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Introduction.

On October 18th, 1640, Fermat wrote in a letter to Frenicle, that whenever p is prime,
p divides a?~! — 1 for all integers a not divisible by p, a result now known as Fermat’s
‘little theorem’. An equivalent formulation is the assertion that p divides a? — a for all
integers a, whenever p is prime. The question naturally arose as to whether the primes
are the only integers exceeding 1 that satisfy this criterion, but Carmichael [Cal] pointed

out in 1910 that 561 (= 3 x 11 x 17) divides a’®! — a for all integers a. In 1899, Korselt
[Ko] had noted that one could easily test for such integers by using (what we will call)

Korselt’s criterion: n divides a™ — a for all integers a if and

only if n is squarefree and p — 1 divides n — 1 for all primes p dividing n.

In a series of papers around 1910, Carmichael began an in-depth study of composite
numbers with this property, which have become known as Carmichael numbers. In [Ca2],
Carmichael exhibited an algorithm to construct such numbers and stated, perhaps some-
what wishfully, that “this list (of Carmichael numbers) might be indefinitely extended”.
Indeed, until now, no one has been able to prove that there are infinitely many Carmichael
numbers, though it has long seemed highly likely.

In 1939 Chernick noted that if p =6m +1,¢ = 12m+1 and r = 18m + 1 are all prime
then pgr is a Carmichael number. According to Hardy and Littlewood’s widely believed
prime k-tuplets conjecture, these should simultaneously be prime infinitely often, which
would tell us that there are infinitely many Carmichael numbers.

As yet unpublished computations of Richard Pinch have yielded 8,241 Carmichael
numbers up to 102, 19,279 up to 10'%, 44,706 up to 10'* and 105,212 up to 10'°. On
the other hand, numerous authors have supplied upper bounds for C(x), the number of
Carmichael numbers up to x, the best being ([PSW], though also see [Po])

C(l’) < ;1;1_{1+0(1)}10g loglog z/loglog «
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for © — co. We believe that this upper bound probably gives the true size of C(z). Our
belief can be justified by the heuristic argument in [Po], which is based on ideas of Erdos
[Er2].

In this paper we show that C(z) > z® for all large @ and some positive constant a.
In particular, we may take o = 2/7. A precise upper bound for allowable values of « in
our theorem depends on two other constants that appear in analytic number theory. We
now describe these constants.

Let w(x) be the number of primes p < z, and let n(x,y) be the number of these for
which p — 1 is free of prime factors exceeding y. Let £ denote the set of numbers E in the
range 0 < E < 1 for which there exist numbers 1(E), y1(E) > 0 such that
(0.1) m(z, ' ™) > v (E)r(x)
for all # > x1(E). Erdos (see [Erl]) proved that there is a small positive number in €.
Larger values were subsequently found by Wooldridge, Goldfeld, Pomerance, Fouvry and
Grupp, Balog, and Friedlander. Currently the best result known ([Fr]) is that any positive
number less than 1 — (2\/e)7! is in €. Erdds has conjectured that any positive number
less than 1 is in &; that is, that £ is the open interval (0,1).

We remark that it is easy to see that if £ € &, then (0, E] C €. In addition one can
show (using the Brun-Titchmarsh inequality) that if £ € £ then E' € £ for some E' > E.
That is, £ is an open interval. We give the proof in Section 5.

Define n(x;d,a) to be the number of primes up to x that belong to the arithmetic

progression a mod d. The prime number theorem for arithmetic progressions states that
(0.2) m(x;d,a) ~ w(x)/e(d) for x — oo,

provided (a,d) = 1, where ¢ is Euler’s function. An important problem in analytic number
theory is to enquire into the possible dependence on d and a in this asymptotic relation.
For example, may d also tend to infinity as @ does and if so, how fast? It is conjectured
that (0.2) holds uniformly for all coprime integer pairs a,d with 1 < d < 2'7¢ for any fixed
¢ > 0. Assuming the Riemann hypothesis for Dirichlet L-functions this conjecture can be
proved for the more restricted range 1 < d < x'/27°. However, the strongest unconditional
such result known is the Siegel-Walfisz theorem, which asserts that (0.2) holds uniformly
for all coprime integer pairs a,d with 1 < d < (log z)*, for any fixed k.

If one is prepared to disregard multiples of a possible ‘exceptional’” modulus, then
one can significantly improve the range in the Siegel-Walfisz theorem. In fact, if ¢(x)
tends to 0 arbitrarily slowly then (0.2) holds for all coprime integer pairs ¢ and d with
1 <d < 2% except possibly for those d which are multiples of some integer dy(x), which

exceeds a power of logx (see page 55 of [Bo]). If, in addition one is willing to relax the
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asymptotic relation in (0.2) and settle for a lower bound of the correct order of magnitude,
then one can take 1 < d < 28 for some small B > 0. One can get larger values of B by
allowing more exceptional moduli. Specifically, let B denote the set of numbers B in the
range 0 < B < 1 for which there is a number x3(B) and a positive integer Dp such that
if > 29(B), (a,d) =1and 1 <d < min{z?, y/2178} then

, m(y)
(0.3) m(y;d,a) > 52(d)

whenever d is not divisible by any member of Dp(x), a set of at most Dp integers, each
of which exceeds log x. In section 2 we show that the interval (0,5/12) C B, which follows
from a bound for the density of zeros of Dirichlet L-functions, due to Huxley [Hu] and
Jutila [Ju]. Although no result exactly like Theorem 2.1 has been proved in the literature,
it was known to be feasible by the experts.

Our theorem on Carmichael numbers depends intimately on the sets £ and B.

Theorem 1. For each E € £ and B € B there is a number vy = xo(E, B) such that
C(x) > 2PB for all x > xy.

Since (0,1 — (2y/e)™!) C € and (0,5/12) C B, we conclude that C(x) > #°~¢ for any
¢ > 0 and all large = depending on the choice of ¢, where

f=(1- (2\/6)—1)% = .290306.. ..

This implies that, as stated above, C(x) > 22/ for all large .

Our argument is based on Erdos’s original heuristic [Er2], though with certain modi-
fications. The idea is to construct an integer L for which there are a very large number of
primes p such that p— 1 divides L. Suppose that the product of some of these primes, say
C' = pi - pr, 1s congruent to 1 mod L. Then C' is a Carmichael number, since each p; — 1
divides L which divides C' — 1, and we may apply Korselt’s criterion above. Indeed the
more such products we can find, the more Carmichael numbers we will have constructed.
How large a set of such primes p must we have to guarantee the existence of such products?
We may view these primes p as elements of the group (Z/LZ)* of reduced residues mod L.
The following result, due to van Emde Boas and Kruyswijk (and extending a theorem

independently due to Kruyswijk and Olson), gives a partial answer.

Theorem 2. If G is a finite abelian group in which the maximal order of an element is
m, then in any sequence of at least m(1 4 log(|G|/m)) (not necessarily distinct) elements

of G, there is a non-empty subsequence whose product is the identity.

We give a simplified proof of this result in the next section.

3



So as to be able to apply Theorem 2 to finding Carmichael numbers by our proposed

method, we will need to find an integer L, with at least

(L) (1 +log %) > \(L)

primes p for which p—1 divides L. Here, Carmichael’s lambda function A(L) (see [Cal]) is
the largest order of an element in (Z/LZ)*. However the number of such primes p cannot
exceed 7(L), the number of divisors of L (since each such p is 1 plus a divisor of L), and
usually A(L) is much larger than 7(L) (see [EPS]). To avoid this problem we will pick our
L so that A(L) is surprisingly small, while, at the same time, there are many primes p for
which p — 1 divides L. To do this, we select L to be the product of certain primes ¢ for
which the prime factors of ¢ — 1 are all at most y. This is how a number E € &£ enters into
the proof.

Prachar [Pr] (see [APR]) showed that there are infinitely many integers m with more
than 2¢1eg m/loglog m (ivigors of the form p—1, p prime. Here ¢ > 0 is some constant that de-
pends on a number B € B. One cannot do much better, since 7(m) < 2(1+o(1))log m/loglog m
for all m as m — oo. Prachar’s method is to take a number L which is the product of all of
the primes up to some point and show that there is some integer k& with £ < L and with
m = kL having many divisors of the form p — 1. For our purposes, we need A\(kL) to be
inordinately small in comparison to kL. But the introduction of the mysterious factor k
may ruin things, for there is no reason why A(kL) cannot be fairly large, even if we started
with an L for which A(L) is very small in comparison to L. In Section 3 we will modify
Prachar’s method, so that now, given L, we can find an integer & coprime with L such
that there are many primes p = 1 mod k for which p—1 divides kL. The advantage of this
over Prachar’s construction is that we may still apply Theorem 2 with G = (Z/LZ)*, since
each of these primes p is in the subgroup of (Z/kLZ)* of residue classes that are 1 mod k,
and this subgroup is isomorphic to (Z/LZ)*.

As mentioned above, it has been conjectured that € = (0,1) and that (0.2) holds

1=¢ for any fixed ¢ > 0 (and so

uniformly for all coprime pairs a,d with 1 < d < =z
B =(0,1)). Assuming these conjectures, we see that Theorem 1 implies Erdos’s conjecture
that C(2) > 2'7¢ for any € > 0 and all sufficiently large x (depending on the choice of ¢).
Actually, we can show that one need only assume that B = (0, 1), for in Section 5 we will

prove the following result.
Theorem 3. For each B € B, (0,B) C €.

We remark that, for the proofs of Theorems 1 and 3, one only needs a weaker version
of the definition of B, where a is restricted to the value 1. In particular, we record the

following result.



Theorem 4. Let ¢ > 0. Suppose there is a number x. such that

()
2¢(d)

for all positive integers d < x'7¢, once ¥ > x.. Then there is a number x’. such that

m(z;d, 1) >

C(x) > 2'7%¢ for all x > x.. In particular, if such an z. exists for each ¢ > 0, then

C(x) = 217°W) for v — 0.

Our proof of Theorem 1 is effective in the sense that if numerical values are given for
1(E), 21(E), and x2(B), then following our arguments, a numerical value for x¢(E, B) can
be produced. However, the larger values of E that we now know to be in & are proved to
be in & via the ineffective Bombieri—Vinogradov theorem. It is possible that Friedlander’s
theorem that every positive number E < 1 — (2y/e)7! is in € could be proved from a
weaker, but effective version of this theorem, but we do not take up this issue here. It
is interesting to note that Erdos’s original proof that £ contains some positive number E
uses only Brun’s method and is thus effective. Our proof in Section 2, that every positive
number B < 5/12 is in B, is effective. Further, from our proof of Theorem 3, we thus have
that values for v1(F) and a1 (FE) are computable for every positive number E < 5/12. We

thus have the following theorem.

Theorem 5. For each number « in the range 0 < « < 25/144, there is a computable
number x(«) such that C(x) > ® for all v > x(«).

It may also be of interest to actually compute a numerical value for z(«) for some
specific « > 0, but this may be difficult.

It has long been known how to construct infinitely many pseudoprimes for any given
base a (that is, composite numbers n which divide a™ — a). The best lower bound in the
literature had been [Po] that if E € £, then the number of base a pseudoprimes up to z is

at least

exp <(10g ) ELH)
for all large = depending on the choice of E and a. Evidently this result is majorized by
Theorem 1.

Until now Duparc’s problem [Du] as to whether there are infinitely many numbers
that are simultaneously pseudoprime to both bases 2 and 3 was unsolved, but this follows
from Theorem 1.

Our proof shows there are Carmichael numbers with arbitrarily many prime factors,
but we have not been able to show that there are infinitely many Carmichael numbers with
a fixed number of prime factors. We cannot show that there are infinitely many Carmichael
numbers n divisible by some fixed prime factor, nor even with ¢(n)/n < 1 — ¢ for some

fixed ¢ > 0. Our proof is easily modified to show that there are arbitrarily large sets of
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Carmichael numbers such that the product of any subset is itself a Carmichael number.
It seems to be difficult to prove a ‘Bertrand’s postulate for Carmichael numbers’, that is,
that there is always a Carmichael number between = and 2z once z is sufficiently large.

One can modify our proof to show that for any fixed non-zero integer a, there are
infinitely many squarefree, composite integers n such that p—a divides n —1 for all primes
p dividing n. However, we have been unable to prove this for p — a dividing n — b, for b
other than 0 or 1. Such questions have significance for variants of pseudoprime tests, such
as the Lucas probable prime test (see [PSW], [Wi]), strong Fibonacci pseudoprimes (see
[LMO]) and elliptic pseudoprimes (see [GP]).

Our proof can also be modified to show that, for any given finite set S of positive
integers, there are infinitely many integers n which are strong pseudoprimes to every base
in &, as well as being Carmichael numbers. (We say a positive odd integer n is a “strong
pseudoprime to the base a” if n is composite and either ¢* = 1 mod n or a?'* = 1 modn
for some integer ¢ < t, where n — 1 = 2'u and u is odd. It is known that if n is odd and
composite, then n fails to be a strong pseudoprime for at least three fourths of the integers
ain {1,2,...,n—1}.) The primality test programmed into some software packages is based
on the given integer passing strong pseudoprime tests to each base in a fixed finite set S.
It was widely suspected that no matter how large the set S is taken, there will always be
composite numbers that are passed off as prime by the test. Our result confirms this view
and in fact we can show that the number of such integers up to x is greater than 22/7, for
large .

We intend to take up these and other questions in a future paper.

Throughout the paper the letters p and ¢ shall always denote primes. The constants
1,¢z2,... are all positive, and will always be assumed to be absolute (not dependent on
any variable), as well as computable. We shall use both | | and # to denote cardinality of

a set, reserving the latter symbol for sets written with braces.
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1. Subsequence products representing the identity in a group.

If G is a group of order m, then any sequence of m elements of the group contains
a subsequence whose product is 1, the identity. For if the sequence is g1, g2, -, ¢m, then
the m 4+ 1 products 1, g1, 192, -, 9192 - - - gm cannot all be distinct (as there are only m
distinet group elements) and if none of the latter m productsis 1, we get g1 ---¢; = g1 - - g,
for some ¢ < j, so that ¢g;41---¢g; = 1. This result cannot be improved for G = Cy,, a
cyclic group of order m, since if ¢ is a generator of C,, and g1 = g2 = -+ = gm—1 = ¢,
then no subproduct is 1.

For a finite group G, let n(G) denote the length of the longest sequence of (not
necessarily distinct) elements of G for which no non-empty subsequence has product the
identity. Kruyswijk [Ba] and Olson [O]] independently evaluated n(G) when G is a finite
abelian p-group. Baker and Schmidt [BS] gave good upper bounds for n(G) for arbitrary
finite abelian groups and for significant generalizations of this problem, and van Emde
Boas and Kruyswijk [EK] and Meshulam [Me] each gave the result in Theorem 2. We now
restate this theorem and give a simplified proof based on that in [EK].

Theorem 1.1. If G is a finite abelian group and m is the maximal order of an element

in G, then n(G) < m(1 + log(|G|/m)).

Proof. Let ¢1,¢92,...,9n be a sequence of elements of G and assume that n > m(1 +
log(|G|/m)). Choose ¢ to be any prime with ¢ = 1 mod m and let F, denote the field of ¢

elements. If we multiply out the product

(a1 = g1)(az = g2) .. (an = gn) = Y _ kyg

geG

in the group ring F,[G], where ay,az,...,a, € Fj, and suppose that no subsequence
of ¢1,92,...,¢9, has product equal to 1, then k4 = ayas...a,. Thus if we can find

ai,az,...,an € Fy such that

(1.1) (al - gl)(GZ - 92) .- (an - gn) =0,

then k1 = 0 and we have a contradiction; implying that, in fact, there must be a subse-
quence whose product is 1.

Any character y : G — FJ in the character group G, may be extended to a ring
homomorphism x : F,[G] — F, by letting X(ZgEG kyg) = EgEG kyx(g). From the
orthogonality relations for group characters, one can show that if b € F,[G] then b = 0 if
and only if y(b) = 0 for all y € (. Thus, since (T (ai — i) = Ty (ai — x(g:)), we
see that (1.1) holds for a given choice of ay,az,...,a, € F} if

(1.2) for each x € G there exists j, 1 < j <n, such that x(g;) = a;.
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Therefore it suffices to show that one may select a1, az, ..., a, € F} sothat (1.2) holds.
To do this, we shall proceed by the “greedy algorithm” of picking a; so that x(¢1) = @
holds for as many y € G as possible, picking as so that y(g2) = a2 holds for as many of
the remaining y € G as possible, and so on. The key observation is that each y(g;) is an
mth root of 1 in F,, and so can be one of only m different values. Thus if S is any subset
of G and g is any element of G, then there is some a € F} with y(g) = a holding for at
least |S|/m characters y € S. That is, x(¢) = a does not hold for at most |S|(1 —1/m)
characters y € §. Thus applying the greedy algorithm sequentially to g1, g2, ..., g, where
k = [mlog(|G|/m)] + 1, we may choose ay,az,...,ax € Fj so that the residual set of
characters x € G with x(g;) # a;, for each y =1,2,... k, has cardinality at most

IGI(1—1/m)* = |G|(1 - 1/m)F < |Gle™ ™ < m.

Call the remaining characters x1,x2,..., Xr, Where 0 <r <m —1. Sincen>k4+m—12>
k+r, we still have ag41,ag+2, ..., agt, remaining to be chosen. We choose them by letting
ak+; = Xj(gr4;) for j = 1,2,... r. If k4 r < n, we may choose the remaining a;’s as

arbitrary members of F;. Thus (1.2) holds and the theorem is proved.

Remark. It is reported in [Ol] that at the Midwestern Conference on Group Theory and
Number Theory at Ohio State University, April 1966, Davenport asked for the best possible
bound in Theorem 1.1, since this gives the largest number of prime (ideal) divisors that
can divide an irreducible integer in an algebraic number field with class group G. For this
and other applications, it is still of great interest to get the best possible result above. Our
argument here may be sharpened to give the bound m(y + ¢ + log(|G|/m)) provided m
and |G|/m are each sufficiently large (as a function of ¢), for any given £ > 0, where v is
the Euler-Mascheroni constant.

The next result allows us to construct many such products.

Proposition 1.2. Let G be a finite abelian group and let r >t > n = n(G) be integers.
Then any sequence of r elements of G contains at least (:)/(;) distinct subsequences of
length at most t and at least t — n, whose product is the identity.
Proof. Let R be a sequence of r elements of G. Since r > n there is, by the definition of
n(G), some subsequence of R whose product is 1. Let S be the longest such subsequence,
with cardinality s, say. Then s > r — n, since otherwise R\ S contains a subsequence
whose product is 1, and this subsequence might be appended to S, increasing its size,
which contradicts the maximality of 5.

Let T be any subsequence of S of cardinality t — n. If the product of the elements of
T is g then the product of the elements of S\ T is ¢~!. Let U be the smallest (possibly

empty) subsequence of S\ T whose product is ¢~'. Evidently U has cardinality at most
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n else, by hypothesis, there exists a subsequence of U that has product 1 and this can be
removed from U to make it smaller.

So V = TUU is a subsequence of S (and thus R), in which the product of the elements
is 1, and which has size at most (t —n) +n =t and at least t — n.

The number of ways of choosing such a pair of sequences (T, U) is at least the number
of ways of choosing T' and is thus at least (t_sn> The maximum possible number of different

sequences T' which give rise to the same sequence V = TUU is at most ( V] ) < ( ! ) = <t>

t—n t—n n
Therefore the number of different subsequences V' that we have created is at least

(2)/G) = (2)/6) = 0)/C)

This completes the proof of Proposition 1.2.

2. Primes in arithmetic progressions.

For each Dirichlet character y and real numbers o, T in the ranges 1/2 <o < 1,7 > 0,
let N(o,T,x) be the number of zeros s =  + i of the Dirichlet L-function L(s, y) inside
the box 0 < <1 and |y| < T. Let A be the set of real numbers A > 2 for which there
exists a number v2(A) > 1, such that forall 0 > 1 —-1/4A and T > 1,

(2.1) N(o,T.d):= Y  N(o.T,x) < 7(A)Td)*"~7,

xmodd

for all positive integers d. One form of the ‘density hypothesis for Dirichlet L-functions’
asserts that every number A > 2 isin A. The best that is currently known unconditionally
is that every A > 12/5 is in A; this may be deduced by combining the ‘log-free’ bound of
Jutila [Ju] with a result of Huxley [Hu]. In principle these proofs are ‘effective’; so that
one can compute a value for v2(A) for each A > 12/5. Note that (2.1) cannot hold for any
A <2 (with 0 = 1/2), since the number of zeros of L(s, x) up to height T in the critical
strip is of order of magnitude T log(T'd) — see [Da], Chapter 16. In particular, there is a

computable constant ¢; > 1 such that
(2.2) N(1/2,T,d) < ¢;Tdlog(Td)

for each integer d > 1 and number T > 1. Note that (2.2) gives a better result than (2.1)
for fixed o in the range 1/2 <o <1 —1/A.

One may easily deduce, from the following result, that if A € A then B € B for all B
satisfying 0 < B < 1/A. In particular, since (12/5,00) C A, we have (0,5/12) C B.
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Theorem 2.1. For any given A € A and ,6 > 0, there exist numbers z. 5, D. s,m-5 > 0

such that whenever x > x. 5 there is a set D, s(x), of at most D. s integers, for which

P

p<y
p=amodd
whenever d is not divisible by any element of D. s(x), with (a,d) = 1 and d in the range
1 < d < min{z"/47% y /2! VAT Furthermore, every number in D 5(z) exceeds log x,

and all, but at most one, exceeds x"<:¢.

Proof. We shall only prove the result when ¢ and ¢ are extremely small (depending on
the choice of A), since the result then immediately follows for all larger values of ¢ and
6. When 1 < d < logy our result is a consequence of the prime number theorem for
arithmetic progressions (see [Da], p. 123, eq. (9) and the following display). From this

and the hypothesis, we note that we need only consider values of x,y and d in the ranges
(2.3) logy < d < min{x,y}l/A_‘s and 10g4/6 <l < dat TVATE <y < e”

From Chapters 16, 19 and 20 in [Da] we can deduce the following explicit formula for
prime numbers in an arithmetic progression. For integers a, d with (a,d) = 1, d > 1 and

numbers y > 2, T > 2, one has

» o logp =

p<y
p=amodd

Y 1 - yote ( 1/27,...2 ylogZ(Tdy)
oLy ) 0 (g 10ty + LB TW)Y.
A0 AD 2, 2 T

Bz1/2, |vILT

The double summation may be bounded by noting that each |y(a)] = 1, |[y*+"7| = ¢°
and |3 +iv| > /1/4+~2 > (14 |7])/3. We let T = 2% so that, using the hypothesis,
y > da' THUATE > @21 m2/A28 > 2,28 100t &) and thus y'/? log?(T'd) = O(y/dz?®). Also
T > 2%/4 > 2%d® whereas log(Tdy) = O(log y) = O(d) by (2.3), and thus y log*(T'dy)/T =
O(y/dx?). Therefore

&4 ‘ 2. lowp - 99(yd)‘S 99(365) 2 2 1-yF|7| +O<dy?>'

p<y xmodd L(8+iv,x)=0
p=amodd B>1/2, |v|<a?

Write Y 0 for a sum over all zeros 3 + iy of L(s, x) and over all characters y mod d,
where 0 < 8 < « and |y| < 2®. (Each 8 + iy is counted with multiplicity equal to the

number of these L-functions for which it is a zero.) To estimate the double sum on the
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right side of (2.4), we use the upper bounds y? < y'~1/4 for 3 <1 —1/A; and y? <y for
7 << 1, where 7 =1—p/loga and p = (1/6)log(1/ed). In the range 1 —1/A <3 <7
we use the identity y? = y'~1/4 + logyflﬁ_l/A y?do. Thus the double sum on the right
side of (2.4) is at most

- yl—l/A , 1 8 1 y
Z— + 1o — “do + 7
Zl/2 1+ |y gyzl—l/f‘ T+ bl o’ 2.7 + 7]

1 1 T 1 1 1 1
2.5) <y'7t4 + 10gy/ y"( )da + oy :
(25) 21/2 14 |7 1-1/A Z" 14 |7 ZT 14 |7

For any o > 1/2 we can use partial summation to get

1 N(o,2%,d)  [* N(o,t,d)
2.6 < N(o,1,d — 7 — 2 dt.
(26) > o s Nt ¢ =y [
For any t in the range 1 < t < 2®, (2.2) implies that N(1/2,¢,d)/t < 4c;dlogx. By
(

inserting this estimate into (2.6), we deduce an upper bound for the first sum in (2.5):

(2.7) Zl y' < deydyt M oga | 24 /w dt < 16c1y' P log? & < Y
- .t )T ~ logx
for © > x5, since d < y'/47% and y® > log* z by (2.3).
If o >1—1/A then A(1 — o) < 1, so that for any ¢ in the range 1 < t < 23, (2.1)
implies that N(o,t,d)/t < ~2(A)d*1 =7, By inserting this estimate into (2.6), we deduce
that

1 1 z? dt
Y, T S it (2+ / 7) < 4(4)d = log .
1

Ifo >1—1/2A then A(1—0) < 1/2, so that for any ¢ in the range 1 <t < 2?, (2.1) implies
that N(o,t,d) < y2(A)dA1=9¢/2 By inserting this estimate into (2.6), we deduce that

1 1 =t
< yp(A)dA ) | 2 / — | < dyp(A)dT)
Za’ 1 _I_ |7| — 72( ) —I_ 1 t3/2 — 72( )

Using the two bounds immediately above, we deduce that the middle term in (2.5) is

1-1/24

< dyy(A)d* og y L 1o :1;/ iada+/r YN\ 4o

oy o [ () an 1 [ ()
logy y y \ 124 y ~-7)

< dryy(A)gA—08Y Y I (Y ] Y

< 472(4) log(y/dA)dA{<dA> ng—l_(df‘)

dv,(A
(28) S 7621(4— )y{y—5/2 1ng_|_e—5Ap/2} S

9
9y7
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for © > x5, since y/d* > y®4 > 2%4/2 and y® > log* = by (2.3).

Define D, s(x) to be the set of integers d' in the range 1 < d' < 2148 for which
there is a primitive character y mod d' with a zero 3 + 1y of L(s, x) satisfying 3 > 7 and
|y| < v:=et4?/c%. Since d is not divisible by any element of D, s(z) (by hypothesis), the

final sum of (2.5) only involves zeros from the region 3 > 7, v < |y| < 2*. Thus, using
(2.1), the third sum in (2.5) is
11 N(r, 2% d) AAl=7) etAr €
< L < Ay —— = Ay — < =
yZT R < 72(d)y — 72(A)y Az = oY

for @ > x. s, since d < x by (2.3). We use this, together with (2.7) and (2.8), to bound
(2.5); which we then insert into (2.4) to obtain the estimate of Theorem 2.1.

Theorem 14 of [Bo] states that there exist computable constants ¢z, ¢z > 0 for which

Z Z N(Uv TvX) < CzTci‘(l_U)7

dST xmodd

X primitive

for all T'> 2, 0 > 1/2. The set D, s(x) has cardinality no bigger than the left side of this
equation with 7' = 21/A=8 and o = 7, which is < cpelts/A — D.s.

The lemma of Landau and Page (see page 39 of [Bo] or pages 95 and 96 of [Dal))
asserts that there is a computable constant ¢4 > 0 such that for all 7' > 2, there is at most
one primitive character y; with modulus d; < T for which L(s, y1) has a zero 1 + ivq
satisfying 81 > 1 — ¢y/logT and |v;| < T. Moreover, if such a zero exists, it satisfies
v =0and /1 <1-— 05/(di/2 log2 dy), where ¢5 > 0 is some computable constant. We
apply this result with T = 27 where n = 1.5 := c4/p, so that 1 — ¢4/log(z") = 7. Thus
D. s(x) contains at most one number that is < 2". If this number exists, call it dq, so that
r<1-— 05/(di/2 log® dy), and thus d; > logz since @ > z. 5, which completes our proof of
Theorem 2.1.

Remark. It is possible, in principle, to compute a value for vy3(A) from the work of [Hu]
and [Ju], for any A > 12/5. One may then compute the value of all of the constants in
the above proof, starting by ensuring that ¢ and ¢ are “sufficiently small”, and eventually

obtaining values for x. 5, D. s and 7. s.

3. Prachar’s theorem revisited.

Since the probability that a randomly chosen positive integer below « is prime is about

1/log x, one might expect that for all integers L > 1 and numbers z > 2,

#{d|L:d <z, d+1 is prime} > %#{dﬂ] 1 <d < e},
ogx

12



for some absolute constant ¢ > 0. This cannot be precisely true in general: for example,

when L is odd. Nevertheless, we can actually prove a statement similar to this.

Theorem 3.1. Suppose that B is in the set B defined in the Introduction. There exists
a number x3(B) such that if + > x3(B) and L is a squarefree integer not divisible by
any prime exceeding (' ~B)/? and for which Zprime JlL 1/q < (1 — B)/32, then there is a

positive integer k < 2'=B with (k,L) = 1, such that

—Dp—2

#{d|L:dk+1<a, dk+11is prime} > #{d|L:1<d< 2P

og x

Proof. Let x5(B) = max{xz(B),17(1_B)_1}. For each d € Dp(x) which divides L, we
divide some prime factor of d out from L, so as to obtain a number L’ which is not divisible
by any number in Dg(x). Thus w(L') > w(L)— Dp, where w(m) is the number of distinct

prime factors of m, and
(3.1) H{dL:1<d<y}>27Prd{dL:1<d<y}

for any y > 1. To see this, think of a divisor d’ of L' as corresponding to a divisor d of L
if and only if d' divides d and d/d' divides L/L'. So if d < y then the corresponding d' is
< y. Moreover, for any divisor d' of L', the number of divisors d of L which correspond to
d' is at most the number of divisors of L/L', which is < 2P#,

From (0.3) we see that, for each divisor d of L' with 1 < d < 28, we have

7r(d:1:1_B) dzl—B dzl—B

(3.2) AN 2 T @ @) log(deP) © 2p(d)log s’

since m(y) > y/logy for all y > 17 (see [RS]). Furthermore, since any prime factor ¢ of L is
at most z(1=5)/2 (by hypothesis), we can use Montgomery and Vaughan’s explicit version
of the Brun-Titchmarsh theorem [MV], to get

1-B 2dx1—B 4 dzl—B 8 dzl—B
pldg)log(x'=5/q) = w(g)(1 = B) p(d)logz — ¢(1 = B) p(d)logz
Therefore, by (3.2), the number of primes p < dz'~8 with p = 1 mod d and

((p—1)/d,L) =1 1is at least

m(de't=P;d, 1) — Z m(dz'™B;dg, 1)

prime ¢|L

1-B 1-B
> 18 Z 1 dz > x ‘
2 1-B q/) ¢(d)logx — 4logax

prime ¢|L

13



Thus we have at least
l’l_B

#{d|L':1<d< 2B}

dlog x

pairs (p, d) where p < dz' =8 is prime, p = 1 mod d, ((p—1)/d,L) =1, d|L' and 1 < d < 2B.
Each such pair (p, d) corresponds to an integer (p—1)/d < x!=B that is coprime to L, and
so there is at least one integer k < 2!~ with (k, L) = 1 such that k has at least

1

diL':1<d< 8
410g:1;#{| sd<av)

representations as (p — 1)/d with (p,d) as above. Thus for this integer k we have

#{d|L:dk+1 <=z, dk+11is prime} > #{d|L':1<d< 2B}

4log x

and the theorem now follows from (3.1).

4. Carmichael numbers.

In this section we shall prove the following theorem.

Theorem 4.1. For each E € £, B € B and ¢ > 0, there is a number x4(F, B,¢), such
that whenever x > z4(E, B, ¢), we have C(z) > z¥B~=.

This result appears to be slightly weaker than Theorem 1. However, as we shall see
in the next section, £ is an open set. Thus if E € £, there is some E' > E with E' € £, so
that letting ¢ = (E' — E)B, we may take x¢(E, B) in Theorem 1 to be x4(E', B,¢). That
is, Theorem 4.1 and Proposition 5.1 imply Theorem 1.

Proof of Theorem 4.1. Let £ € &, B € B, ¢ > 0. Clearly we may assume ¢ < EB. Let
§ = (1—E)~! andlet y > 2 be a parameter. Denote by Q the set of primes ¢ € (y?/logy, y]
for which ¢ — 1 is free of prime factors exceeding y. By (0.1),

1

for all sufficiently large y. Let L be the product of the primes ¢ € Q; then
(4.2) log L < |Q|log(y”) < w(y")log(y”) < 2y,

for all large y. Now A(L) is the least common multiple of the numbers ¢ — 1 for those

primes ¢ that divide L. Since each such ¢ — 1 is free of prime factors exceeding y, we know

14



that if the prime power p® divides A\(L) then p < y and p® < y¥. Thus if we let p®» be the
largest power of p with p® < y?, then

(43) ML) < [] o < J] o = o' ® < 2
Py Py

for all large y.
Let G be the group (Z/LZ)* and recall the number n(G) defined in Section 1. We
conclude from Theorem 1.1, (4.2) and (4.3) that

(4.4) n(G) < A(L) (1 + log %) <AMNL)(1+1logL) < 3%y

for all large y.
Let 6 =¢6/(4B) and let « = e ™ Since

>

prime ¢|L y?/log y<g<

< Z l§210glogy§1—B
, 4 flogy 32
y

for sufficiently large y, we may apply Theorem 3.1 with B, x, L. Thus for all sufficiently
large values of y, there is an integer k coprime to L, for which the set P of primes p < x
with p = dk 4+ 1 for some divisor d of L, satisfies

—Dp—2

(4.5) P| > 2 #{d|L:1<d< 2P

log

The product of any

T [llzgg(éj))} B [gllsgg , ]

distinct prime factors of L, is a divisor d of L with d < 2%. We deduce from (4.1) that

#AL:1<d<aP} > (“(UL)> > (@) > (%) = (%y"‘l‘é)u.

Thus, by (4.5) and the identity (6 — 1 — 6)B/6 = EB — ¢/4, we have

Blogm]

9—Dp—2 W(E) 4 ,_ (185 .
(46) |7D| > o s ( 12(B)y9 1 6) > pFB—e/3

for all sufficiently large values of y. Now take P’ = P\ Q. Since |Q| < 4, we have by
(4.6) that

(47) |7Dl| > xEB—a/Z

15



for all sufficiently large values of y.

We may view P’ as a subset of the group G = (Z/LZ)* by considering the residue
class of each p € P’ modulo L. If § is a subset of P’ that contains more than one element
and if

II(s) := Hp =1mod L,
peES

then II(S) is a Carmichael number. Indeed, every member of P’ is 1 mod %k so that
II(S§) = 1 mod k, and thus II(S) = 1 mod kL, since (k,L) = 1. However if p € P’ then
p € P so that p — 1 divides kL. Thus II(S) satisfies Korselt’s criterion.

Let t = v 777 Then, by Proposition 1.2, we see that the number of Carmichael
numbers of the form II(S), where S C P' and |S| <t, is at least

(V) = () frosoro g o

for all sufficiently large values of y, using (4.4) and (4.7). But each such Carmichael number
II(S) so formed is such that II(S) < x!. Thus for X = 2! we have C(X) > X¥B~¢ for
all sufficiently large y. But X = exp(y'T® exp(y'1/2)), so that C(X) > XFB~¢ for all
sufficiently large values of X. Since y can be uniquely determined from X, this completes
the proof of Theorem 4.1.

5. The sets € and 5.

In this section we prove Theorem 3 and show that £ is an open interval. The second
result is particularly easy, being an almost immediate consequence of the Brun-Titchmarsh

inequality.
Proposition 5.1. There is some number Ey with 0 < Ey < 1 such that £ = (0, Ey).

Proof. Since Erdos has shown that £ contains numbers E > 0 and since we evidently have
(0, E] C € for any E € &, it suffices to show that for any F € & there is some E' > E with
E' €& Let E € £ and let E' be any number with E < E' < 1. By the Brun-Titchmarsh
inequality (see [MV]), we get for @ > x1(FE) that

7r(:1;,:1;1_E/) > (a7 — Z m(x;p, 1)



Now using m(x) > x/logx for all ¥ > 17 (see [RS]), we have for « > x1(F),x > 17 that

’ E){E 2x
1-E' S 7 ( _
m(z, e )z log x Z E(p—1)logx

x1—E/§p<x1—E

n(Er Y )

x1—E/§p<x1—E

By Mertens’ theorem, we have

3 L mE L, 1
p—1 R (1—E"logx

x1—E/§p<x1—E

for £ > 1. Thus if E' is taken so close to F that

say, then

for all large x. We conclude from the prime number theorem that E' € £, completing the

proof of Proposition 5.1.
We now give the proof of Theorem 3.

Proof of Theorem 3. Assume that B € B and that + > z9(B). Choose a number ¢ in
the range 0 < § < B and let ¢ = §*/(20B). For each number d in Dpg(z), select some
prime factor pg of d. Let P be the set of primes in the interval [/, 2%/2%¢] not equal to
any pq, d € Dp(x). Since P contains all but at most Dp of the primes in this interval,

Mertens’ theorem implies that

3 L log(14 6/(10B)) + O(1/(6log 2)).
peEP

We deduce that

1 )
1 >
(5-1) Z p — 20B’
pEP
for all sufficiently large .
We shall give a lower bound for 7(z, 2! 7B¥?%) by counting pairs (¢, d), where ¢ < z is

a prime in the congruence class 1 mod d, and d is an integer in the range £87% < d < 25,

whose every prime factor lies in P. Evidently any such prime ¢ must be counted in

17



1—B—|—6)

m(x,x , but will not be involved in more than 22/% such pairs (¢,d) (since ¢ — 1

cannot have more than 2/6 prime factors from P). Thus from (0.3) we have

(52)  w(e, TP > 2720 N p(apd, 1) 227070 Y ;((2

mB_égdSmB mB_égdSmB
pld=p€P pld=p€P

for all @ > x2(B). Let u denote the least integer with « > (B — ¢)/(6/2) so that

6 6
B—-6<wub/2 and u(5/2—|—€)<(23/(5—1)(5/2—|—€):B+E—§—€<B.

Therefore any product, d, of u not necessarily distinct primes from P satisfies
xB—é < xué/Z <d< xu(é/Z—l—a) < J}B,

and so, by (5.1),
1 1 1\ 1 ) “
> azul(Xy) zulag) =

say. Since 1/¢(d) > 1/d we can insert this estimate into (5.2) to deduce that (0.1) holds for
E = B — ¢ with some number ~,(E) satisfying v1(E) > 27'72/8~43(B, 6). This completes
the proof of Theorem 3.
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