s = 1, 549767731166540690 .

Further, add 1
x = 0, 1

subtr. 1
2xx = 0, 005

1, 644767731166540690

add A
x3 = 0, 000166666666666666

1, 644934397833207356

subtr. B
x5 = 0, 000000333333333333

1, 644934064499874023

add C
x7 = 0, 000000002380952381

1, 644934066880826404

subtr. D
x9 = 0, 000000000033333333

1, 644934066847493071

add E
x11 = 0, 000000000000757575

1, 644934066848250646

subtr. F
x13 = 0, 000000000000025311

1, 644934066848225335

add G
x15 = 0, 000000000000001166

subtr. H
x17 = 71

1, 644934066848226430 = C.

This number is likewise the value of the expression ππ
6 , as one can

find by calculation from the known value of π. From this it is clear that,
although the series A, B, C, etc. diverges, it nevertheless produces a
true sum.

This source provides delightful material for stimulating a class of students.
On the one hand, the summation formula diverges for everyx, and yet it can
be used to make spectacular approximations, in fact, arbitrarily close approxi-
mations! The resolution of this apparent contradiction belongs to the modern
theory of asymptotic series. And students can explore the interplay of calcu-
lation versus accuracy achieved by different choices forx. Euler clearly also
considers this a way to recheck his knowledge by other means that the sum
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is π2/6, i.e., to reaffirm and strengthen the mesh of his total knowledge, an
essential tool for students to learn.

The role of divergent series, and their acceptability to mathematicians, con-
tinued as a subject of controversy for a long time, as illustrated by our final two
quotations.

The divergent series are the invention of the devil, and it is a shame to
base on them any demonstration whatsoever. By using them, one may
draw any conclusion he pleases and that is why these series have pro-
duced so many fallacies and so many paradoxes. ...

Niels Henrik Abel, 1826 (Kline, 1972, p. 973f)

The series is divergent; therefore we may be able to do something with it.

Oliver Heaviside (1850–1925) (Kline, 1972, p. 1096)
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