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The problems below are a continuation of those appearing in Chapter
6 of Enumerative Combinatorics, volume 2. Combinatorial interpretations
of Catalan numbers are numbered as a continuation of Exercise 6.19, while
algebraic interpretations are numbered as a continuation of Exercise 6.25.
Combinatorial interpretations of Motzkin numbers are numbered as a con-
tinuation of Exercise 6.38. The remaining problems are numbered 6.C1, 6.C2,
etc. I am grateful to Emeric Deutsch for providing parts (ooo), (rrr), (ttt),
(a4), (e4), (k4), (p4), (j5), (k5), (m5) and (n5) of Exercise 6.19, and to Roland
Bacher for providing (r4).

Note. In citing results from this Addendum it would be best not to use
the problem numbers (or at the least give the version date), since I plan to
insert new problems in logical rather than numerical order.

Note. At the end of this addendum is a list of all problems added on
or after December 17, 2001, together with the date the problem was added.
The problem numbers always refer to the version of the addendum in which
the list appears.

Note. Throughout this addendum we let Cn denote the Catalan number
1

n+1

(
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n

)
and C(x) the generating function

C(x) =
∑
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2x
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Moreover, we let
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2
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2
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6.19(ooo) Plane trees with n − 1 internal nodes, each having degree 1 or 2,
such that nodes of degree 1 occur only on the rightmost path

(ppp) Plane trees with n vertices, such that going from left to right all
subtrees of the root first have an even number of vertices and
then an odd number of vertices, with those subtrees with an odd
number of vertices colored either red or blue

R B BBBRRR

(qqq) Plane trees with n vertices whose leaves at height one are colored
red or blue

R B BBBRRR

(rrr) Left factors L of Dyck paths such that L has n − 1 up steps

(sss) Dyck paths of length 2n + 2 whose first downstep is followed by
another downstep
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(ttt) Dyck paths with n − 1 peaks and without three consecutive up
steps or three consecutive down steps

(uuu) Dyck paths D from (0, 0) to (2n + 2, 0) such that there is no
horizontal line segment L with endpoints (i, j) and (2n+2− i, j),
with i > 0, such that the endpoints lie on P and no point of L lies
above D

(vvv) Points of the form (m, 0) on all Dyck paths from (0, 0) to (2n−2, 0)

(www) Peaks of height one in all Dyck paths from (0, 0) to (2n, 0)

(xxx) Vertices of height n− 1 of the tree T defined by the property that
the root has degree 2, and if the vertex x has degree k, then the
children of x have degrees 2, 3, . . . , k + 1

(yyy) Motzkin paths (as defined in Exercise 6.38(d), though with the
typographical error (n, n) instead of (n, 0)) from (0, 0) to (n−1, 0),
with the steps (1, 0) colored either red or blue
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R R R B B R BB

(zzz) Motzkin paths a1, . . . , a2n−2 from (0, 0) to (2n − 2, 0) such that
each odd step a2i+1 is either (1, 0) (straight) or (1, 1) (up), and
each even step a2i is either (1, 0) (straight) or (1,−1) (down)

(a4) Lattice paths from (0, 0) to (n− 1, n− 1) with steps (0, 1), (1, 0),
and (1, 1), never going below the line y = x, such that the steps
(1, 1) only appear on the line y = x

(b4) Lattice paths of length n − 1 from (0, 0) to the x-axis with steps
(±1, 0) and (0,±1), never going below the x-axis

(−1, 0) + (−1, 0) (−1, 0) + (1, 0) (0, 1) + (0,−1)

(1, 0) + (−1, 0) (1, 0) + (1, 0)

(c4) Nonnesting matchings on [2n], i.e., ways of connecting 2n points in
the plane lying on a horizontal line by n arcs, each arc connecting
two of the points and lying above the points, such that no arc is
contained entirely below another

(d4) Ways of connecting 2n points in the plane lying on a horizontal line
by n arcs, each arc connecting two of the points and lying above
the points, such that the following condition holds: for every edge
e let n(e) be the number of edges e′ that nest e (i.e., e lies below
e′), and let c(e) be the number of edges e′ that begin to the left
of e and that cross e. Then n(e) − c(e) = 0 or 1.
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(e4) Ways of connecting any number of points in the plane lying on
a horizontal line by nonintersecting arcs lying above the points,
such that the total number of arcs and isolated points is n−1 and
no isolated point lies below an arc

(f 4) Ways of connecting n points in the plane lying on a horizontal line
by noncrossing arcs above the line such that if two arcs share an
endpoint p, then p is a left endpoint of both the arcs

(g4) Ways of connecting n+1 points in the plane lying on a horizontal
line by noncrossing arcs above the line such that no arc connects
adjacent points and the right endpoints of the arcs are all distinct

(h4) Lattice paths in the first quadrant with n steps from (0, 0) to (0, 0),
where each step is of the form (±1,±1), or goes from (2k, 0) to
(2k, 0) or (2(k+1), 0), or goes from (0, 2k) to (0, 2k) or (0, 2(k+1))

(0, 0) → (0, 0) → (0, 0) → (0, 0)

(0, 0) → (0, 0) → (1, 1) → (0, 0)

(0, 0) → (1, 1) → (0, 0) → (0, 0)

(0, 0) → (2, 0) → (1, 1) → (0, 0)

(0, 0) → (0, 2) → (1, 1) → (0, 0)

(i4) Lattice paths from (0, 0) to (n,−n) such that (α) from a point
(x, y) with x < 2y the allowed steps are (1, 0) and (0, 1), (β) from
a point (x, y) with x > 2y the allowed steps are (0,−1) and (1,−1),
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(γ) from a point (2y, y) the allowed steps are (0, 1), (0,−1), and
(1,−1), and (δ) it is forbidden to enter a point (2y + 1, y)

(j4) Symmetric parallelogram polyominos (as defined in the solution
to Exercise 6.19(l)) of perimeter 4(2n + 1) such that the horizon-
tal (equivalently, vertical) boundary steps on each level form an
unbroken line

(k4) All horizontal chords in the nonintersecting chord diagrams of
(n) (with the vertices drawn so that one of the diagrams has n
horizontal chords)

(l4) Kepler towers with n bricks, i.e., sets of concentric circles, with
“bricks” (arcs) placed on each circle, as follows: the circles come in
sets called walls from the center outwards. The circles (or rings)
of the ith wall are divided into 2i equal arcs, numbered 1, 2, . . . , 2i

clockwise from due north. Each brick covers an arc and extends
slightly beyond the endpoints of the arc. No two consecutive arcs
can be covered by bricks. The first (innermost) arc within each
wall has bricks at positions 1, 3, 5, . . . , 2i − 1. Within each wall,
each brick B not on the innermost ring must be supported by
another brick B′ on the next ring toward the center, i.e., some ray
from the center must intersect both B and B′. Finally, if i > 1 and
the ith wall is nonempty, then wall i − 1 must also by nonempty.
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Figure 1: A Kepler tower with 3 walls, 6 rings, and 13 bricks

Figure 1 shows a Kepler tower with three walls, six rings, and 13
bricks.

(m4) Compositions of n whose parts equal to k are colored with one of
Ck−1 colors (colors are indicated by subscripts below)

1a + 1a + 1a 1a + 2a 2a + 1a 3a 3b

(n4) Sequences (a1, . . . , an) of nonnegative integers satisfying a1 + · · ·+
ai ≥ i and

∑
aj = n

111 120 210 201 300

(o4) Sequences a1, . . . , a2n of nonnegative integers with a1 = 1, a2n = 0
and ai − ai−1 = ±1:

123210 121210 121010 101210 101010
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(p4) Sequences of n − 1 1’s and any number of −1’s such that every
partial sum is nonnegative

1, 1 1, 1,−1 1,−1, 1 1, 1,−1,−1 1,−1, 1,−1

(q4) Sequences a1a2 · · ·a2n−2 of n − 1 1’s and n − 1 −1’s such that if
ai = −1 then either ai+1 = ai+2 = · · · = a2n−2 = −1 or ai+1 +
ai+2 + · · ·+ ai+j > 0 for some j ≥ 1

1, 1,−1,−1 1,−1, 1,−1 −1, 1, 1,−1 −1, 1,−1, 1 −1,−1, 1, 1

(r4) Sequences a1a2 · · ·an of integers such that a1 = 1, an = ±1, ai �= 0,
and ai+1 ∈ {ai, ai + 1, ai − 1,−ai} for 2 ≤ i ≤ n

1, 1, 1 1, 1,−1 1,−1, 1 1,−1,−1 1, 2, 1

(s4) Sequences a1a2 · · ·an of nonnegative integers such that aj = #{i :
i < j, ai < aj} for 1 ≤ j ≤ n

000 002 010 011 012

(t4) Sequences a1a2 · · ·an−1 of nonnegative integers such that each
nonzero term initiates a factor (subsequence of consecutive ele-
ments) whose length is equal to its sum

00 01 10 11 20

(u4) Sequences a1a2 · · ·a2n+1 of positive integers such that a2n+1 = 1,
some ai = n + 1, the first appearance of i + 1 follows the first
appearance of i, no two consecutive terms are equal, no pair ij of
integers occur more than once as a factor (i.e., as two consecutive
terms), and if ij is a factor then so is ji

1213141 1213431 1232141 1232421 1234321

(v4) Sequences (a1, . . . , an) ∈ Nn for which there exists a distributive
lattice of rank n with ai join-irreducibles of rank i, 1 ≤ i ≤ n

300 210 120 201 111
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(w4) Pairs of sequences 1 ≤ i1 < i2 < · · · < ik ≤ n − 1 and 2 ≤ j1 <
· · · < jk ≤ n such that ir < jr for all r.

(∅, ∅) (1, 2) (1, 3) (2, 3) (12, 23)

(x4) Ways two persons can each start with 0 and alternating add posi-
tive integers to their numbers so that they first have equal numbers
when that number is n (notation such as 1, 2; 4, 3; 5, 5 means that
the first person adds 1 to 0 to obtain 1, then the second person
adds 2 to 0 to obtain 2, then the first person adds 3 to 1 to obtain
4, etc.)

3, 3 2, 3; 3 2, 1; 3, 3 1, 2; 3, 3 1, 3; 3

(y4) Cyclic equivalence classes (or necklaces) of sequences of n + 1 1’s
and n 0’s (one sequence from each class is shown below)

1111000 1110100 1110010 1101100 1101010

(z4) Partitions of an integer which are both n-cores and (n + 1)-cores,
in the terminology of Exercise 7.59(d).

∅ 1 2 11 311

(a5) Equivalence classes of the equivalence relation on the set Sn =
{(a1, . . . , an) ∈ Nn :

∑
ai = n} generated by (α, 0, β) ∼ (β, 0, α)

if β (which may be empty) contains no 0’s. For instance, when n =
7 one equivalence class is given by {3010120, 0301012, 1200301, 1012003}.

{300, 030, 003} {210, 021} {120, 012} {201, 102} {111}

(b5) Pairs (α, β) of compositions of n with the same number of parts,
such that α ≥ β (dominance order, i.e., α1+· · ·+αi ≥ β1+· · ·+βi

for all i)

(111, 111) (12, 12) (21, 21) (21, 12) (3, 3)

(c5) weak ordered partitions (P, V, A, D) of [n] into four blocks such
that there exists a permutation w = a1a2 · · ·an ∈ Sn (with a0 =
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an+1 = 0) satisfying

P = {i ∈ [n] : ai−1 < ai > ai+1}
V = {i ∈ [n] : ai−1 > ai < ai+1}
A = {i ∈ [n] : ai−1 < ai < ai+1}
D = {i ∈ [n] : ai−1 > ai > ai+1}.

(3, ∅, 12, ∅) (3, ∅, 1, 2) (23, 1, ∅, ∅) (3, ∅, 2, 1) (3, ∅, ∅, 12)

(d5) Permutations w ∈ Sn satisfying the following condition: let w =
Rs+1Rs · · ·R1 be the factorization of w into maximal ascending
runs (so s = des(w), the number of descents of w). Let mk and Mk

be the smallest and largest elements in the run Rk. Let nk be the
number of symbols in Rk for 1 ≤ k ≤ s + 1; otherwise set nk = 0.
Define Nk =

∑
i≤k ni for all k ∈ Z. Then ms+1 > ms > · · · > m1

and Mi ≤ Ni+1 for 1 ≤ i ≤ s + 1.

123 213 231 312 321

(e5) Permutations w ∈ Sn satisfying, in the notation of (d5) above,
ms+1 > ms > · · · > m1 and mi+1 > Ni−1 + 1 for 1 ≤ i ≤ s

123 213 231 312 321

(f5 ) 321-avoiding permutations w ∈ S2n+1 such that i is an excedance
of w (i.e., w(i) > i) if and only if i �= 2n + 1 and w(i) − 1 is not
an excedance of w (so that w has exactly n excedances)

4512736 3167245 3152746 4617235 5671234

(g5) 321-avoiding alternating permutations in S2n

214365 215364 314265 315264 415263

(h5) 321-avoiding fixed-point-free involutions of [2n]

214365 215634 341265 351624 456123

(i5) 321-avoiding involutions of [2n − 1] with one fixed point

13254 14523 21354 21435 34125
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(j5) 213-avoiding fixed-point-free involutions of [2n]

456123 465132 564312 645231 654321

(k5) 213-avoiding involutions of [2n − 1] with one fixed point

14523 15432 45312 52431 54321

(l5) 3412-avoiding (or noncrossing) involutions of a subset of [n − 1]

∅ 1 2 12 21

(m5) Standard Young tableaux with at most two rows and with first
row of length n − 1

1 2 1 2 1 3 1 2 1 3
3 2 3 4 2 4

(n5) Standard Young tableaux with at most two rows and with first
row of length n, such that for all i the ith entry of row 2 is not 2i

1 2 3 1 2 3 1 2 4 1 2 3 1 2 4
4 3 4 5 3 5

(o5) Standard Young tableaux of shape (2n + 1, 2n + 1) such that ad-
jacent entries have opposite parity[

1 2 3 4 5 6 7
8 9 10 11 12 13 14

] [
1 2 3 4 5 8 9
6 7 10 11 12 13 14

]
[

1 2 3 4 5 10 11
6 7 8 9 12 13 14

] [
1 2 3 6 7 8 9
4 5 10 11 12 13 14

]
[

1 2 3 6 7 10 11
4 5 8 9 12 13 14

]

(p5) Plane partitions with largest part at most two and contained in a
rectangle of perimeter 2(n − 1) (including degenerate 0 × (n − 1)
and (n − 1) × 0 rectangles)

0 1 2
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(q5) Triples (A, B, C) of pairwise disjoint subsets of [n − 1] such that
#A = #B and every element of A is less than every element of B

(∅, ∅, ∅) (∅, ∅, 1) (∅, ∅, 2) (∅, ∅, 12) (1, 2, ∅)

(r5) Subsets S of N such that 0 ∈ S and such that if i ∈ S then
i + n, i + n + 1 ∈ S

N, N − {1}, N − {2}, N − {1, 2}, N − {1, 2, 5}

(s5) (n + 1)-element multisets on Z/nZ whose elements sum to 0

0000 0012 0111 0222 1122

(t5) Ways to write (1, 1, . . . , 1,−n) ∈ Zn+1 as a sum of vectors ei−ei+1

and ej − en+1, without regard to order, where ek is the kth unit
coordinate vector in Zn+1:

(1,−1, 0, 0) + 2(0, 1,−1, 0) + 3(0, 0, 1,−1)

(1, 0, 0,−1) + (0, 1,−1, 0) + 2(0, 0, 1,−1)

(1,−1, 0, 0) + (0, 1,−1, 0) + (0, 1, 0,−1) + 2(0, 0, 1,−1)

(1,−1, 0, 0) + 2(0, 1, 0,−1) + (0, 0, 1,−1)

(1, 0, 0,−1) + (0, 1, 0,−1) + (0, 0, 1,−1)

(u5) Horizontally convex polyominoes (as defined in Example 4.7.18)
of width n + 1 such that each row begins strictly to the right of
the beginning of the previous row and ends strictly to the right of
the end of the previous row

(v5) tilings of the staircase shape (n, n − 1, . . . , 1) with n rectangles
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(w5) Nonisomorphic 2(n + 1)-element posets that are a union of two
chains, that are not a (nontrivial) ordinal sum, and that have a
nontrivial automorphism (compare (eee))

(x5) n × n N-matrices M = (mij) where mij = 0 unless i = n or i = j
or i = j − 1, with row and column sum vector (1, 2, . . . , n)⎡

⎣ 1 0 0
0 2 0
0 0 3

⎤
⎦

⎡
⎣ 0 1 0

0 1 1
1 0 2

⎤
⎦

⎡
⎣ 1 0 0

0 1 1
0 1 2

⎤
⎦

⎡
⎣ 1 0 0

0 0 2
0 2 1

⎤
⎦

⎡
⎣ 0 1 0

0 0 2
1 1 1

⎤
⎦

(y5) Bounded regions into which the cone x1 ≥ x2 ≥ · · · ≥ xn+1 in
Rn+1 is divided by the hyperplanes xi − xj = 1, 1 ≤ i < j ≤ n + 1
(compare (lll), which illustrates the case n = 2 of the present item)

(z5 ) Extreme rays of the closed convex cone generated by all flag f -
vectors (i.e., the functions β(P, S) of Section 3.12) of graded posets
of rank n with 0̂ and 1̂ (the vectors below lie on the extreme rays,
with the coordinates ∅, {1}, {2}, {1, 2} in that order)

(0, 0, 0, 1) (0, 0, 1, 1) (0, 1, 0, 0) (0, 1, 1, 1) (1, 1, 1, 1)

6.25 (j) Degree of the Grassmannian G(2, n + 2) (as a projective variety
under the usual Plücker embedding) of 2-dimensional planes in
Cn+2

(k) Dimension (as a Q-vector space) of the ring Q[x1, . . . , xn]/Qn,
where Qn denotes the ideal of Q[x1, . . . , xn] generated by all qua-
sisymmetric functions in the variables x1, . . . , xn with 0 constant
term

(l) Multiplicity of the point Xw0 in the Schubert variety Ωw of the
flag manifold GL(n, C)/B, where w0 = n, n − 1, . . . , 1 and w =
n, 2, 3, . . . , n − 2, n − 1, 1

(m) Conjugacy classes of elements A ∈ SL(n, C) such that An+1 = 1

13



6.38 (n) 2143-avoiding involutions (or vexillary involutions) in Sn

6.C1 (a) [3] Let ai,j(n) (respectively, āi,j(n)) denote the number of walks in
n steps from (0, 0) to (i, j), with steps (±1, 0) and (0,±1), never
touching a point (−k, 0) with k ≥ 0 (respectively, k > 0) once
leaving the starting point. Show that

a0,1(2n + 1) = 4nCn

a1,0(2n + 1) = C2n+1 (1)

a−1,1(2n) =
1

2
C2n

a1,1(2n) = 4n−1Cn +
1

2
C2n

ā0,0(2n) = 2 · 4nCn − C2n+1.

(b) [3] Show that for i ≥ 1 and n ≥ i,

a−i,i(2n) =
i

2n

(
2i
i

)(
n+i
2i

)(
4n
2n

)
(
2n+2i

2i

) (2)

ai,i(2n) = a−i,−i + 4n i

n

(
2i

i

)(
2n

n − i

)
. (3)

(c) [3] Let bi,j(n) (respectively, b̄i,j(n)) denote the number of walks in
n steps from (0, 0) to (i, j), with steps (±1,±1), never touching
a point (−k, 0) with k ≥ 0 (respectively, k > 0) once leaving the
starting point. Show that

b1,1(2n + 1) = C2n+1

b−1,1(2n + 1) = 2 · 4nCn − C2n+1

b0,2(2n) = C2n

b2i,0(2n) =
i

n

(
2i

i

)(
2n

n − i

)
4n−i, i ≥ 1 (4)

b̄0,0(2n) = 4nCn. (5)

(d) [3–] Let

f(n) =
∑

P

(−1)w(P ),
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Figure 2: The rooted planar maps with two edges

where (i) P ranges over all lattice paths in the plane with 2n steps,
from (0, 0) to (0, 0), with steps (±1, 0) and (0,±1), and (ii) w(P )
denotes the winding number of P with respect to the point (1

2
, 1

2
).

Show that f(n) = 4nCn.

6.C2 [3] A rooted planar map is a planar embedding of an (unlabelled) con-
nected planar graph rooted at a flag, i.e, at a triple (v, e, f) where v
is a vertex, e is an edge incident to v, and f is a face incident to e.
Two rooted planar maps G and H are considered the same if, regarding
them as being on the 2-sphere S2, there is a flag-preserving homeomor-
phism of S2 that takes G to H . Equivalently, a rooted planar map
may be regarded as a planar embedding of a connected planar graph in
which a single edge on the outer face is directed in a counterclockwise
direction. (The outer face is the root face, and the tail of the root edge
is the root vertex.) Figure 2 shows the nine rooted planar maps with
two edges.

(a) [3] Show that the number of rooted planar maps with n edges is
equal to

2 (2n)! 3n

n! (n + 1)!
=

2 · 3n

n + 2
Cn.

(b) [2+] Show that the total number of vertices of all rooted planar
maps with n edges is equal to 3nCn.

6.C3 A k-triangulation of a convex n-gon C is a maximal collection of diag-
onals such that there are no k + 1 of these diagonals for which any two
intersect in their interiors. A 1-triangulation is just an ordinary triangu-
lation, enumerated by the Catalan number Cn−2 (Corollary 6.2.3(vi)).
Note that any k-triangulation contains all diagonals between vertices
at most distance k apart (where the distance between two vertices u, v
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is the least number of edges of C we need to traverse in walking from
u to v along the boundary of C). We call these nk edges superfluous.
For example, there are three 2-triangulations of a hexagon, illustrated
below (nonsuperfluous edges only).

(a) [3–] Show that all k-triangulations of an n-gon have k(n− 2k− 1)
nonsuperfluous edges.

(b) [3] Show that the number Tk(n) of k-triangulations of an n-gon is
given by

Tk(n) = det [Cn−i−j]
k
i,j=1

=
∏

1≤i<j≤n−2k

2k + i + j − 1

i + j − 1
,

the latter inequality by by Theorem 2.7.1 and Exercise 7.101(a).

(c) [5] It follows from (b) and Exercise 7.101(a) that Tk(n) is equal
to the number of plane partitions, allowing 0 as a part, of the
staircase shape δn−2k = (n− 2k − 1, n− 2k − 2, . . . , 1) and largest
part at most k. Give a bijective proof.

6.C4 [3–] Let D be a Dyck path with 2n steps, and let ki(D) denote the
number of up steps in D from level i − 1 to level i. Show that∑

D,D′

∑
i

ki(D)ki(D
′) = C2n − C2

n,

where the first sum ranges over all pairs (D, D′) of Dyck paths with 2n
steps.

6.C5 Let t0, t1, . . . be indeterminates. If S is a finite subset of N, then set
tS =

∏
i∈S ti. For X = N or P, let Un(X) denote the set of all n-subsets

of X that don’t contain two consecutive integers.

(a) [2+] Show that the following three power series are equal:
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(i) The continued fraction

1

1 − t0x

1 − t1x

1 − t2x

1 − · · ·

(ii)

∑
n≥0

(−1)n

⎛
⎝ ∑

S∈Un(P)

tS

⎞
⎠ xn

∑
n≥0

(−1)n

⎛
⎝ ∑

S∈Un(N)

tS

⎞
⎠ xn

(iii)
∑

T

∏
v∈V (T )

t
deg(v)
ht(v) x#V (T )−1, where T ranges over all (nonempty)

plane trees. Moreover, V (T ) denotes the vertex set of T ,
ht(v) the height of vertex v (where the root has height 0),
and deg(v) the degree (number of children) of vertex v.

The three power series begin

1 + t0x + (t20 + t0t1)x
2 + (t30 + 2t20t1 + t0t

2
1 + t0t1t2)x

3 + · · · . (6)

(b) [2] Deduce that

lim
n→∞

∑
i≥0(−1)i

(
n−i

i

)
xi∑

i≥0(−1)i
(

n+1−i
i

)
xi

=
∑
k≥0

Ckx
k. (7)

(c) [5] Let ti = (2i + 1)2 in equation (6), yielding the power series∑
n≥0

Dnxn = 1 + x + 10x2 + 325x3 + 22150x4 + · · · .

Show that ν2(Dn) = ν2(Cn), where ν2(m) is the exponent of the
largest power of 2 dividing m.

6.C6 (a) [2+] Start with the monomial x12x23x34 · · ·xn,n+1, where the vari-
ables xij commute. Continually apply the “reduction rule”

xijxjk → xik(xij + xjk) (8)
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in any order until unable to do so, resulting in a polynomial
Pn(xij). Show that Pn(xij = 1) = Cn. (Note. The polyno-
mial Pn(xij) itself depends on the order in which the reductions
are applied.) For instance, when n = 3 one possible sequence of
reductions (with the pair of variables being transformed shown in
boldface) is given by

x12x23x34 → x13x12x34 + x13x23x34

→ x14x13x12 + x14x34x12

+x14x13x23 + x14x34x23

→ x14x13x12 + x14x34x12

+x14x13x23 + x14x24x23 + x14x24x34

= P3(xij).

(b) [3–] More strongly, replace the rule (8) with

xijxjk → xik(xij + xjk − 1),

this time ending with a polynomial Qn(xij). Show that

Qn

(
xij =

1

1 − x

)
=

N(n, 1) + N(n, 2)x + · · ·+ N(n, n)xn−1

(1 − x)n
,

where N(n, k) is a Narayana number (defined in Exercise 6.36).

(c) [3–] Even more generally, show that

Qn(xij = ti) =
∑

(−1)n−kti1 · · · tik ,

where the sum ranges over all pairs ((a1, a2, . . . , ak), (i1, i2, . . . , ik)) ∈
Pk × Pk satisfying 1 = a1 < a2 < · · · < ak ≤ n, 1 ≤ i1 ≤ i2 ≤
· · · ≤ in, and ij ≤ aj. For instance,

Q3(xij = ti) = t31 + t21t2 + t21t3 + t1t
2
2 + t1t2t3−2t21 −2t1t2− t1t3 + t1.

(d) [3+] Now start with the monomial
∏

1≤i<j≤n+1 xij and apply the
reduction rule (8) until arriving at a polynomial Rn(xij). Show
that

Rn(xij = 1) = C1C2 · · ·Cn.
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(e) [5–] Generalize (d) in a manner analogous to (b) and (c).

6.C7 [3–] Let Vr be the operator on (real) polynomials defined by

Vr

(∑
i≥0

aiq
i

)
=
∑
i≥r

aiq
i.

Define B1(q) = −1, and for n > 1,

Bn(q) = (q − 1)Bn−1(q) + V(n+1)/2

(
qn−1(1 − q)Bn−1(1/q)

)
.

Show that B2n(1) = B2n+1(1) = (−1)n+1Cn.

6.C8 (a) [3+] Let g(n) denote the number of n × n N-matrices M = (mij)
where mij = 0 if j > i + 1, with row and column sum vector(
1, 3, 6, . . . ,

(
n+1

2

))
. For instance, when n = 2 there are the two

matrices [
1 0
0 3

] [
0 1
1 2

]
,

while an example for n = 5 is⎡
⎢⎢⎢⎢⎣

0 1 0 0 0
0 1 2 0 0
1 0 3 2 0
0 0 1 4 5
0 1 0 4 10

⎤
⎥⎥⎥⎥⎦ .

Show that g(n) = C1C2 · · ·Cn.

(b) [2+] Let f(n) be the number of ways to write the vector(
1, 2, 3, . . . , n,−

(
n + 1

2

))
∈ Zn+1

as a sum of vectors ei − ej, 1 ≤ i < j ≤ n + 1, without re-
gard to order, where ek is the kth unit coordinate vector in Zn+1.
For instance, when n = 2 there are the two ways (1, 2,−3) =
(1, 0,−1) + 2(0, 1,−1) = (1,−1, 0) + 3(0, 1,−1). Assuming (a),
show that f(n) = C1C2 · · ·Cn.
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(c) [3–] Let CRn be the convex polytope of all n×n doubly-stochastic
matrices A = (aij) satisfying aij = 0 if i > j + 1. It is easy to see
that CRn is an integral polytope of dimension

(
n
2

)
. Assuming (a)

or (b), show that the relative volume of CRn (as defined §4.6) is
given by

ν(CRn) =
C1C2 · · ·Cn−1(

n
2

)
!

.

6.C9 [3–] Join 4m + 2 points on the circumference of a circle with 2m + 1
nonintersecting chords, as in Exercise 6.19(n). Call such a set of chords
a net. The circle together with the chords forms a map with 2m + 2
(interior) regions. Color the regions red and blue so that adjacent
regions receive different colors. Call the net even if an even number of
regions are colored red and an even number blue, and odd otherwise.
The figure below shows an odd net for m = 2.

Let fe(m) (respectively, fo(m)) denote the number of even (respectively,
odd) nets on 4m + 2 points. Show that

fe(m) − fo(m) = (−1)m−1Cm.

6.C10 (a) [2+] Show that

C(x)q =
∑
n≥0

q

n + q

(
2n − 1 + q

n

)
xn.

(b) [2+] Show that

C(x)q

√
1 − 4x

=
∑
n≥0

(
2n + q

n

)
xn.
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6.C11 (a) [2–] Give a generating function proof of the identity

n∑
k=0

C2kC2(n−k) = 4nCn. (9)

(b) [5–] Give a bijective proof.

6.C12 (a) [2+] Find all power series F (t) ∈ C[[t]] such that if

1 − x + xtF (t)

1 − x + x2t
=
∑
n≥0

fn(x)tn,

then fn(x) ∈ C[x].

(b) [2+] Find the coefficients of the polynomials fn(x).

6.C13 (a) [3–] Find the unique continuous function f(x) on R satisfying for
all n ∈ N: ∫ ∞

−∞
xnf(x)dx =

{
Ck, if n = 2k
0, if n = 2k + 1.

(b) [3–] Find the unique continuous function f(x) for x > 0 satisfying
for all n ∈ N: ∫ ∞

0

xnf(x)dx = Cn.

6.C14 [2+] The Fibonacci tree F is the rooted tree with root v, such that the
root has degree one, the child of every vertex of degree one has degree
two, and the two children of every vertex of degree two have degrees
one and two. Figure 3 shows the first six levels of F . Let f(n) be the
number of closed walks in F of length 2n beginning at v. Show that

f(n) =
1

2n + 1

(
3n

n

)
,

the number of ternary trees with n vertices. (See Exercises 5.45, 5.46,
and 5.47(b) for further occurences of this number.)
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Figure 3: The Fibonacci tree

SOLUTIONS

6.19(ooo) Traverse the tree in preorder. When going down an edge (i.e.,
away from the root) record 1 if this edge goes to the left or straight
down, and record −1 if this edge goes to the right. This gives a
bijection with (p4).

(ppp) The proof follows from the generating function identity

C(x)2 =
C(x) − 1

x

=
∑
k≥0

xk
k∑

i=0

O(x)i2k−iE(x)k−i

=
1

(1 − 2xE(x))(1 − xO(x))
.

This result is due to L. Shapiro, private communication dated 26
December 2001, who raises the question of giving a simple bijective
proof. In a preprint entitled “Catalan trigonometry” he gives a
simple bijective proof of the related identity

O(x) = x(O(x)2 + E(x)2)

and remarks that there is a similar proof of

E(x) = 1 + 2xE(x)O(x).
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For a further identity of this nature, see Exercise 6.C11.

(qqq) This result is due to L. Shapiro, private communication dated 24
May 2002.

(rrr) Add one further up step and then down steps until reaching (2n, 0).
This gives a bijection with the Dyck paths of (i).

(sss) Deleting the first UD gives a bijection with (i) (Dyck paths of
length 2n). This result is due to David Callan, private communi-
cation dated 3 November 2004.

(ttt) In the two-colored Motzkin paths of (yyy) replace the step (1, 1)
with the sequence of steps (1, 1)+(1, 1)+(1,−1), the step (1,−1)
with (1, 1) + (1,−1) + (1,−1), the red step (1, 0) with (1, 1) +
(1,−1), and the blue step (1, 0) with (1, 1) + (1, 1) + (1,−1) +
(1,−1).

(uuu) Every Dyck path P with at least two steps has a unique factoriza-
tion P = XY Z such that Y is a Dyck path (possibly with 0 steps),
length(X) = length(Z), and XZ is a Dyck path (with at least two
steps) of the type being counted. Hence if f(n) is the number of
Dyck paths being counted and F (x) =

∑
n≥1 f(n − 1)xn, then

C(x) = 1 + F (x)C(x).

It follows that F (x) = xC(x), so f(n) = Cn as desired. This result
is due to Sergi Elizalde (private communication, September, 2002).

(vvv) To obtain a bijection with the Dyck paths of (i) add a (1, 1) step
immediately following a path point (m, 0) and a (1,−1) step at
the end of the path (R. Sulanke, private communication from E.
Deutsch dated 4 February 2002).

(www) To obtain a bijection with (vvv) contract a region under a peak
of height one to a point (E. Deutsch and R. Sulanke, private com-
munication from E. Deutsch dated 4 February 2002).

(xxx) First solution. Fix a permutation u ∈ S3, and let T (u) be the
set of all u-avoiding permutations (as defined in Exercise 6.39(l))
in all Sn for n ≥ 1. Partially order T (u) by setting v ≤ w if
v is a subsequence of w (when v and w are written as words).
One checks that T (u) is isomorphic to the tree T . Moreover, the
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vertices in T (u) of height n consist of the u-avoiding permutations
in Sn+1. The proof then follows from Exercise 6.19(ee,ff).

Second solution. Label each vertex by its degree. A saturated
chain from the root to a vertex at level n − 1 is thus labelled by
a sequence (b1, b2, . . . , bn). Set ai = i + 2 − bi. This sets up a
bijection between level n−1 and the sequences (a1, . . . , an) of (s).

Third solution. Let fn(x) =
∑

v xdeg(v), summed over all vertices
of T of height n − 1. Thus f1(x) = x2, f2(x) = x2 + x3, f3(x) =
x4+2x3+2x2, etc. Set f0(x) = x. The definition of T implies that
we get fn+1(x) from fn(x) by substituting x2 + x3 + · · ·+ xk+1 =
x2(1 − xk)/(1 − x) for xk. Thus

fn+1(x) =
x2(fn(1) − fn(x))

1 − x
, n ≥ 0.

Setting F (x, t) =
∑

n≥0 Fn(x)tn, there follows

x − F (x, t)

t
=

x2

1 − x
(F (1, t) − F (x, t)).

Hence

F (x, t) =
x − x2 + x2tF (1, t)

1 − x + x2t
.

Now use Exercise 6.C12.

The trees T (u) were first defined by J. West, Discrete Math. 146
(1995), 247–262 (see also Discrete Math. 157 (1996), 363–374)
as in the first solution above, and are called generating trees.
West then presented the labeling argument of the second solution,
thereby giving new proofs of (ee) and (ff). For further informa-
tion on generating trees, see C. Banderier, M. Bousquet-Mélou,
A. Denise, P. Flajolet, D. Gardy, and D. Gouyou-Beauchamps,
Discrete Math., to appear; available at

algo.inria.fr/flajolet/Publications/publist.html.

(yyy) Replace a step (1, 1) with 1, 1, a step (1,−1) with −1,−1, a red
step (1, 0) with 1,−1, a blue step (1, 0) with −1, 1, and adjoin
an extra 1 at the beginning and −1 at the end. This gives a
bijection with (r) (suggested by R. Chapman). The paths being
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enumerated are called two-colored Motzkin paths. See for instance
E. Barcucci, A. Del Lungo, E. Pergola, and R. Pinzani, Lecture
Notes in Comput. Sci. 959, Springer, Berlin, 1995, pp. 254–263.

(zzz) Let π be a noncrossing partition of [n]. Denote the steps in a
Motzkin path by U (up), D (down) and L (level). In the sequence
1, 2, . . . , n, replace the smallest element of a nonsingleton block of
π with the two steps LU . Replace the largest element of a nons-
ingleton block of π with DL. Replace the element of a singleton
block with LL. Replace an element that is neither the smallest
nor largest element of its block with DU . Remove the first and
last terms (which are always L). For instance, if π = 145–26–3,
then we obtain ULULLDUDLD. This sets up a bijection with
(pp). E. Deutsch (private communication dated 16 September
2004) has also given a simple bijection with the Dyck paths (i).
The bijection given here is a special case of a bijection appearing
in W. Chen, E. Deng, R. Du, R. Stanley, and C. Yan, Crossings
and nestings of matchings and partitions, math.CO/0501230.

(a4) Replace each step (1, 1) or (0, 1) with the step (1, 1), and replace
each step (1, 0) with (1,−1). We obtain a bijection with the paths
of (rrr).

(b4) See R. K. Guy, J. Integer Sequences 3 (2000), article 00.1.6, avail-
able at

www.research.att.com/
∼njas/sequences/JIS/VOL3/GUY/catwalks.html,

and R. K. Guy, C. Krattenthaler, and B. Sagan, Ars Combinator-
ica 34 (1992), 3–15.

(c4) Replace the left-hand endpoint of each arc with a 1 and the right-
hand endpoint with a −1. We claim that this gives a bijection
with the ballot sequences of (r). First note that if we do the same
construction for the noncrossing matchings of (o), then it is very
easy to see that we get a bijection with (r). Hence we will give
a bijection from (o) to (c4) with the additional property that the
locations of the left endpoints and right endpoints of the arcs are
preserved. (Of course any bijection between (o) and (c4) would
suffice to prove the present item; we are showing a stronger result.)
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Let M be a noncrossing matching on 2n points. Suppose we are
given the set S of left endpoints of the arcs of M . We can recover
M by scanning the elements of S from right-to-left, and attaching
each element i to the leftmost available point to its right. In
other words, draw an arc from i to the first point to the right of
i that does not belong to S and to which no arc has been already
attached. If we change this algorithm by attaching each element
of S to the rightmost available point to its right, then it can be
checked that we obtain a nonnesting matching and that we have
defined a bijection from (o) to (c4).

I cannot recall to whom this argument is due. Can any reader
provide this information? For further information on crossings help!
and nestings of matchings, see W. Chen, E. Deng, R. Du, R.
Stanley, and C. Yan, Crossings and nestings of matchings and
partitions, math.CO/0501230, and the references given there.

(d4) Let f : P → P be any function satisfying f(i) ≤ i. Given a ballot
sequence α = (a1, . . . , a2n) as in (r), define the corresponding f -
matching Mα as follows. Scan the 1’s in α from right-to-left.
Initially all the 1’s and −1’s in α are unpaired. When we encounter
ai = 1 in α, let j be the number of unpaired −1’s to its right, and
draw an arc from ai to the f(j)th −1 to its right (thus pairing
ai with this −1). Continue until we have paired a1, after which
all terms of α will be paired, thus yielding the matching Mα. By
construction, the number of f -matchings of [2n] is Cn. This gives
infinitely many combinatorial interpretations of Cn, but of course
most of these will be of no special interest. If f(i) = 1 for all i,
then we obtain the noncrossing matchings of (o). If f(i) = i for all
i, then we obtain the nonnesting matchings of (c4). If f(i) = 
i/2�
for all i, then we obtain the matchings of the present item. Thus
these matchings are in a sense “halfway between” noncrossing and
nonnesting matchings.

(e4) Reading the the points from left-to-right, replace each isolated
point and each point which is the left endpoint of an arc with 1,
and replace each point which is the right endpoint of an arc with
−1. We obtain a bijection with (p4).

(f 4) Label the points 1, 2, . . . , n from left-to-right. Given a noncrossing
partition of [n] as in (pp), draw an arc from the first element of
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Figure 4: The bijecton for Exercise 6.19(g4)

each block to the other elements of that block, yielding a bijection
with the current item. This result is related to research on network
testing done by Nate Kube (private communication from Frank
Ruskey dated 9 November 2004).

(g4) Given a binary tree with n vertices as in (c), add a new root with
a left edge connected to the old root. Label the n + 1 vertices by
1, 2, . . . , n+1 in preorder. For each right edge, draw an arc from its
bottom vertex to the top vertex of the first left edge encountered
on the path to the root. An example is shown in Figure 4. On
the left is a binary tree with n = 5 vertices; in the middle is the
augmented tree with n+1 vertices with the preorder labeling; and
on the right is the corresponding set of arcs. This result is due to
David Callan, private communication, 23 March 2004.

(h4) See S. Elizalde, Statistics on Pattern-Avoiding Permutations, Ph.D.
thesis, M.I.T., June 2004 (Proposition 3.5.3(1)).

(i4) Three proofs are given by H. Niederhausen, Catalan traffic at the
beach, preprint available at

www.math.fau.edu/Niederhausen/html/Papers/

CatalanTraffic.ps.

(j4) Let P be a parallelogram polyomino of the type being counted.
Linearly order the maximal vertical line segments on the bound-
ary of P according to the level of their bottommost step. Replace
such a line segment appearing on the right-hand (respectively,
left-hand) path of the boundary of P by a 1 (respectively, −1),
but omit the final line segment (which will always be on the left).
For instance, for the first parallelogram polyomino shown in the
statement of the problem, we get the sequence (1, 1,−1,−1, 1,−1).
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This sets up a bijection with (r). This result is due to E. Deutsch,
S. Elizalde, and A. Reifegerste (private communication, April,
2003).

(k4) If we consider the number of chord diagrams (n) containing a
fixed horizontal chord, then we obtain the standard quadratic re-
currence for Catalan numbers. An elegant “bijectivization” of this
argument is the following. Fix a vertex v. Given a nonintersecting
chord diagram with a distinguished horizontal chord K, rotate the
chords so that the left-hand endpoint of K is v. This gives a bijec-
tion with (n). Another way to say this (suggested by R. Chapman)
is that there are n different chord slopes, each occuring the same
number of times, and hence Cn times.

(l4) Kepler towers were created by X. Viennot, who gave a bijection
with the Dyck paths (i). Viennot’s bijection was written up by D.
Knuth, Three Catalan bijections, Institut Mittag-Leffler preprint
series, 2005 spring, #04; www.ml.kva.se/preprints/0405s. The
portion of this paper devoted to Kepler walls is also available at
www-cs-faculty.stanford.edu/∼knuth/programs/viennot.w.

(m4) Immediate from the generating function identity

C(x) =
1

1 − xC(x)
= 1 + xC(x) + x2C(x)2 + · · · .

This result is due to E. Deutsch (private communication dated 8
April 2005).

(n4) Add 1 to the terms of the sequences of (w). Alternatively, if
(b1, . . . , bn−1) is a sequence of (s), then let (a1, . . . , an) = (n + 1−
bn−1, bn−1 − bn−2, . . . , b2 − b1).

(o4) Partial sums of the sequences in (r). The sequences of this exercise
appear explicitly in E. P. Wigner, Ann. Math. 62 (1955), 548–564.

(p4) In (rrr) replace an up step with 1 and a down step with −1.

(q4) Suppose that the reverse sequence b1 · · · b2n−2 = a2n−2 · · ·a1 begins
with k −1’s. Remove these −1’s, and and for each 1 ≤ i ≤ k
remove the rightmost bj for which bk+1 + bk+2 + · · ·+ bj = i. This
yields a sequence of k + 1 ballot sequences as given by (r). Place
a 1 at the beginning and −1 at the end of each of these ballot
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sequences and concatenate, yielding a bijection with (r). This
result (stated in terms of lattice paths) is due to David Callan,
private communication dated 26 February 2004.

Example. Let a1 · · ·a14 = +−−+−−+ + + +−+−− (writing
+ for 1 and − for −1), so b1 · · · b14 = − − + − + + + + − −
+ −−+. Remove b1, b2, b5, b14, yielding the ballot sequences +−,
+ + + − − + −−, and ∅. We end up with the ballot sequence
+ + −− + + + + −− + −− + +−.

(r4) Consider the pairs of lattice paths of (l) and the lines Li defined
by x+ y = i, 1 ≤ i ≤ n. Let S denote the set of all lattice squares
contained between the two paths. The line Li will pass through
the interior of some bi elements of S. Set ai = ±bi as follows: (i)
a1 = b1 = 1, (ii) aiai > 0 if bi �= bi−1, and (iii) if bi = bi−1, then
ai = ai−1 if the top lattice square in S that Li passes through lies
above the top lattice square in S that Li−1 passes through, and
otherwise ai = −ai−1. This sets up a bijection with (l).

(s4) In the tree T of (xxx), label the root by 0 and the two children of
the root by 0 and 1. Then label the remaining vertices recursively
as follows. Suppose that the vertex v has height n and is labelled
by j. Suppose also that the siblings of v with labels less than j
are labelled t1, . . . , ti. It follows that v has i + 2 children, which
we label t1, . . . , ti, j, n. See Figure 5 for the labelling up to height
3. As in the second solution to Exercise 6.19(xxx), a saturated
chain from the root to a vertex at level n − 1 is thus labelled
by a sequence (a1, a2, . . . , an). It can be seen that this sets up a
bijection between level n − 1 and the sequences we are trying to
count. The proof then follows from (xxx). This exercise is due
to Z. Sunik, Electr. J. Comb. 10 (2003), N5. Sunik also points
out that the number of elements labelled j at level n is equal to
CjCn−j.

(t4) Given a plane tree with n edges, traverse the edges in preorder
and record for each edge except the last the degree (number of
successors) of the vertex terminating the edge. It is easy to check
that this procedure sets up a bijection with (e). This result is due
to David Callan, private communication dated 3 November 2004.

(u4) Let T be a plane tree with n+1 vertices labelled 1, 2, . . . , n+1 in
preorder. Do a depth first search through T and write down the
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Figure 5: The tree for Exercise 6.19(s4)

vertices in the order they are visited (including repetitions). This
establishes a bijection with (e). The sequences of this exercise
appear implicitly in E. P. Wigner, Ann. Math. 62 (1955), 548–
564, viz., as a contribution Xa1a2Xa2a3 · · ·Xa2n−1a2nXa2na1 to the
(1, 1)-entry of the matrix X2n. Exercise 5.19(o4) is related.

(v4) The sequences 1, 1 + an, 1 + an + an−1, . . . , 1 + an + an−1 + · · ·+ a2

coincide with those of (s). See R. Stanley, J. Combinatorial Theory
14 (1973), 209–214 (Theorem 1).

(w4) Partially order the set Pn = {(i, j) : 1 ≤ i < j ≤ n} component-
wise. Then the sets {(i1, j1), . . . , (ik, jk)} are just the antichains of
Pn and hence are equinumerous with the order ideals of Pn (see the
end of Section 3.1). But Pn is isomorphic to the poset Int(n − 1)
of Exercise 6.19(bbb), so the proof follows from this exercise.

This result is implicit in the paper A. Reifegerste, On the diagram
of 132-avoiding permutations, math.CO/0208006. She observes
that if (i1 · · · ik, j1 · · · jk) is a pair being counted, then there is
a unique 321-avoiding permutation w ∈ Sn whose excedance set
Ew = {i : w(i) > i} is {i1, . . . ik} and such that w(ik) = jk for
all k. Conversely, every 321-avoiding w ∈ Sn gives rise to a pair
being counted. Thus the proof follows from Exercise 6.19(ee).

(x4) Let L be a lattice path as in (h). Let (0, 0) = v0, v1, . . . , vk = (n, n)
be the successive points at which L intersects the diagonal y = x.
Let L′ be the path obtained by reflecting about y = x the portions
of L between each v2i−1 and v2i. The horizontal steps of L′ then
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correspond to the moves of the first player, while the vertical steps
correspond to the moves of the second player.

This result and solution are due to Lou Shapiro, private commu-
nication dated 13 May 2005. Shapiro stated the result in terms of
the game of Parcheesi, but since many readers may be unfamiliar
with this game we have given a more mundane formulation.

(y4) Since n + 1 and n are relatively prime, each equivalence class
has exactly 2n + 1 elements. Hence the number of classes is

1
2n+1

(
2n+1

n

)
= Cn. This fact is the basis for the direct combi-

natorial proof that there are Cn ballot sequences (as defined in
Corollary 6.2.3(ii)) of length 2n; see Example 5.3.12.

(z4) Let Cλ = · · · c−2c−1c0c1c2 · · · be the code of the partition λ, as
defined in Exercise 7.59, where c0 = 1 and ci = 0 for i < 0.
Let Sλ = {i : ci = 1}. For instance, if λ = (3, 1, 1) then
Sλ = N − {1, 2, 5}. It is easy to see (using Exercise 7.59(b))
that λ is an n-core and an (n + 1)-core if and only if Sλ is a set
counted by (r5), and the proof follows. This cute result is due to J.
Anderson, Discrete Math. 248 (2002), 237–243. Anderson obtains
the more general result that if m and n are relatively prime, then
the number of partitions λ that are both m-cores and n-cores is

1
m+n

(
m+m

m

)
. J. Olsson and D. Stanton (in preparation) show that

in addition the largest |λ| for which λ is an m-core and n-core is
given by (m2 − 1)(n2 − 1)/24.

(a5) We claim that each equivalence class contains a unique element
(a1, . . . , an) satisfying a1+a2+· · ·+ai ≥ i for 1 ≤ i ≤ n. The proof
then follows from (n4). To prove the claim, if α = (a1, . . . , an) ∈
Sn, then define α′ = (a1 − 1, . . . , an − 1,−1). Note that the en-
tries of α′ are ≥ −1 and sum to −1. If E = {α1, . . . , αk} is an
equivalence class, then it is easy to see that the set {α′

1, . . . , α
′
k}

consists of all conjugates (or cyclic shifts) that end in −1 of a
single word α′

1, say. It follows from Lemmma 5.3.7 that there is
a unique conjugate (or cyclic shift) β of α′

1 such that all partial
sums of β, except for the sum of all the terms, are nonnegative.
Since the last component of β is −1, it follows that β = α′

j for
a unique j. Let αj = (a1, . . . , an). Then αj will be the unique
element of E satisfying a1 + · · ·+ ai ≥ i, as desired.

(b5) Let α = (α1, . . . , αk), β = (β1, . . . , βk). Define a Dyck path by
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going up α1 steps, then down β1 steps, then up α2 steps, then
down β2 steps, etc. This gives a bijection with (i), due to A.
Reifegerste, The excedances and descents of bi-increasing permu-
tations, preprint (Cor. 3/8); math.CO/0212247.

(c5) See J. Françon and G. Viennot, Discrete Math. 28 (1979), 21–35.

(d5) See N. A. Loehr, Europ. J. Combinatorics 26 (2005), 83–93. This
contrived-looking interpretation of Cn is actually closely related
to Exercise 6.25(i) and the (q, t)-Catalan numbers of Garsia and
Haiman.

(e5) See N. A. Loehr, ibid.

(f5 ) Replace an excedance of w with a 1 and a nonexcedance with a
−1, except for the nonexcedance 2n+1 at the end of w. This sets
up a bijection with (r). There is also a close connection with (j4).
If P is a parallelogram polyomino of the type counted by (j4), then
place P in a (2n+1)× (2n+1) square M . Put a 1 in each square
immediately to the right of the bottom step in each maximal ver-
tical line on the boundary, except for the rightmost such vertical
line. Put a 0 in the remaining squares of M . This sets up a bijec-
tion between (j4) and the permutation matrices corresponding to
the permutations counted by the present exercise. An example is
given by the figure below, where the corresponding permutation
is 4512736. This result is due to E. Deutsch, S. Elizalde, and A.
Reifegerste (private communication, April, 2003).

 

1
1

1
1

1
1

1

(g5) Let a1a2 · · ·a2n be a permutation being counted, and associate
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with it the array

a2 a4 a6 · · · a2n
a1 a3 a5 · · · a2n−1

.

This sets up a bijection with (ww), standard Young tableaux of
shape (n, n). This result it due to E. Deutsch and A. Reifegerste,
private communication dated 4 June 2003. Deutsch and Reifegerste
also point out that the permutations being counted have an alter-
native description as those 321-avoiding permutations in S2n with
the maximum number of descents (or equivalently, excedances),
namely n.

(h5) By Corollary 7.13.6 (applied to permutation matrices), Theorem
7.23.17 (in the case i = 1), and Exercise 7.28(a) (in the case
where A is a symmetric permutation matrix of trace 0), the RSK
algorithm sets up a bijection between 321-avoiding fixed-point-free
involutions in S2n and standard Young tableaux of shape (n, n).
Now use (ww). There are also numerous ways to give a more
direct bijection.

(i5) As in (h5), the RSK-algorithm sets up a bijection between 321-
avoiding involutions in S2n−1 with one fixed point and standard
Young tableaux of shape (n, n − 1); and again use (ww).

(j5) In the solution to (ii) it was mentioned that a permutation is stack-
sortable if and only if it is 231-avoiding. Hence a permutation in
S2n can be sorted into the order 2n, 2n−1, . . . , 1 on a stack if and
only if it is 213-avoiding. Given a 213-avoiding fixed-point-free
involution in S2n, sort it in reverse order on a stack. When an
element is put on the stack record a 1, and when it is taken off
record a –1 (as in the solution to (ii)). Then we obtain exactly the
sequences a1, a2, . . . , an,−an, . . . ,−a2,−a1, where a1, a2, . . . , an is
as in (r), and the proof follows. Moreover, E. Deutsch (private
communication, May, 2001) has constructed a bijection with the
Dyck paths of (i).

(k5) Similar to (j5).

(l5) Obvious bijection with (ggg).

(m5) Given a standard Young tableau T of the type being counted,
construct a Dyck path of length 2n as follows. For each entry
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1 1

1 1222

22 0 0 0

0 0 0

1 0 0 0 0

Figure 6: A plane partition and two lattice paths

1, 2, . . . , m of T , if i appears in row 1 then draw an up step, while
if i appears in row 2 then draw a down step. Afterwards draw
an up step followed by down steps to the x-axis. This sets up a
bijection with (i).

(n5) The bijection of (m5) yields an elevated Dyck path, i.e., a Dyck
path of length 2n + 2 which never touches the x-axis except at
the beginning and end. Remove the first and last step to get a
bijection with (i).

(o5) Remove all entries except 3, 5, 7, . . . , 2n−1 and shift the remaining
entries in the first row one square to the left. Replace 2i + 1 with
i. This sets up a bijection with SYT of shape (n, n), so the proof
follows from Exercise 6.19(ww). This result is due to T. Chow, H.
Eriksson, and K. Fan, in preparation. This paper also shows the
more difficult result that the number of SYT of shape (n, n, n) such
that adjacent entries have opposite parity is the number B(n− 1)
of Baxter permutations of length n− 1 (defined in Exercise 6.55).

(p5) Given the plane partition π, let L be the lattice path from the
lower left to upper right that has only 2’s above it and no 2’s
below. Similarly let L′ be the lattice path from the lower left
to upper right that has only 0’s below it and no 0’s above. See
Figure 6 for an example. This pair of lattice paths coincides with
those of Exercise 6.19(m)

(q5) In the two-colored Motzkin paths of (yyy), number the steps
1, 2, . . . , n − 1 from left to right. Place the upsteps (1, 1) in A,
the downsteps (1,−1) in B, and the red flatsteps (1, 0) in C. This
result is due to David Callan, priviate communication dated 26
February 2004.
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Figure 7: The poset T5

(r5) Let Sn be the submonoid of N (under addition) generated by n
and n + 1. Partially order the set Tn = N − Sn by i ≤ j if
j − i ∈ Sn. Figure 7 illustrates the case n = 5. It can be checked
that Tn

∼= Int(n − 1), as defined in Exercise 6.19(bbb). Moreover,
the subsets S being counted are given by N−I, where I is an order
ideal of Tn. The proof follows from Exercise 6.19(bbb). This result
is due to Mercedes H. Rosas, private communication dated 29 May
2002.

(s5) Analogous to (jjj), using 1
n

(
2n

n+1

)
= Cn. This problem was sug-

gested by S. Fomin.

(t5) Let ai be the multiplicity of ei−ei+1 in the sum. The entire sum is
uniquely determined by the sequence a1, a2, . . . , an−1. Moreover,
the sequences 0, a1, a2, . . . , an−1 that arise in this way coincide with
those in (u). This exercise is an unpublished result of A. Postnikov
and R. Stanley.

(u5) Let H be a polyomino of the type being counted, say with 	 rows.
Let ai + 1 be the width (number of columns) of the first i rows of
H , and let αi = ai−ai−1 for 1 ≤ i ≤ 	 (with a0 = 0). Similarly let
bi+1 be the width of the last i rows of H , and let βi = b�−i+1−b�−i

for 1 ≤ i ≤ 	 (with b0 = 1). This sets up a bijection with the pairs
(α, β) of compositions counted by (b5). This argument is due to A.
Reifegerste, ibid. By a refinement of this argument she also shows
that the number of polyominoes of the type being counted with 	
rows is the Narayana number N(n, 	) = 1

n

(
n
�

)(
n

�−1

)
of Exercise 6.36.
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Another bijection was provided by E. Deutsch (private communi-
cation dated 15 June 2001). Namely, given the polynomino H , let
a1 +1, . . . , a� +1 be the row lengths and b1 +1, . . . , b�−1 +1 be the
lengths of the overlap between the successive rows. Let D be the
Dyck path of length 2n with successive peaks at heights a1, . . . , a�

and successive valleys at heights b1, . . . , b�−1. This sets up a bijec-
tion with Dyck paths of length 2n, as given in (i). (Compare with
the solution to (l).)

(v5) There is a simple bijection with the binary trees T of (c). The
root of T corresponds to the rectangle containing the upper right-
hand corner of the staircase. Remove this rectangle and we get
two smaller staircase tilings, making the bijection obvious. This
result is the case d = 2 of Theorem 1.1 of H. Thomas, New combi-
natorial descriptions of the triangulations of cyclic polytopes and
the second higher Stasheff-Tamari posets, preprint available at
www.math.uwo.ca/∼hthomas2.

(w5) Let A be an antichain of the poset of intervals of the chain n − 1.
The number of such antichains is Cn by (bbb), since for any poset
there is a simple bijection between its order ideals I and antichains
A, viz., A is the set of maximal elements of I. (See equation
(2) of Section 3.1.) Construct from A a poset P on the points
1, 2, . . . , n + 1, 1′, 2′, . . . , (n + 1)′ as follows. First, 1 < 2 < · · · <
n + 1 and 1′ < 2′ < · · · < (n + 1)′. If [i, j] ∈ A, then define i <
(j +2)′ and j < (i+2)′. This gives a bijection between (bbb) and
(w5). This result is due to J. Stembridge, private communication
dated 22 November 2004.

(x5) Let

(1, 1, . . . , 1,−n) =

n−1∑
i=1

(ai(ei − ei+1) + bi(ei − en+1))+an(en−en+1)

as in (t5). Set mii = ai and min = bi. This uniquely determines
the matrix M and sets up a bijection with (t5). See A. Postnikov
and R. Stanley, ibid.

(y5) The solution to (lll) sets up a bijection between order ideals of
Int(n − 1) and all regions into which the cone x1 ≥ x2 ≥ · · · ≥ xn

is divided by the hyperplanes xi − xj = 1, for 1 ≤ i < j ≤ n. In
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this bijection, the bounded regions correspond to the order ideals
containing all singleton intervals [i, i]. It is easy to see that such
order ideals are in bijection with all order ideals of Int(n − 2).
Now use (bbb). This result was suggested by S. Fomin.

(z5 ) See L. J. Billera and G. Hetyei, J. Combinatorial Theory (A) 89
(2000), 77–104; math.CO/9706220 (Corollary 4).

6.25 (j) The degree of G(k, n + k) is the number f (nk) of standard Young
tableaux of the rectangular shape (nk) (see e.g. R. Stanley, Lecture
Notes in Math. 579, Springer, Berlin, 1977, pp. 217-251 (Thm.
4.1) or L. Manivel, Symmetric Functions, Schubert Polynomials
and Degeneracy Loci, American Mathematical Society and Société
Mathématique de France, 1998), and the proof follows from Ex-
ercise 6.19(ww).

(k) This result was conjectured by J.-C. Aval, F. Bergeron, N. Berg-
eron, and A. Garsia. The “stable case” (i.e., n → ∞) was proved
by J.-C. Aval and N. Bergeron, Catalan paths, quasi-symmetric
functions and super-harmonic spaces, preprint; math.CO/0109147.
The full conjecture was proved by J.-C. Aval, F. Bergeron, and N.
Bergeron, Ideals of quasi-symmetric functions and super-covariant
polynomials for Sn, preprint; math.CO/0202071.

(l) This is a result of Alexander Woo, math.CO/0407160. Woo con-
jectures that Ωw is the “most singular” Schubert variety, i.e., the
point Xw0 (which always has the largest multiplicity for any Schu-
bert variety Ωv) of Ωw has the largest multiplicity of any point on
any Schubert variety of GL(n, C)/B.

(m) A matrix A ∈ SL(n, C) satisfying An+1 = 1 is diagonalizable with
eigenvalues ζ satisfying ζn+1 = 1. The conjugacy class of A is
then determined by its multiset of eigenvalues. It follows that the
number of conjugacy classes is the number of multisets of Z/(n +
1)Z whose elements sum to 0. Now use (jjj). For the significance
of this result and its generalization to other Lie groups, see D. Z.
Djokov́ıc, Proc. Amer. Math. Soc. 80 (1980), 181–184. Further
discussion appears in Lecture 5 of S. Fomin and N. Reading, Root
systems and generalized associahedra, available at

www.math.lsa.umich.edu/∼fomin/Papers.
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6.38 (n) See O. Guibert, E. Pergola, and R. Pinzani, Ann. Combinatorics
5 (2001), 153–174.

6.C1 (a) These results appear in M. Bousquet-Mélou and G. Schaeffer,
Walks on the slit plane, preprint; math.CO/0012230 (Theorem 7),
and M. Bousquet-Mélou, Walks on the slit plane: other approaches,
Advances in Applied Math., to appear; math.CO/0104111 (Theo-
rem 19). The proofs are obtained from the formula∑

n≥0

∑
i,j

ai,j(n)xiyjtn =

(
1 − 2t(1 + x̄) +

√
1 − 4t

)1/2 (
1 + 2t(1 − x̄) +

√
1 + 4t

)1/2

2(1 − t(x + x̄ + y + ȳ))
,

(10)
where x̄ = 1/x and ȳ = 1/y. Equation (1) is also given a bijective
proof in the second paper (Proposition 2).

(b) Equation (2) was conjectured by Bousquet-Mélou and Schaef-
fer, ibid., p. 11. This conjecture, as well as equation (3), was
proved G. Xin, Proof of a conjecture on the slit plane problem;
math.CO/0304178. The proof is obtained from (10) as in (a).

(c) The situation is analogous to (a). The results appear in the two
papers cited in (a) and are based on the formula

∑
n≥0

∑
i,j

bi,j(n)xiyjtn =

(
1 − 8t2(1 + x̄2) +

√
1 − 16t2

)1/2

√
2(1 − t(x + x̄)(y + ȳ))

.

The case i = 1 of (4) is given a bijective proof in Bousquet-Mélou
and Schaeffer, ibid., Proposition 7.

(d) Let Xn be the set of all closed paths of length 2n from (0, 0) to
(0, 0) that intersect the half-line L defined by y = x, x ≥ 1. Given
P ∈ Xn, let k be the smallest integer such that P intersects L after
k steps, and let Q be the path consisting of the first k steps of
P . Let P ′ be the path obtained from P by reflecting Q about
the line y = x. Then P ′ ∈ Xn, w(P ′) = w(P ) ± 1, and the map
P 
→ P ′ is an involution. Any path P of length 2n from (0, 0) to
(0, 0) not contained in Xn satisfies w(P ) = 0. It follows that f(n)
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is the number of closed paths of length 2n from (0, 0) to (0, 0) not
intersecting L.

Now consider the linear change of coordinates (x, y) 
→ 1
2
(−x −

y, x − y). This transforms a closed path of length 2n from (0, 0)
to (0, 0) not intersecting L to a closed path from (0, 0) to (0, 0)
with 2n diagonal steps (±1,±1), not intersecting the negative real
axis. Now use equation (5).

This result was stated by R. Stanley, Problem 10905, Problems
and Solutions, Amer. Math. Monthly 108 (2001), 871. The pub-
lished solution by R. Chapman, 110 (2003), 640–642, includes a
self-contained proof of equation (5).

6.C2 (a) The enumeration of rooted planar maps subject to various condi-
tions is a vast subject initiated by W. T. Tutte. The result of this
problem appears in Canad. J. Math. 15 (1963), 249–271. A good
introduction to the subject, with many additional references, can
be found in [3.16, §2.9]. There has been a revival of interest in
the enumeration of maps, motivated in part by connections with
physics. At present there is no comprehensive survey of this work,
but two references that should help combinatorialists get into the
subject are D. M. Jackson, Trans. Amer. Math. Soc. 344 (1994),
755–772, and D. M. Jackson, in DIMACS Series in Discrete Math-
ematics and Computer Science 24 (1996), 217–234.

(b) Let G be a rooted planar map with n edges and p vertices. We can
define a dual n-edge and p′-vertex map G′, such that by Euler’s
formula p′ = n+2− p. From this it follows easily that the answer
is given by M(n)(n + 2)/2, where M(n) is the answer to (a).
For a more general result of this nature, see V. A. Liskovets, J.
Combinatorial Theory (B) 75 (1999), 116–133 (Prop. 2.6). It is
also mentioned on page 150 of L. M. Koganov, V. A. Liskovets
and T. R. S. Walsh, Ars Combinatoria 54 (2000), 149–160.

6.C3 (a) See T. Nakamigawa, Theoretical Computer Science 235 (2000),
271-282 (Corollary 6) and A. Dress, J. Koolen, and V. Moul-
ton, European J. Combin. 23 (2002), 549–557. Another proof
was given by J. Jonsson in the reference cited below.

(b) See J. Jonsson, Generalized triangulations and diagonal-free sub-
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sets of half-moon shapes, preprint,

http://www.math.kth.se/∼jakobj/combin.html#deltank.

The proof interprets the result in terms of lattice path enumeration
and applies the Gessel-Viennot theory of nonintersecting lattice
paths (§2.7).

6.C4 This result was first proved by I. Dumitriu using random matrix ar-
guments. An elegant bijective proof was then given by E. Rassart, as
follows. We want a bijection ϕ from (1) quadruples (D, D′, e, e′), where
D and D′ are Dyck paths with 2n steps and e and e′ are up edges of
D and D′ ending at the same height i, and (2) Dyck paths E with 4n
steps from (0, 0) to (4n, 0) which do not touch the point (2n, 0). We
first transform (D, e) into a partial Dyck path L ending at height i.
Let f be the down edge paired with e (i.e., the first down edge after
e beginning at height i), and flip the direction of each edge at or after
f . Let e2 be the first up edge to the left of e ending at height i − 1,
and let f2 be the down edge paired with e2 in the original path D. Flip
all edges of the current path at or after f2. Continue this procedure,
letting ej be the first edge to the left of ej−1 such that ej has height
one less than ej−1, etc., until no edges remain. We obtain the desired
partial Dyck path L ending at height i. Do the same for (D′, e′), ob-
taining another partial Dyck path L′ ending at height i. Reverse the
direction of L′ and glue it to the end of L. This gives the Dyck path E.
Figure 8 shows an example of the correspondence (D, e) 
→ L. We leave
the construction of ϕ−1 to the reader. See I. Dumitriu and E. Rassart,
Electronic J. Combinatorics 10(1) (2003), R-43; math.CO/0307252.

6.C5 (a) The most straightforward method is to observe that all three
power series F (t0, t1, . . . ; x) satisfy

F (t0, t1, . . . ; x) =
1

1 − t0xF (t1, t2, . . . ; x)

with the initial condition

F (t0, t1, . . . ; 0) = 1.

A general combinatorial theory of continued fractions is due to P.
Flajolet, Discrete Math. 32 (1980), 125–161. The equivalence of
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Figure 8: The bijection (D, e) 
→ L in the solution to Exercise 6.C4

(i) and (iii) is equivalent to a special case of Corollary 2 of this
paper.

(b) Put t0 = t1 = · · · = tn = 1 and ti = 0 for i > n. By the case
j = 2 of Exercise 1.3, the generating function of part (ii) above
becomes the left-hand side of equation (7). On the other hand, by
Exercise 6.19(e) the coefficient of xi for i ≤ n+1 in the generating
function of part (iii) becomes the coefficient of xi in the right-hand
side of (7) (since a tree with i ≤ n + 1 vertices has height at most
n). Now let n → ∞.

It is not difficult to give a direct proof of (7). The generating
function Fn(x) =

∑
i≥0(−1)i

(
n−i

i

)
xi satisfies

Fn+2(x) = Fn+1(x) − xFn(x). (11)

From Theorem 4.1.1 (or directly from Exercise 6.C12(b)) it follows
that

Fn(x) =
C(x)−n−1 − (xC(x))n+1

√
1 − 4x

.
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Hence the fraction in the left-hand side of (7) is given by∑
i≥0(−1)i

(
n−i

i

)
xi∑

i≥0(−1)i
(

n+1−i
i

)
xi

= C(x)
1 − xn+1C(x)2(n+1)

1 − xn+2C(x)2(n+2)
,

and (7) follows.

Equation (7) (with the numerator and denominator on the left-
hand side defined by (11)) was given by V. E. Hoggatt, Jr., Prob-
lem H-297, Fibonacci Quart. 17 (1979), 94; solution by P. S.
Bruckman, 18 (1980), 378.

(c) This conjecture is due to A. Postnikov. It has been checked for
n ≤ 500. It is also true whenever ν2(Cn) ≤ 2, a simple consequence
of (a) when t0 = t1 = · · · = 1 and the fact that (2i − 1)2 ≡
1 (mod 8), and has been proved whenever ν2(Cn) = 3 by R. Stanley
(unpublished).

6.C6 See the reference given in the solution to Exercise 6.19(t5).

6.C7 This result was conjectured by F. Brenti in 1995 and first proved by D.
Zeilberger,

http://www.math.rutgers.edu/∼zeilberg/mamarim/

mamarimhtml/catalan.html.

Zeilberger’s proof consists essentially of the statement

B2n(q) = (−1)n 1

2n + 1

(
2n + 1

n

)
qn

+
n−1∑
i=0

(−1)i 2n − 2i + 1

2n + 1

(
2n + 1

i

)
(qi + q2n−i)

B2n+1(q) =

n∑
i=0

(−1)i+1n − i + 1

n + 1

(
2n + 2

i

)
qi.

Later (as mentioned by Zeilberger, ibid.) Brenti found a combinatorial
interpretation of the polynomials Bm(q) which implies his conjecture.
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6.C8 (a,c) Let M ′ denote the part of M below the main diagonal. It is
easy to see that M ′ uniquely determines M . It was shown by C.
S. Chan, D. P. Robbins, and D. S. Yuen, Experiment. Math. 9
(2000), 91–99, that the polytope CRn+1 (called the Chan-Robbins
polytope or Chan-Robbins-Yuen polytope) can be subdivided into
simplices, each of relative volume 1/

(
n+1

2

)
!, which are naturally in-

dexed by the matrices M ′. It follows that
(

n+1
2

)
! ν(CRn+1) = g(n).

Chan and Robbins had earlier conjectured that
(

n+1
2

)
! ν(CRn+1) =

C1C2 · · ·Cn. (Actually, Chan and Robbins use a different nor-
malization of relative volume so that ν(CRn+1) = C1C2 · · ·Cn.)
This conjecture was proved by D. Zeilberger, Electron. Trans. Nu-
mer. Anal. 9 (1999), 147–148, and later W. Baldoni-Silva and M.
Vergne, Residue formulae for volumes and Ehrhart polynomials of
convex polytopes, preprint; math.CO/0103097 (Thm. 33).

(b) Given the matrix M = (mij), there exist unique nonnegative in-
tegers a1, . . . , an satisfying

∑
1≤i<j≤n

mji(ei − ej) +

n∑
i=1

ai(ei − en+1) = (1, 2, . . . , n,−
(

n + 1

2

)
).

This sets up a bijection between (a) and (b). This result is due to
A. Postnikov and R. Stanley (unpublished), and is also discussed
by W. Baldoni-Silva and M. Vergne, ibid. (§8).

6.C9 Let the vertices be 1, 2, . . . , 4m + 2 in clockwise order. Suppose that
there is a chord between vertex 1 and vertex 2i.

Case 1 : i is odd. The polygon is divided into two polygons, one (say
P1) with vertices 2, . . . , 2i − 1 and the other (say P2) with vertices
2i + 1, . . . , 4m + 2. Choose i − 1 noncrossing chords on the vertices
2, 3, . . . , 2i − 1. Thus we have a net N1 on P1. Choose a coloring of
the faces of N1. By “symmetry” half the nets on P2 will have an even
number of blue faces and half an odd number (with respect to the
coloring of the faces of N1), so the number of nets with a chord (1, 2i)
and an even number of blue faces minus the number of nets with a
chord (1, 2i) and an odd number of blue faces is 0. (It’s easy to make
this argument completely precise.)

Case 2 : i is even, say i = 2j. The number of nets N1 on P1 with
an even number of blue faces is fe(j − 1). The number with an odd
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number is fo(j − 1). Similarly the number of nets N2 on P2 with an
even number of blue faces is fe(m − j) and with an odd number of
blue faces is fo(m − j). Hence the number of nets on the original
4m + 2 points with a chord (1, 4j) and an even number of blue faces is
fe(j − 1)fe(m − j) + fo(j − 1)fo(m − j). Thus

fe(m) =
m∑

j=1

(fe(j − 1)fe(m − j) + fo(j − 1)fo(m − j)).

Similarly

fo(m) =
m∑

j=1

(fe(j − 1)fo(m − j) + fo(j − 1)fe(m − j)).

Hence

fe(m) − fo(m) =

m∑
j=1

(fe(j − 1) − fo(j − 1))(fe(m − j) − fo(m − j)),

which is just the recurrence satisfied by Catalan numbers Cm (initial
condition C0 = 1) and thus also by Dm = (−1)m+1Cm (initial condition
D0 = −1). Since fe(0) − fo(0) = 0 − 1 = −1, the proof follows.

This result was first proved using techniques from algebraic geometry
by A. Eremenko and A. Gabrielov, The Wronski map and real Schubert
calculus, preprint available at

www.math.purdue.edu/∼agabriel/preprint.html

and www.math.purdue.edu/∼eremenko/newprep.html. A bijective
proof was given by S.-P. Eu, Coloring the net, preprint, based on the
preprint S.-P. Eu, S.-C. Liu, and Y.-N. Yeh, Odd or even on plane trees.

6.C10 By polynomial interpolation it suffices to prove the two identities when
q is a positive integer.

(a) Let G(x) = xC(x). Then G(x) = (x − x2)〈−1〉, and the proof fol-
lows easily from the Lagrange inversion formula (Theorem 5.4.2).
Alternatively, C(x)q (when q ∈ P) is the generating function for
plane binary forests with q components. Now use Theorem 5.3.10
in the case n = 2k + q, r0 = k + q, r2 = k (and all other ri = 0).
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(b) This can be obtained from (a) by differentiating (xC(x))q with
respect to x, or alternatively from the identity

xC(x)q =
C(x)q−1

2
− (1 − 4x)C(x)q−1

2
√

1 − 4x
.

6.C11 (a) It is straightforward to verify that E(x)2 = C(4x2), which is equiv-
alent to (9). This result is due to L. Shapiro, private communica-
tion dated 24 May 2002.

6.C12 (a) It is easy to see that if F (t) exists, then it is unique. Now it follows
from xC(t)2 − C(t) + 1 = 0 that

1 − x + xC(t)

1 − x + x2t
=

1

1 − xtC(t)
.

Hence F (t) = C(t).

(b) We have
1

1 − xtC(t)
=
∑
k≥0

xktkC(t)k.

Hence by (a) and Exercise 6.C10(a) there follows

[xk]fn(x) = [tn]tkC(t)k

= [tn−k]C(t)k

=
k

n

(
2n − k − 1

n − k

)
=

k

n

(
2n − k − 1

n − 1

)
.

6.C13 (a) Answer: f(x) =
√

4 − x2/2π for −2 ≤ x ≤ 2, and f(x) = 0 for
|x| ≥ 2. This result is the basis of Wigner’s famous “semicircle
law” for the distribution of eigenvalues of certain classes of random
real symmetric matrices (Ann. Math. 62 (1955), 548–569, and 67
(1958), 325–327). Wigner did not rigorously prove the uniqueness
of f(x), but this uniqueness is actually a consequence of earlier
work of F. Hausdorff, Math. Z. 16 (1923), 220–248.

(b) Answer: f(x) = 1
2π

√
4−x

x
for 0 ≤ x ≤ 4, and f(x) = 0 otherwise,

an easy consequence of (a).
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6.C14 Let w be the vertex of F adjacent to v. Let G denote F with v removed,
and let g(n) be the number of closed walks in G of length 2n beginning
at w. Write A(x) =

∑
n≥0 f(n)xn and B(x) =

∑
n≥0 g(n)xn. The

definitions of F and G yield

A(x) = 1 + xA(x)B(x)

B(x) = 1 + xB(x)2 + xA(x)B(x).

Eliminating B(x) gives A(x) = 1+xA(x)3, the equation satisfied by the
generating function for ternary trees by number of vertices. This result
first appeared in D. Bisch and V. Jones, Invent. math. 128 (1997),
89–157, and D. Bisch and V. Jones, in Geometry and Physics (Aarhus,
1995), Lecture Notes in Pure and Appl. Math., vol. 184, Dekker, New
York, 1997.
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CHRONOLOGY OF NEW PROBLEMS (beginning 12/17/01)

A number in brackets is the number of items (combinatorial interpreta-
tions of Cn) in Exercise 6.19 up to that point.

6.19(xxx) December 17, 2001

6.19(s4) December 17, 2001

6.38(n) December 17, 2001

6.C10 December 17, 2001

6.C12 December 17, 2001

6.19(k4) January 29, 2002

6.C5 January 29, 2002

6.19(i4) March 20, 2002 [90]

6.19(ppp) April 29, 2002

6.19(vvv) April 30, 2002

6.19(www) April 30, 2002

6.19(r5) May 31, 2002

6.19(qqq) June 1, 2002

6.C11 June 1, 2002

6.19(l5) June 2, 2002

6.19(y4) June 4, 2002

6.C2 June 8, 2002

6.19(p5) July 1, 2002

6.19(w4) August 9, 2002
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6.C4 August 9, 2002

6.19(uuu) October 23, 2002 [100]

6.19(v5) October 23, 2002

6.19(n4) October 27, 2002

6.25(l) December 20, 2002

6.19(v4) March 12, 2003

6.19(c5) March 12, 2003

6.19(j4) April 6, 2003

6.19(f5 ) April 6, 2003

6.C1(b) (updated) April 17, 2003

6.19(g5) June 4, 2003

6.C3 October 30, 2003

6.C14 November 11, 2003

6.19(h4) April 20, 2004

6.19(a5) May 12, 2004 (solution modified 5/16/04)

6.19(m5) June 1, 2004 [110]

6.19(n5) June 2, 2004

6.C1(d) (updated) June 3, 2004

6.C13(b) June 3, 2004

6.19(o5) June 28, 2004

6.19(q4) August 22, 2004

6.19(q5) August 22, 2004

6.19(g4) August 22, 2004
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6.19(s5) September 2, 2004

6.19(y5) September 2, 2004

6.19(zzz) September 20, 2004

6.19(c4) November 13, 2004

6.C7 November 24, 2004

6.19(w5) November 25, 2004 [120]

6.25(m) December 17, 2004

6.19(t4) December 18, 2004

6.19(sss) December 18, 2004

6.19(d4) December 20, 2004

6.19(f 4) December 22, 2004

6.19(d5) January 16, 2005

6.19(e5) January 16, 2005

6.19(z4) February 11, 2005

6.19(l4) February 28, 2005 [27]

6.19(m4) April 8, 2005

6.19(x4) May 27, 2005 [130]
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