"Random Walks, Trees and Extensions of Riordan Group Techniques"

by
Naiomi T. Cameron
Howard University
Department of Mathematics

Advisor: Dr. Louis Shapiro
Department of Mathematics

Annual Joint Mathematics Meetings Baltimore, MD

January 2003

OUTLINE

1. Introduction

- The Catalan Numbers and Their Interpretations/Functions Related to the CataIan Function
- The Ternary Numbers and Generalized Dyck Paths
- The Riordan Group

2. Main Results

- The Chung-Feller Theorem
- Analogues to Catalan-Related Functions
- The Expected Number of Returns
- Area Under Ternary Paths

3. Future Work

- Determinant Sequences of the Ternary Numbers

4. Conclusion

A path, P, of length n from $\left(x_{0}, y_{0}\right)$ to (x, y) with step set S is a sequence of points in the plane,

$$
\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)=(x, y)
$$

such that all $\left(x_{i+1}-x_{i}, y_{i+1}-y_{i}\right) \in S$.

The points are called vertices. The height of a vertex, v, is the ordinate of that point. A path, P, is positive if each of its vertices has nonnegative height.

Dyck paths are positive paths from $(0,0)$ to $(2 n, 0)$ with $S=\{(1,1),(1,-1)\}$. Below are the five Dyck paths of length 6 .

A (rooted) plane tree or tree, T, is a connected graph with no cycles, where one vertex is designated as the root.

The five plane trees on 4 vertices:

A plane m-ary tree is a plane tree in which every vertex (including the root) has degree 0 or m.

The five binary (or 2-ary) trees with 6 edges:

Let D_{n} denote the set of all Dyck paths of length $2 n$. Let A_{n} denote the set of all plane trees with n edges.

$$
\begin{equation*}
\left|D_{n}\right|=\left|A_{n}\right|=\frac{1}{n+1}\binom{2 n}{n} \tag{1}
\end{equation*}
$$

The nth Catalan number, $\frac{1}{n+1}\binom{2 n}{n}$, is denoted c_{n}, and

$$
C(z)=\sum_{n=0}^{\infty} c_{n} z^{n}
$$

is called the Catalan function. We have that

$$
C(z)=1+z C^{2}(z)
$$

and

$$
C(z)=\frac{1-\sqrt{1-4 z}}{2 z}
$$

The nth Catalan number, $c_{n}=\frac{1}{n+1}\binom{2 n}{n}$, is the number of:

- triangulations of a convex $(n+2)$-gon into n triangles with $n-1$ nonintersecting (except at a vertex) diagonals,
- planted (i.e., degree of the root is 1) plane trees with $2 n+2$ vertices where every nonroot vertex has degree 0 or 2 ,
- Dyck paths from $(0,0)$ to $(2 n+2,0)$ with no peak at height 2 ,
- noncrossing partitions of $[n]$.

Definition 1. The Central Binomial function, $B(z)$, is the generating function for the central binomial coefficients, $\binom{2 n}{n}$. That is,

$$
B(z)=\sum_{n=0}^{\infty}\binom{2 n}{n} z^{n}=\frac{1}{\sqrt{1-4 z}}
$$

Definition 2. The Fine function, $F(z)$, is the generating function for the Fine numbers,

$$
\begin{gathered}
1,0,1,2,6,18,57,186, \ldots \\
F(z)=\sum_{n=0}^{\infty} f_{n} z^{n}=\frac{1-\sqrt{1-4 z}}{z(3-\sqrt{1-4 z})}
\end{gathered}
$$

Definition 3. The Motzkin function, $M(z)$, is the generating function for the Motzkin numbers $1,1,2,4,9,21,51,127,323, \ldots$

$$
M(z)=\sum_{n=0}^{\infty} m_{n} z^{n}=\frac{1-z-\sqrt{1-2 z-3 z^{2}}}{2 z}
$$

Identity 1. $B(z)=1+2 z C(z) B(z)$
Identity 2. $F(z)=\frac{C(z)}{1+z C(z)}$
Identity 3. $M(z)=\frac{1}{1-z} C\left(\frac{z^{2}}{(1-z)^{2}}\right)$
$B(z)$ counts paths from $(0,0)$ to $(2 n, 0)$ with $S=\{(1,1),(1,-1)\}$.
$F(z)$ counts Dyck paths with no hills and plane trees with no leaf at height 1.
$M(z)$ counts the number of positive paths from $(0,0)$ to $(n, 0)$ using $S=\{(1,1),(1,0),(1,-1)\}$, and the number of plane trees with n edges where every vertex has degree ≤ 2.

Let \mathcal{T}_{n} denote the set of all positive paths from $(0,0)$ to some ($3 n, 0$) with $S=\{(1,1),(1,-2)\}$. We call these paths ternary paths.

Let $t_{n}=\left|\mathcal{T}_{n}\right|$.
Theorem 1. Let $T(z)=\sum_{n=0}^{\infty} t_{n} z^{n}$. Then:
(i.) $T(z)=1+z T^{3}(z)$
(ii.) $t_{n}=\frac{1}{2 n+1}\binom{3 n}{n}$

A generalized t-Dyck path is a positive path from $(0,0)$ to $((t+1) n, 0)$ with $S=\{(1,1),(1,-t)\}$.

The ternary numbers, $\frac{1}{2 n+1}\binom{3 n}{n}$, also count:

- positive paths starting at $(0,0)$ and ending at $(2 n, 0)$ using steps in
$\{(1,1),(1,-1),(1,-3),(1,-5),(1,-7), \ldots$,
- rooted plane trees with $2 n$ edges where every vertex (including the root) has even degree (referred to as "even trees");
- dissections of a convex $2(n+1)$-gon into n quadrangles by drawing $n-1$ diagonals;
- noncrossing trees on $n+1$ points;
- rooted plane trees with $3 n$ edges where every node (including the root) has degree zero or three (called ternary trees)

The three ternary trees with 6 edges:

Definition 4. An infinite lower triangular matrix, $L=\left(l_{n, k}\right)_{n, k \geq 0}$ is a Riordan matrix if there exist generating functions $g(z)=\sum g_{n} z^{n}$, $f(z)=\sum f_{n} z^{n}, f_{0}=0, f_{1} \neq 0$ such that $l_{n, 0}=g_{n}$ and $\sum_{n \geq k} l_{n, k} z^{n}=g(z)(f(z))^{k}$.
L is called Riordan and we write $L=(g(z), f(z))$, or simply $L=(g, f)$.
Example 1.
$(C(z), z C(z))=\left[\begin{array}{ccccccc}1 & & & & & & \\ 1 & 1 & & & & & \\ 2 & 2 & 1 & & & & \\ 5 & 5 & 3 & 1 & & & \\ 14 & 14 & 9 & 4 & 1 & & \\ 42 & 42 & 28 & 14 & 5 & 1 & \\ 132 & 132 & 90 & 48 & 20 & 6 & 1\end{array}\right.$

Theorem 2. (Chung, Feller) Let $c_{n, k}$ denote the number of paths from $(0,0)$ to $(2 n, 0)$ with steps in $\{(1,1),(1,-1)\}$ such that k up steps lie above the x-axis, $k=0,1, \ldots, n$. Then $c_{n, k}=$ $c_{n}=\frac{1}{n+1}\binom{2 n}{n}$, independently of k.
Theorem 3. Let $u_{n, k}$ be the number of paths from $(0,0)$ to $(3 n, 0)$ with steps in $\{(1,1),(1,-2)\}$ such that k up steps lie above the x-axis, $k=0,1, \ldots, 2 n$. Then $u_{n, k}=t_{n}=\frac{1}{2 n+1}\binom{3 n}{n}$.

Proof:

$z \leftrightarrow$ an up step
$y \leftrightarrow$ an up step above the x-axis

$$
\begin{gathered}
U(y, z)=\sum_{0 \leq k \leq n} u_{n, k} y^{k} z^{n} \\
U(y, z)=\frac{T\left(z^{2}\right)}{1-\Psi(y, z)}
\end{gathered}
$$

where

$$
\Psi(y, z)=y^{2} z^{2} T^{2}\left(y^{2} z^{2}\right) T\left(z^{2}\right)+y z^{2} T\left(y^{2} z^{2}\right) T^{2}\left(z^{2}\right)
$$

Theorem 4. The function $N(z)=\sum\binom{3 n}{n} z^{n}$ counts
(i.) paths in $Z \times Z$ starting at $(0,0)$ and ending at $(3 n, 0)$ using steps in $\{(1,1),(1,-2)\}$, and
(ii.) even trees with $2 n$ edges and one distinguished vertex.

Theorem 5.

(i.) $N(z)=1+3 z T^{2}(z) N(z)$
(ii.) $N(z) T^{s}(z)=\sum_{n=0}^{\infty}\binom{3 n+s}{n} z^{n}$

Proof: (i) Note $\frac{d}{d z}\left(z T\left(z^{2}\right)\right)=N\left(z^{2}\right)$

Theorem 6. (i.) The "Motzkin analogue", $M_{T}(z)$, satisfies

$$
\begin{aligned}
& M_{T}(z)=1+z+2 z^{2}+5 z^{3}+13 z^{4}+36 z^{5}+104 z^{6}+\ldots \\
& \quad=1+z M_{T}(z)+z^{2} M_{T}^{2}(z)+z^{3} M_{T}^{3}(z)
\end{aligned}
$$

(ii.) $M_{T}(z)$ counts positive paths from $(0,0)$ to $(n, 0)$ using $\{(1,1),(1,-1),(1,-2),(1,0)\}$.

Theorem 7. (i.) The "Fine Analogue," $F_{T}(z)$ satisfies

$$
\begin{aligned}
F_{T}(z) & =\frac{1}{1+z-z T^{2}(z)} \\
T(z) & =\frac{F_{T}(z)}{1-z F_{T}(z)}
\end{aligned}
$$

(ii.) $F_{T}(z)$ counts ternary paths with no bumps.

Theorem 8. The expected number of returns for generalized Dyck paths from $(0,0)$ to $((t+1) n, 0)$ is

$$
\frac{(t+2) n}{t n+2}
$$

with variance

$$
\frac{2 \operatorname{tn}(n-1)((t+1) n+1)}{(\operatorname{tn}+2)^{2}(\operatorname{tn}+3)}
$$

Proof: Let $Y(n)$ denote the number of returns. Let $p_{m}(n)$ denote the probability that a randomly chosen path of length $(t+1) n$ has m returns. Then

$$
P_{Y(n)}(z):=\sum_{m=0}^{\infty} p_{m}(n) z^{n}
$$

$$
=\frac{t(t n+1)}{(t+1)((t+1) n-1)} z F(2,1-n ; 2-(t+1) n ; z)
$$

The limiting distribution of $Y(n)$ is $n e g \operatorname{bin}\left(2, \frac{t}{t+1}\right)$.

Theorem 9. (Woan, Rogers, Shapiro) The sum of the areas of all strict Dyck paths of length $2 n$ is 4^{n-1}.

Theorem 10. (Kreweras/Merlini et al./Chapman)
The sum of the areas of all Dyck paths of length $2 n$ is $4^{n}-\frac{1}{2}\binom{2 n+2}{n+1}$.

Let \mathcal{D}_{n} denote the set of Dyck paths of length $2 n$. Define the area of $D \in \mathcal{D}_{n}, a(D)$, to be the area of the region bounded by D and the x-axis.

Let \mathcal{B}_{n} denote the set of all plane binary trees with $2 n$ edges. Let $B \in \mathcal{B}_{n}$. Define the total weight of $B, \omega(B)$ by

$$
\omega(B):=\sum_{v \in B} h g t(v)
$$

Theorem 11. For all $n \in \mathbb{N}$,

$$
\sum_{B \in \mathcal{B}_{n}} \omega(B)=2 \sum_{D \in \mathcal{D}_{n}} a(D)
$$

Let \mathcal{S}_{n} denote the set of all ternary paths in \mathcal{T}_{n} with exactly 1 return (strict ternary paths).

Let a_{n}^{s} (resp. a_{n}^{t}) denote the total area of the region bounded by the paths of $\mathcal{S}_{n}\left(\right.$ resp. $\left.\mathcal{I}_{n}\right)$ and the x-axis.

Let $h_{n, k}^{s}$ (resp. $h_{n, k}^{t}$) denote the number of points in $\mathcal{S}_{n} \cap \mathbb{Z} \times \mathbb{Z}$ (resp. $\mathcal{I}_{n} \cap \mathbb{Z} \times \mathbb{Z}$) which have height k.

Theorem 12. Let $H_{k}^{s}(z)=\sum_{n=0}^{\infty} h_{n, k}^{s} z^{n}$ and $H_{k}^{t}(z)=\sum_{n=0}^{\infty} h_{n, k}^{t} z^{n}$.
(i.)

$$
\begin{aligned}
& H_{k}^{s}(z)=\sum_{j=0}^{\left\lfloor\frac{k}{2}\right\rfloor}\binom{k-j}{j}\left(z T^{3}(z)\right)^{k-j} \\
& \quad=\left(z T^{3}(z)\right)^{k} \frac{\frac{z^{2}}{1-z} T^{3}\left(\frac{z^{2}}{1-z}\right)}{z^{2} T^{3}\left(\frac{z^{2}}{1-z}\right)-1}
\end{aligned}
$$

(ii.)

$$
\begin{gathered}
H_{k}^{t}(z)=\sum_{j=0}^{\left\lfloor\frac{k}{2}\right\rfloor}\binom{k-j}{j}\left(z T^{3}(z)\right)^{k-j} T^{2}(z) \\
=\left(z T^{3}(z)\right)^{k+2} \frac{\frac{z^{2}}{1-z} T^{3}\left(\frac{z^{2}}{1-z}\right)}{z^{2} T^{3}\left(\frac{z^{2}}{1-z}\right)-1}
\end{gathered}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ccccccc}
1 & & & & & & \\
0 & 1 & 1 & & & & \\
0 & 3 & 4 & 2 & 1 & & \\
0 & 12 & 18 & 13 & 9 & 3 & 1 \\
& & & \cdots & & &
\end{array}\right]\left[\begin{array}{c}
0 \\
1 \\
2 \\
3 \\
4 \\
5 \\
6 \\
7 \\
8 \\
\cdots
\end{array}\right]=\left[\begin{array}{c}
0 \\
3 \\
21 \\
144 \\
981 \\
6663 \\
\vdots \\
a_{n}^{s} \\
\vdots
\end{array}\right]} \\
& {\left[\begin{array}{ccccccc}
1 & 1 & \\
2 & 1 & 1 & & & & \\
7 & 5 & 6 & 2 & 1 & \\
30 & 25 & 33 & 17 & 11 & 3 & 1 \\
& & & \cdots & & &
\end{array}\right]\left[\begin{array}{c}
0 \\
1 \\
2 \\
3 \\
4 \\
5 \\
6 \\
7 \\
8 \\
\cdots
\end{array}\right]=\left[\begin{array}{c}
\\
0 \\
3 \\
27 \\
207 \\
1506 \\
10692 \\
\vdots \\
a_{n}^{t} \\
\vdots
\end{array}\right]}
\end{aligned}
$$

Let \mathcal{W}_{n} denote the set of all ternary trees with $3 n$ edges.

Conjecture 1. For all $n \in \mathbb{N}$,

$$
\sum_{W \in \mathcal{W}_{n}} \omega(W)=\sum_{T \in \mathcal{T}_{n}} a(T)
$$

Let $t(k, n)$ denote the total number of vertices at height k in \mathcal{W}_{n} and $\tau(y, z)=\sum t(k, n) y^{k} z^{n}$. Then

$$
\begin{gathered}
\left.\frac{d}{d y}(\tau(y, z))\right|_{y=1}=\frac{3 z T^{3}(z)}{\left(1-3 z T^{2}(z)\right)^{2}} \\
=3 z+27 z^{2}+207 z^{3}+1506 z^{4}+10692 z^{5}+\ldots
\end{gathered}
$$

Given a sequence $\left\{a_{n}\right\}_{n=0}^{\infty}$, define

$$
A_{n}^{k}:=\left\lvert\, \begin{array}{ccccc}
a_{k} & a_{k+1} & a_{k+2} & \cdots & a_{n+k-1} \\
a_{k+1} & a_{k+2} & a_{k+3} & \cdots & a_{n+k} \\
a_{k+2} & a_{k+3} & a_{k+4} & \cdots & a_{n+k+1} \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
a_{n+k-1} & a_{n+k} & a_{n+k+1} & \cdots & a_{2 n+k-2}
\end{array}\right.
$$

Theorem 13. (Gronau et al.) Let $p_{i j}$ be the number of paths leading from a_{i} to b_{j} in G, let p^{+}be the number of disjoint path systems W in (G, A, B) for which $\sigma(W)$ is an even permutation, and let p^{-}be the number of such systems with for which $\sigma(W)$ is odd. Then $\operatorname{det}\left(p_{i j}\right)=p^{+}-p^{-}$.

Let Q_{n}^{k} be the family of all sets of pairwise vertex disjoint paths in $\mathcal{G}, \xi_{0}, \xi_{1}, \ldots, \xi_{n-1}$, such that ξ_{i} joins $(-3 i, 0)$ with $(3(i+k), 0)$, $i=0,1, \ldots, n-1$. The theorem implies that

$$
A_{n}^{k}=\left|Q_{n}^{k}\right|
$$

When $k=1$, $n=3$, we have

$$
\left|Q_{3}^{1}\right|=A_{3}^{1}=\left|\begin{array}{ccc}
1 & 3 & 12 \\
3 & 12 & 55 \\
12 & 55 & 273
\end{array}\right|=26
$$

The corresponding vertex disjoint path systems
are

n	A_{n}^{0}	A_{n}^{1}
0	1	1
1	2	3
2	11	26
3	170	646
4	7429	45,885
5	920,460	$9,304,650$
6	$323,801,820$	$5,382,618,658$

Theorem 14. (U. Tamm)

$$
\begin{gathered}
A_{n}^{0}=\prod_{j=0}^{n-1} \frac{(3 j+1)(6 j)!(2 j)!}{(4 j+1)!(4 j)!} \\
A_{n}^{1}=\prod_{j=1}^{n} \frac{\binom{6 j-2}{2 j}}{2\binom{4 j-1}{2 j}}
\end{gathered}
$$

Question 1. What about A_{n}^{k} for $k \geq 2$?

Definition 5. An alternating sign matrix is a square matrix of 0s, 1s, and -1s for which

- the entries of each row and each column sum to 1 ,
- the non-zero entries of each row and each column alternate in sign.

Example $2 .\left[\begin{array}{ccccc}0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 & 1 \\ 0 & 1 & -1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0\end{array}\right]$

Conjecture 2. (Stanley/Mills, Robbins, Rumsey)

Let $F(2 n+1)$ denote the number of $(2 n+1) \times$ ($2 n+1$) alternating sign matrices which are invariant under a reflection about the vertical axis.

$$
F(2 n+1)=\prod_{j=1}^{n} \frac{\binom{6 j-2}{2 j}}{2\binom{4-1}{2 j}}
$$

Question 2. Is there a bijection between vertex disjoint ternary path systems and alternating sign matrices invariant under vertical reflection?

