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Abstract

The enumeration of transitive ordered factorizations of a given permutation is a combinatorial

problem related to singularity theory� Let n � �� and let �� be a permutation of Sn having di cycles

of length i� for i � �� Let m � �� We prove that the number of m�tuples ���� � � � � �m� of permutations

of Sn such that�

� ���� � � ��m � ���

� the group generated by ��� � � � � �m acts transitively on f�� �� � � � � ng�

�
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A one�to�one correspondence relates these m�tuples to some rooted planar maps� which we call con�

stellations and enumerate via a bijection with some bicolored trees� For m � �� we recover a formula

of Tutte for the number of Eulerian maps� The proof relies on the idea that maps are conjugacy

classes of trees and extends the method previously applied to Eulerian maps by the second author�

Our result might remind the reader of an old theorem of Hurwitz� giving the number of m�tuples

of transpositions satisfying the above conditions� Indeed� we show that our result implies Hurwitz�

theorem� We also brie�y discuss its implications for the enumeration of nonequivalent coverings of

the sphere�

� Introduction

Let �� be a permutation in the symmetric group Sn� An ordered factorization of �� is an m�tuple
���� � � � � �m� of permutations of Sn such that ���� � � ��m � ���

The enumeration of ordered factorizations of a �xed permutation is a widely studied problem� Its
numerous di�erent motivations make it very versatile� and give rise to di�erent kinds of conditions that
can be imposed on the factors� Here are some conditions often met in the literature�

� The cyclic type of the factors� One can decide that each factor �i must be taken inside a
prescribed conjugacy class of Sn� in this case� one is merely trying to compute the connection
coe�cients of the symmetric group� A very general formula can be given in terms of characters
�	
� p���� The rank n� c��� of a permutation � having c��� cycles gives the length of the shortest
ordered factorization of � into transpositions� The rank being clearly sub�additive� we observe that
the connection coe�cient is zero unless

mX
i��

�n� c��i�� � n� c�����

where c��i� denotes the number of cycles of �i �which only depends on its conjugacy class�� Equiv�
alently�

mX
i��

c��i� � n�m� �� � c����� ���

This condition is necessary� but not su�cient� for the corresponding connection coe�cient to be
non zero�

�This work was achieved while the author was a member of the LaBRI�

�



mX
i��

c��i� � n�m� �� � c����� �	�

which is minimal in terms of the ranks of the factors� This problems amounts to computing the
top connection coe�cients of the symmetric group ���� The most celebrated result in this �eld
corresponds to the case where all factors are transpositions and �� is an n�cycle� The extremality
condition �	� becomes m � n � �� and the number of such factorizations is nn��� the number of
Cayley trees �
� ��� 	��

� The transitivity condition requires that the group generated by ��� � � � � �m acts transitively
on f�� �� � � � � ng� This condition �nds its origin in the link between ordered factorizations and
branched coverings of Riemann surfaces� roughly speaking� the transitivity condition is implied by
the connectivity of the surfaces� This condition is widely considered� and will also be adopted in
this paper� our factorizations will correspond to branched coverings of the two�dimensional sphere
by itself �see Section ���

� The transitive minimality condition� Most importantly� the upper bound on
P

c��i� given by
��� is no longer sharp under the transitivity condition� For instance� all transitive factorizations of
a permutation �� into m transpositions satisfy the following inequality ��� 	��

m � n� c����� � ���

which is stronger than the inequality m � n� c���� provided by ���� From ���� we easily derive the
following inequality� valid for all transitive factorisations of ���

mX
i��

c��i� � n�m� ��� c���� � ��

which is stronger than ���� It can be understood in terms of the genus of the underlying Riemann
surfaces�

We shall focus on extremal transitive factorisations� The case where all factors are transpositions was
solved long time ago by Hurwitz ��
 �see also ��� �� 	���

Theorem ��� �Hurwitz� Let n � �� Let �� be a permutation of Sn having di cycles of length i� for
i � �� Then the number of m�tuples ���� � � � � �m� of transpositions of Sn such that�

� ���� � � � �m � ���

� the group generated by ��� � � � � �m acts transitively on f�� �� � � � � ng�

� m � n� c����� �� where c���� denotes the number of cycles of ���
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In this paper� we count extremal transitive factorizations regardless of the cyclic type of the factors�
Our main theorem follows� We shall see that it implies Hurwitz� theorem�

Theorem ��� Let n � �� Let �� be a permutation of Sn having di cycles of length i� for i � �� For
m � 
� let G���m� denote the number of m�tuples ���� � � � � �m� of permutations of Sn such that�

� ���� � � ��m � ���

� the group generated by ��� � � � � �m acts transitively on f�� �� � � � � ng�

�
Pm

i�� c��i� � n�m� �� � �� where c��i� denotes the number of cycles of �i�

Then for m � ��
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that one of the factors is a transposition� and the other is a � cycle� We �nd G����� �� Indeed� the four
minimal transitive factorizations are �� � ��������� � ��������� � ��������� � ���������� �We multiply
permutations from right to left� as we compose functions�� �

Let us call an ordered factorization proper if none of its factors is the identity� Note that if we
remove a trivial factor from a minimal transitive m�factorization� we obtain a minimal transitive �m����
factorization� This allows us to use the inclusion�exclusion principle to express the number F�� �m� of
proper minimal transitive m�factorizations of ��� for m � 
�

F���m� �

mX
k��

����m�k

�
m

k

�
G�� �k�� �
�

Observe that a proper factorization ���� � � � � �m� satis�es
Pm

i�� c��i� � c���� � m�n � ��� If it is also
transitive and minimal� then

Pm

i�� c��i� � n�m����� and thus� m � n�c������� Moreover� the choice
m � n � c���� � � forces c��i� to be n � �� for � � i � m� so that each factor is a transposition� This
shows that the number of minimal transitive factorizations into transpositions� evaluated by Hurwitz� is

H�� � F���d�

where d � n� c����� ��
It is not di�cult to check that� for each �� � Sn� the expression of G�� �m� given in Theorem ��	 is a

polynomial P�� �m� in m� of degree d � n � c���� � �� and that the identity G���m� � P���m� actually
holds for m � 
� De�ning the di�erence operator  by P �x� � P �x���� P �x�� we can rewrite �
� as
follows�

F���m� � mP�� �
��

Observe that d�xk� � 
 if k � d and d�xd� � d	� This implies that H�� is� up to a factorial� the
leading coe�cient of P���x��

H�� � F���d�

� dP���
�

� d	�xd�P�� �x�

� �n� c����� ��	 nc������
Y
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�
ii
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�di
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This is exactly Hurwitz� theorem�

Many of the enumeration problems mentioned above have an alternative description in terms of trees�
maps� or hypermaps� Our theorem is not an exception to this rule� in Section 	� we describe a family of
maps� called constellations� which are in one�to�one correspondence with minimal transitive factorizations�
In Section �� we give more details on the connection with branched covers of the sphere� The rest of
the paper focuses on constellations� we �rst de�ne and enumerate a family of trees �Section 
�� describe
a correspondence between these trees and constellations �Section �� and prove this correspondence is
one�to�one �Section ��� We thus obtain the number of constellations� and hence� of minimal transitive
factorizations�

� Constellations and their relatives

A planar map is a 	�cell decomposition of the oriented sphere into vertices ���cells�� edges ���cells�� and
faces �	�cells�� Loops and multiple edges are allowed� The degree of a vertex �or a face� is the number
of incidences of edges to this vertex �or face�� Two maps are isomorphic if there exists an orientation
preserving homeomorphism of the sphere that maps cells of one of the maps onto cells of the same type
of the other map and preserves incidences� We shall consider maps up to isomorphism�

De�nition ��� Let m � �� An m�constellation is a planar map whose faces are coloured black and white
in such a way that

� all faces adjacent to a given white face are black� and vice�versa�

� the degree of any black face is m�

�



A constellation is rooted if one of its edges� called the root edge� is distinguished�

The black faces of a constellation will often be called its polygons or its m�gons� In what follows� we
will mainly consider rooted constellations� and the word �rooted� will often be omitted� The polygon
containing the root edge will be called the root polygon� Observe that it is possible to label the vertices
of an m�constellation with �� �� � � � �m in such a way the vertices of any m�gon are labelled �� �� � � � �m in
counterclockwise order� We adopt the convention that the ends of the root edge are labelled � and ��
this determines the canonical labelling of the constellation �Fig� ���
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Figure �� A rooted ��constellation and its canonical labelling�

One can object that our maps do not look very much like real constellations� The terminology�� which
is due to Alexander Zvonkin� becomes more transparent if we replace each m�gon by an m�star �Fig� 	��
we thus obtain a connected set of stars� which is undoubtly a constellation ��	�

Figure 	� How constellations appear�

Proposition ��� Let n � � and m � �� There exists a one�to�one correspondence between m�tuples
���� � � � � �m� of permutations of Sn such that�

� the group generated by ��� � � � � �m acts transitively on f�� �� � � � � ng�

�
Pm

i�� c��i� � n�m� �� � �� where �� � ���� � � ��m�

and rooted m�constellations formed of n polygons� labelled from � to n in such a way the root polygon has
label �� Moreover� if the constellation has di white faces of degree mi� then �� has di cycles of length i�

Proof� Let C be a rooted m�constellation formed of n polygons labelled from � to n� Recall there is a
canonical labelling �by �� �� � � � �m� of the vertices of C� For � � i � m� each m�gon is adjacent to exactly

�Note that the word �constellation� was formerly used by Jacques with the meaning of �map� �����






polygons� denoted �i� which we identify with a permutation of Sn�
As the constellation is connected� the group generated by ��� � � � � �m acts transitively on f�� �� � � � � ng�
Moreover� let W be a white face of degree mi� it has exactly i vertices of label m� Let B�� B�� � � � � Bi

denote the i black faces adjacent to W by an edge labelled ���m�� arranged in counterclockwise order
around W � Then the permutation �� � ���� � � ��m maps Bj onto Bj�� for � � j � i �with Bi�� � B���
Hence� each cycle of �� corresponds to a white face of C� and the cycle type of �� is given by the degrees
of the white faces�

Finally� the number of vertices of C is v �
Pm

i�� c��i�� the number of its faces is f � n�c���� and the
number of its edges is e � nm� The constellation C is drawn on the sphere� so that Euler�s characteristic
formula v � f � e� � reads

Pm

i�� c��i� � n�m� �� � ��

Conversely� let ���� � � � � �m� be an m�tuple of permutations as described in the proposition� We
consider elementary black m�gons with vertices labelled from � to m in counterclockwise order� and white
polygons of degree mi for i � �� the vertices of which are labelled �� �� � � � �m� �� �� � � � �m� etc� in clockwise
order� We take n black m�gons� labelled from � to n� and c���� white polygons� di of which have degree
mi� The m�tuple ���� � � � � �m� describes an incidence relation on these n � c���� polygons� Following
this relation� we glue polygons together by identifying edges� According to general topology theory ����
chap��� this yields a unique 	�cell decomposition of a compact connected surface without boundary� The
condition

Pm

i�� c��i� � �m� ��n� � ensures� via Euler�s characteristic formula� that this surface is the
sphere� and hence that the map we have obtained is a planar constellation�

Example� For the labelled rooted ��constellation C of Fig� �� we �nd �� � ������ ��� �� � ��� �� �� and
�� � ��� ������ We compute �� � ������ � ��������� which �ts with the fact that C has three white
faces� each of degree �� �
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Figure �� A ��constellation with labelled ��gons�

As the m�gons of a rooted constellation formed of n polygons can be labelled in �n � ��	 di�erent
ways and n	�

Q
i��

�
ididi	

�
permutations have exactly di cycles of length i� Proposition 	�	 implies the

equivalence between Theorem ��	 and Theorem 	�� below� on which we shall focus from now on�

Theorem ��� Let m � �� The number of rooted m�constellations C having di white faces of degree mi�
for i � �� is

m�m� ��f�� ��m� ��n�	

��m� ��n� f � ��	

Y
i��

�

di	

�
mi� �

i� �

�di

�

where n �
P

idi is the number of m�gons� and f �
P

di the number of white faces of C�

We can derive right now two interesting corollaries�

Corollary ��	 Let n � � and m � �� The number of rooted m�constellations formed of n polygons is

Cm�n� �
�m� ��mn��

��m� ��n� ����m� ��n� ��

�
mn

n

�
�

Proof� There is a simple one�to�one correspondence� which preserves the number of polygons� between
m�constellations and �m � ���constellations whose white faces have degree m � �� Our result will thus
follow from Theorem 	��� by replacing m by m� � and setting d� � n� di � 
 for i � ��

�



the center of each white face a new vertex labelled m� �� and pull the center of each edge �m� �� of the
face so that it coincides with the new vertex �Fig� 
�� We obtain an �m � ���constellation whose white
faces have degreem�� �as each of them contains exactly one vertex labelled m���� and the construction
is clearly reversible�
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Figure 
� From a ��constellation to a ��constellation with all faces of degree ��

Remark� Using Proposition 	�	� we can translate Corollary 	�
 in terms of permutations� the number
of m�tuples ���� � � � � �m� of permutations of Sn such that�

� the group generated by ��� � � � � �m acts transitively on f�� �� � � � � ng�

�
Pm

i�� c��i� � n�m� �� � �� where �� � ���� � � ��m�

is
�m� ��mn�mn� ��	

��m� ��n� ��	
�

Constellations having a unique white face have already appeared in the literature� and are known as
cacti ��� � �see Fig� ���� The case dn � �� di � 
 for i �� n of Theorem 	�� gives the number of m�cacti
having n polygons�

Corollary ��
 For n � � and m � �� the number of m�cacti formed of n polygons is

�

�m� ��n� �

�
mn

n

�
�

Remarks
�� Cacti correspond to ordered factorizations of an n�cycle of Sn�
	� Goulden and Jackson gave in �� a nice closed form expression for the number of ordered factoriza�

tions ���� � � � � �m� of an n�cycle such that each factor �i belongs to a prescribed conjugacy class of Sn�
In terms of cacti� this amounts to �xing the degrees of the vertices of each colour� Corollary 	�� can be
derived from their result via a summation� or by recycling their functional equations� only taking into
account the number of polygons�

�� We observe that �
�m���n��

�
mn
n

	
is the number of m�ary trees having n vertices� A simple bijection

between m�cacti and m�ary trees has been found by Michel Bousquet �	� The method we use in this
paper to prove Theorem 	�� provides a di�erent bijection between these objects �see Section ���

Dual maps� of constellations will be called m�Eulerian maps� The de�nition of constellations provides
the following characterization for m�Eulerian maps �Fig� ���

De�nition ��� A planar map is m�Eulerian if it is bipartite �with black and white vertices�� and

� the degree of any black vertex is m�

� the degree of any white vertex is a multiple of m�

The case m � � justi�es our terminology� if we remove all black vertices from a 	�Eulerian map� we
obtain a map having only vertices of even degree� such maps are usually called Eulerian�

Of course� counting m�Eulerian maps is equivalent to counting m�constellations� In particular� The�
orem 	�� gives the number of rooted m�Eulerian maps having di white vertices of degree mi� for i � ��
When m � �� we recover an old result of Tutte ��� 		� 	��

�Recall that the dual map C� of a map C describes the incidence relation between the faces of C	 in particular
 the
vertices �resp� faces� of C� are the faces �resp� vertices� of C�

�



Figure �� A rooted ��Eulerian map� dual of the ��constellation of Fig� ��

� Branched coverings and unrooted constellations

This section is independent from the rest of the paper� It contains a brief description of the connection
between constellations �or factorizations of permutations� and branched coverings of the sphere� �rst
described by Hurwitz ��
� and presented in full generality in ��� It also addresses the enumeration
of unrooted constellations having their vertices labelled �� � � � �m in counterclockwise order around each
black face�

Let f be a continuous map from S� to S�� where S� is the two�dimensional sphere� Assume every
value w on the target sphere has a neighborhood U such that f���U� is a �nite union of disjoint open
sets on which f is topologically equivalent to the complex map zi around z � 
� for some positive i �the
value 
 corresponding to w�� In particular� w has �nitely many pre�images� Then f is called a branched
cover �of the sphere by itself�� We say that w has branching type �di�i�� if exactly di of its pre�images
have a neighborhood of the form zi for i � �� It is regular if di � 
 for all i � �� and critical otherwise�
It is simple if d� � � and di � 
 for i � �� The sum

P
i idi is constant over all values and called the

degree of f �
Let w�� w�� � � � � wm be m� � distinct points in the target sphere� Let P be a polygon whose vertices

are� in counterclockwise order� w�� � � � � wm� and that does not contain w�� If a branched cover f has its
critical values in fw�� w�� � � � � wmg� then f���P� is an unrooted m�constellation with labelled vertices�
the elements of f���wi� being labelled i� Conversely� given an m�constellation C with labelled vertices�
there exists� up to homeomorphisms of the domain sphere� a unique branched cover f having its critical
values in fw�� w�� � � � � wmg such that f���P� is isomorphic to C� This one�to�one correspondence between
unrooted constellations and branched covers is essentially due to Hurwitz ��
� who expressed it in terms
of factorizations of permutations� From now on� we shall consider branched covers up to homeomorphisms
of the domain sphere i�e�� labelled unrooted constellations�

Using this correspondence� Hurwitz translated Theorem ��� into the following result� given m � �
distinct points w�� w�� � � � � wm of S�� the number of branched covers having w� as a critical value of
branching type �d�� d�� � � �� and w�� � � � � wm as simple critical values is

H��Q
i�� i

didi	
�

where �� is any permutation with di cycles of length i� The proof he gave implicitly relies on the fact
that the corresponding unrooted constellations have no non�trivial automorphism� so that their number
is directly related to the number of rooted constellations� The construction described in the proof of
Proposition 	�	 shows that this counting problem is equivalent to the determination of H�� �

In general� constellations may have non trivial automorphisms and unrooting is more di�cult� How�
ever� Liskovets� reduction theorem ���� Thm� ��� for the unrooting of planar maps can be repeated
verbatim to unroot constellations� In this paper� we only apply his argument to m�constellations with
n polygons� but it could be done for constellations with given degrees of faces� although the formula
becomes more involved�

Theorem ��� The number of unrooted m�constellations with n polygons is

eCm�n� �
�

n



�Cm�n� �

X
�jn���n

��n���

�
��m� �� � �

�

�
Cm���

�
 �

�



number of rooted m constellations with n polygons� given by Theorem 	�
�

Thanks to the one�to�one correspondence described above� we can translate this theorem as follows� Let
w�� w�� � � � � wm be m�� distinct points of S�� Then �Cm�n� is the number of branched covers of degree n�
with critical values in the set fw�� w�� � � � � wmg� Note that the number of branched covers with prescribed
branching types has been given by Mednykh in terms of the characters of the symmetric group �	��

More generally� one can study branched coverings of the sphere by another Riemann surface S� In
this context� the covers f are often taken to be holomorphic functions from S to S�� The case m � � is
the most studied one� it is known as the theory of dessins d	enfants �see for instance ��� and references
therein��

� Eulerian trees

In this section� we de�ne and enumerate certain trees that will be proved to be in one�to�one correspon�
dence with constellations�

A planted tree is a plane tree with a marked leaf� also called the root� In our �gures� planted trees
hang from their roots� The �total� degree of a vertex is the degree in the context of graph theory� i�e��
one more than the arity in the functional representation of trees� Vertices of degree � are referred to as
leaves � the others as inner vertices� The inner degree of a vertex is the number of inner vertices adjacent
to it� An inner edge connects two inner vertices� The depth of a vertex is its distance to the root� The
left�to�right pre
x order �lr�pre�x for short� on the vertices of a tree T is obtained recursively by visiting
�rst the root of T � and then its subtrees T�� � � � � Tk� taken from left to right� in lr�pre�x order� The
right�to�left pre�x �rl�pre�x� order is de�ned symmetrically� The number of planted trees having n � �
edges is the famous Catalan number Cn � �

n��

�
�n
n

	
� More generally� the Lagrange inversion formula �see

�� for instance� or encodings by �ukasiewicz words ���� p�		� give the following classical result� �rst
proved by Harary� Prins and Tutte ����

Theorem 	�� The number of planted plane trees having di inner vertices of degree i� � for i � �� is

�e� ��	

��� ��	

Y
i��

�

di	
�

where e � � �
P

idi is the number of edges and � � � �
P
�i� ��di the number of leaves of such trees�

Figure �� A ��Eulerian tree �circles represent leaves� squares represent inner vertices��

De�nition 	�� A bicolored �black and white� tree� planted at a black leaf� is said to be m�Eulerian if

� all neighbors of a white vertex are black� and vice�versa�

� all inner black vertices have total degree m and inner degree � or ��

�



of inner degree ��

Proposition 	�� Let m � �� The number of m�Eulerian trees having di white vertices of degree mi� for
i � �� is

�m� ��f�� ��m� ��n�	

��m� ��n� f � ��	

Y
i��

�

di	

�
mi� �

i� �

�di

� ���

where n �
P

idi and f �
P

di� Such trees have exactly�

� f inner white vertices�

� n� � inner black vertices�

� �m� ��n� f �m� � white leaves�

� �m� ��n� f � � black leaves�

Proof� We can construct all m�Eulerian trees having di white vertices of degree mi as follows�
�� We �rst built the tree T� formed of the white inner vertices and black leaves of the �nal m�Eulerian
tree� All the vertices of T� have degree � modulo m� �� More precisely� let di be the number of �inner�
vertices of degree �m� ��i� �� for i � �� According to Theorem 
��� the number of such trees is

T �d�� d�� � � �� �
��m� ��n�	

��m� ��n� f � ��	

Y
i��

�

di	
�

	� In the middle of each inner edge of T�� add a black vertex of total degree m� This vertex has m � �
white leaves� which can be displayed in m � � di�erent ways� As T� has f � � inner edges� the number
of trees T� thus obtained is �m� ��f��T �d�� d�� � � ���
�� To each of the di white vertices of T� of degree �m� ��i� �� add i� � black children of total degree
m� The position of these children can be chosen in

�
mi��
i��

	
di�erent ways� and this observation concludes

the proof�

Let T be anm�Eulerian tree� Let us arrange its leaves cyclically by reading them in lr�pre�x order� For
instance� starting from the root� we obtain for the tree of Fig� � the �cyclic� word bwbbwbbwbbwwwbbbwbbwwbw�
where w �resp� b� denotes a white �resp� black� leaf� We now match the letters w and b of this word as
if they were respectively opening and closing brackets�

b w b b w b b w b b w w w b b b w b b w w b w

More precisely� at step �� each letter w that is followed by a b is matched with this occurrence of b� We
then forget all matched letters and repeat the procedure until no more matches are possible� We match
accordingly the leaves of T �Fig� ��� As there are more black leaves than white leaves� some black leaves
� exactly m of them � remain unmatched� we call them single�

De�nition 	�	 An m�Eulerian tree is said to be balanced if its root remains single after the matching
procedure�

Proposition 	�
 Let m � �� The number of balanced m�Eulerian trees having di white vertices of degree
mi for i � � is

m�m� ��f�� ��m� ��n�	

��m� ��n� f � ��	

Y
i��

�

di	

�
mi� �

i� �

�di

�

where n �
P

idi and f �
P

di�

Proof� Let A denote the number given by ���� Then mA can be understood either as the number of
m�Eulerian trees having a distinguished single leaf� or� by planting the tree at this leaf and distinguishing
the former root� as the number of balanced m�Eulerian trees having a black leaf distinguished� As an
m�Eulerian tree having di white vertices of degree mi has �m� ��n� f � � black leaves� the proposition
follows�

Observe that the expressions given in Theorem 	�� and Proposition 
�� are identical� hence Theorem
	�� will follow from Proposition 
�� via a one�to�one correspondence between balanced Eulerian trees and
constellations�

�



Figure �� Matching the leaves of the ��Eulerian tree of Fig� �� Three leaves remain single�

� The bijection between balanced Eulerian trees and constella�

tions

��� From trees to constellations� the transformation �

The transformation of a balanced Eulerian tree T into a constellation C � ��T � is easy to describe�
Actually� most of the work has been done already� The construction is exempli�ed on Fig� ��

We form a �rst planar map E� by adding edges between the matched leaves of T � We thus obtain
the dashed edges of Fig� �a� Exactly m black leaves remain single� By construction� all of them lie in
the same face of E�� in what follows� we shall often consider E� as map on the plane �rather than on the
sphere� by taking the convention that the single leaves lie in the in�nite face�

We add in the in�nite face of E� an extra star� having a black center and m rays� Each ray ends with
a white leaf� We match these m white leaves with the m single vertices of the tree �dotted lines in Fig�
�a� in cyclic order to obtain a planar map� We mark the dotted edge that ends at the root of the tree�
We �nally erase all leaves of the underlying tree T and replace dashed and dotted lines by plain lines�
By construction� the map we have obtained is a rooted m�Eulerian map E� Taking the dual of E gives a
constellation C which we de�ne to be ��T ��

Observe that the Eulerian map associated with the tree of Fig� � is the map of Fig� � and that its
dual is the constellation of Fig� ��

(a) (b)

Figure �� From a balanced ��Eulerian tree to a ��Eulerian map�
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m constellations� What can the reverse bijection be� Imagine we start with a rooted m constellation
C �or its dual map E� which is m�Eulerian� and try to construct the corresponding m�Eulerian tree T �
What we need to do is select � in a clever way � a set S of edges of E� add two vertices on each of them in
such a way the resulting map remains bicolored� and then delete the part of the edge that links these two
vertices� this must yield two connected components� an m�star and a balanced m�Eulerian tree� Thus�
the central di�culty of the reverse bijection consists in describing the set S of edges of E we need to
open�

Let us consider again the Eulerian map of Fig� �b� Looking at Fig� �a tells us what the set S has to
be� Let us draw the set of dual edges� denoted S� �Fig� �� thick lines�� We observe that S� is formed of
the root m�gon of the constellation C� on which m trees� denoted T�� � � � � Tm are planted� These m trees
cover all vertices of C� We shall see that this is a general phenomenon� describing the reverse bijection of
� boils down to de�ning a certain covering forest of a constellation� which will be called its rank forest�

2

1

T

T

T3

Figure �� The dual edges of the dashed and dotted edges of Fig� �a�

��� From constellations to trees� the transformation �

Let C be a rooted constellation� let us draw it on the plane in such a way the in�nite face is the root
m�gon� Let �C be obtained by orienting the edges of C in counterclockwise direction around m�gons� We
de�ne the rank r�v� of a vertex v as the length of the shortest �oriented� path of �C going from a vertex of
the root m�gon to v �Fig� ���� The rank of v should not be mixed up with its label ��v� � f�� �� � � � �mg�
given by the canonical labelling de�ned in Section 	� The following lemma tells us how to construct the
rank forest of a constellation� The principle is simple� we start from the root m�gon and proceed by
breadth �rst search� from right to left� The reader is advised to practice on the example of Fig� ���

Lemma 
�� Let C be a rooted constellation� There exists a unique covering forest F of C� consisting of
m trees Ta� � � a � m� respectively planted at the vertex labelled a of the root polygon� that satis
es the
following four properties�

�� The orientation of edges of F induced by the trees Ta �from the roots to the leaves� coincides with their
orientation in the oriented map �C�

�� The rank increases by one along each edge of F � In other words� the depth of a vertex of Ta is given
by its rank�

Let u be a vertex of C� Properties � and � imply that u belongs to Ta� where a � ��u�� r�u� mod m�

�� Assume r�u� 	 
� All vertices of label ��u� � � and rank r�u� � � belong to Ta� If we visit them in
rl�pre
x order� the 
rst one that is adjacent to u is the father of u in Ta�

�� Let v be the father of u in Ta� Let e be the edge of Ta that links v to its father� If we visit the edges
of C adjacent to v in clockwise order� starting from e� the 
rst one that ends at u belongs to Ta�

This covering forest will be called the rank forest of C�

��



� � a � m� the tree Ta is reduced to the vertex labelled a of the root polygon� We plant Ta by attaching
to this vertex a short extra edge that lies in the in�nite face of C�

Assume that� after step k� the forest we have obtained is not yet covering C� Let u be a vertex of
rank k � �� All vertices of rank k and label ��u�� � belong to the same tree Ta� We choose the father v
of u according to Property � of our lemma� and the edge of Ta joining v to u according to Property ��

T

3

2

1

T

T

1

1

1

1

2

2

2

2

1

3

0

0

0

Figure ��� A rooted ��constellation� the ranks of the vertices and the rank forest�

Once the rank forest of C is constructed� the Eulerian tree ��C� is easy to obtain� Let S� be the set
of edges of C that belong either to the rank forest� or to the root m�gon� Let E be the dual map of C�
and S be the dual set of S�� On each edge e of S� we add two vertices in such a way the resulting map
remains bicolored� we then delete the part of e that links these two vertices� We claim that this provides
an m�star and a balanced m�Eulerian tree ��C�� which we plant by the root edge of E�

Example� Starting from the constellation of Fig� ��� we obtain the tree of Fig� �a� �

The next section is devoted to the proof of the following theorem� which� according to Proposition

��� implies Theorem 	���

Theorem 
�� The transformation � is a bijection from balanced m�Eulerian trees to m�constellations�
The reverse bijection is �� Moreover� if ��T � � C and T has di white vertices of degree mi� then C has
di white faces of degree mi�

Note that the last statement is clear� It is� unfortunately� the unique obvious statement of this theorem�

Our bijection illustrates a general idea that is developed in �	�� rooted planar maps are canonical
representants of conjugacy classes of planted plane trees� Here� we say that two trees are conjugated if
one is obtained from the other by changing the root� This implies that conjugacy classes are simply
plane trees� but the terminology originates in the analogy with words� Indeed� conjugating a tree results
in conjugating the word obtained by a pre�x ordering of its leaves� so that Proposition 
�� can be seen
as an application of the cycle lemma� The motto of �	� could then be stated� if applying the cycle
lemma to words yields trees� applying it to planted trees yields maps� Besides constellations� planar maps�
Eulerian planar maps� nonseparable planar maps and cubic nonseparable maps can indeed be obtained
from suitable balanced trees by some matching procedure very similar to ��

Remarks�
�� Our main theorem �Theorem 	��� re�nes Corollary 	�
 by taking into account the degrees of the white
faces� Thanks to our bijection� we can give algebraic equations for another enumeration problem that
also re�nes Corollary 	�
� this time by counting white faces and vertices labelled k� for � � k � m� For
i � �i�� � � � � im� im��� � N

m��� let ai denote the number of m�constellations having exactly im�� white

�	



g�x�
P

i
aix to be the corresponding generating function� Then

g�x� �

Z
u��x�dx� ���

where� for � � k � m� ��

uk�x� �
Y

i�	��m��
� i��k

�
�xi �X

j ��i

uj�x�

�
A � ���

This corresponds to counting factorizations of permutations by the number of cycles of the factors�
To obtain this result� we �rst observe that� according to the proof of Corollary 	�
� the series g�x�

counts �m � ���constellations having only faces of degree m � �� Via our bijection� they correspond to
balanced �m����Eulerian trees having all inner vertices of degree m��� Eq� ��� essentially expresses the
generating function for balanced Eulerian trees in terms of the generating function for general Eulerian
trees� The latter can be decomposed in a standard way to provide m trees� which are Eulerian� this
decomposition yields ����

	� What happens to cacti� By Theorem ��	� an m�cactus formed of n polygons is mapped by � on a
balanced m�Eulerian tree having a unique white inner vertex� of degree mn �Fig� ���� Let us visit its
children from left to right� writing a letter a for each of the n�� black inner vertices and a letter b for each
of the n�m� �� black leaves we meet� We obtain a word x� � � �xnm��� As the tree is balanced� the word
ax� � � �xnm��b is the pre�x code of a complete m�ary tree with n inner vertices and �m� ��n�� leaves�
this de�nes a one�to�one correspondence between m�cacti formed of n polygons and complete m�ary trees
with n inner vertices� which di�ers from the one found by Michel Bousquet �	�

bbbbababbabbab
bbb

b a b

abb

b a

ba

a

b

b

(a) (b)

Figure ��� The restriction of our bijection to cacti�

� Why does it work�

In order to prove Theorem ��	� we must prove the three following points�

� � �� � id�

� the transformation � always produces a balanced Eulerian tree�

� � �� � id�

We prove the �rst point in Section ���� and the next two in Section ��	� In what follows� we try to use
uniform notations for each type of object we meet� In particular� we make an immoderate use of the
following conventions�

� Constellations� let C be a rooted constellation� We consider C as a map on the plane by choosing
the root m�gon as the in�nite face� We denote by �C the oriented version of C �see Section ��	�� A
�nite face of C will be denoted B or W � depending on whether it is black or white� If this face is of
degree mi� its vertices will be called v�� v�� � � � � vmi� in clockwise order� The rank of vk will be rk �
and the edge of the face connecting vk to vk�� will be denoted ek�

� The rank forest� given a constellation C� its rank forest will be denoted F � This forest contains
m trees� denoted T�� � � � � Tm� in such a way that Ta contains the vertex of the in�nite face labelled
a� for � � a � m� The edges of F and of the root m�gon form a set that we denote by S��

��



S�

� Eulerian trees are of course denoted T �

� Let a and b be two integers� the notation a � b means that a and b are equal modulo m�

Before we go into the details of the proof� we need to give an alternative characterization of the map
E� obtained by matching the edges of a balanced Eulerian tree T �see Section ����� We observe that E�

is the unique map on the plane that can be obtained by adding edges to T with the following rules�
� each edge e of E� n T joins a white leaf w of T to a black leaf b� moreover� the tree T lies to the left

of e� in the following sense� the map formed by T and e has two faces� and

if we turn around w in counterclockwise order� we meet

successively the in�nite face� the edge e� and the �nite face� ���

� each white leaf of T is incident to exactly one edge of E� n T � each black leaf is incident to at most
one edge of E� n T �

� the m black leaves of T that are not adjacent to an edge of E� n T lie in the in�nite face�

��� � � � � id

The above statement is equivalent to the following proposition�

Proposition ��� Let T be a balanced Eulerian tree� C � ��T � the corresponding constellation� and E
the dual map of C� Let S be the set of edges of E that were not edges of T � and let S� be the dual set of
edges� Then the elements of S� are the edges of the root m�gon and of the rank forest of C�

Proof� As T is a tree� it de�nes a unique face� and thus the �gure formed by the edges of S� is connected�
Moreover� the edges of the root m�gon clearly belong to S�� they are the duals of the edges connecting
T to the extra star �dotted edges in Fig� �a�� The root m�gon is the only cycle of S�� because any cycle
of S� separates two non empty connected components of the �gure formed of T and the extra star� Let
G be the smallest subgraph of C containing the edges of S� that are not in the root m�gon and all the
vertices of the root m�gon� The above remarks prove that G is a covering forest of C consisting of m
trees T�� � � � � Tm� such that Ta is planted at the vertex labelled a of the root polygon� We want to prove
that G is the rank forest of C� that is� satis�es the four properties of Lemma ����

The �rst property is guaranteed by Property ��� above� Let e� be an edge of Ta� and e its dual�
Combining the fact that the tree T lies to the left of e and does not intersect Ta� we conclude that the
orientation of e� given by Ta coincides with its orientation in �C �Fig� �	��

Ta

T

e’

e wb

Figure �	� The top�down orientation in Ta coincides with the orientation in �C �

We shall prove the three other properties of Lemma ��� by a common counting argument� Let us
begin with some generalities� Let e� be an �oriented� edge of �C going from w to u� and assume that e�

does not belong to S�� Let e be the dual edge of e�� Then e is an inner edge of the tree T � Let us add
on e two new vertices �Fig� ���� The edge e� splits T into two trees T � and T ��� respectively planted at a
black leaf and at a white one� The de�nition of an Eulerian tree �De�nition 
�	� being local� we observe
that�

�




black leaves than white leaves�
� otherwise� T �� is reduced to a single inner vertex� and T � has �m more black leaves than white leaves�

In both cases� the di�erence between the number of black and white leaves of T � is 
m� with 
 � � or ��

T’

w

u

T"e e’

Figure ��� An edge of C not belonging to S� splits T into two trees�

Let us now prove by induction on the rank k that all vertices of C satisfy Properties �� �� and � of
Lemma ���� Clearly� there is nothing to prove for k � 
� Assume the properties are true for all vertices of
rank smaller than k 	 
� Let u be a vertex of rank k� Let Ta be the tree of G that contains u� According
to the �rst property of Lemma ��� �which we have proved�� the depth of u in Ta is at least k� say k � d
with d � 
�

Let us �rst prove ab absurdo that a � ��u�� r�u�� Assume ��u�� r�u� � b �� a� By de�nition of the
rank� there exists an oriented edge e� of �C that goes from a vertex w of rank k � � and label ��u�� � to
u� By assumption� w lies at depth k� � in the tree Tb �as b � ��w�� r�w� � ��u�� r�u��� and hence the
edge e� cannot belong to S� �Fig� �
�� We de�ne the trees T � and T �� as above� Property ��� implies that
the edges of Tb that lie on the path that links the root of Tb to w are the duals of the �dashed� edges
that match black leaves of T � to white leaves of T ��� Hence� the number of black leaves of T � matched
with a white leaf of T �� is k� �� Similarly� the number of white leaves of T � matched with a black leaf of
T �� is k � d� Let r denote the number of single black leaves of T that lie in T �� Of course� r � m� The
di�erence between the number of black and white leaves of T � is �k � �� � � � r � �k � d� � 
m� which
gives r � d � 
m � m� This implies that r � m� all single leaves of T lie in T �� But this is impossible�
as a �� b� at least one black leaf of T �� is single� Hence ��u�� r�u� � a�

T’

u

T"

T

Ta

b

e’

w

Figure �
� Assuming a �� b�

Let us now prove that u lies at depth k in Ta� i�e�� that d � 
� Let e� be any oriented edge of �C going
from a vertex w of rank k � � and label ��u�� � to u� By assumption� w occurs at depth k � � in Ta� If
e� belongs to Ta� then u occurs at depth k in Ta� Otherwise� let x be the common ancestor of u and w
in Ta having the largest depth� say � �Fig� ���� Again� counting black leaves and white leaves of T � gives
�k � �� �� � r � �� �k � d� �� � 
m� hence r � d� 
m� As r � m� this implies that d � 
�

The identity r � d� 
m also gives 
 � � and r � m� This implies that T � lies in the in�nite face of
the map formed by Ta and the edge e�� In particular� if the father v of u in Ta is not w� then v comes
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connects v and u comes before e �

x aTT’ T"
e’

w

u
v

Figure ��� The forest G satis�es the third property of Lemma ����
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Figure ��� The forest G satis�es the fourth property of Lemma ����

��� The construction � provides a balanced Eulerian tree� and � �� � id

Proposition ��� Let C be an m�constellation� Applying the algorithm � described in Section ��	 pro�
vides a balanced m�Eulerian tree T such that ��T � � C�

Lemma ��� The graph T � ��C� is a planted tree�

Proof� The subgraph of C formed by the edges of S� �i�e�� the rank forest F and the edges of the root
m�gon� is connected� Hence� given two vertices of C� there exists a path formed of edges of S� that
connects them� In terms of the Eulerian map E� this means that we can connect any two faces of E by a
path that does not intersect the graph U obtained from E by opening the edges of S� This implies that
U has a single face� and hence� is a forest�

The number of connected components of this forest is v�U� � e�U�� where v�U� and e�U� denote
respectively the number of vertices and edges of U � In order to determine these numbers� we need to
know how many edges of C have been opened� that is� the cardinality of S�� As F is a covering forest of
C composed of m trees� it contains v�C� �m edges� Hence� the set S� has cardinality v�C�� This gives
v�U� � v�E� � �v�C� and e�U� � e�E� � v�C�� Hence�

v�U�� e�U� � v�E� � v�C� � e�E�
� v�E� � f�E�� e�E�
� �

where f�E� stands for the number of faces of E� and the last equality is a consequence of Euler�s
characteristic formula�

Thus the forest U contains exactly two trees� one of them is the m�star� and the other is T � ��C��
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as in E� In particular� all inner black vertices of T have total degree m� while the degree of any inner
white vertex is a multiple of m� We now have to prove that the conditions stated in De�nition 
�	 are
ful�lled� This will be done in Lemmas ��� and ����

Property ��
� which is geometrically clear �see Fig� ���� will play an important role in the proof� It
means that� when we visit the vertices of a face of C in clockwise order� we meet successively vertices of
the tree T�� then vertices of T�� and so on until we meet vertices of Tm�

Property ��	 Let f be a �white or black� 
nite face of C of degree mi� We can denote its vertices by
v�� � � � � vmi� in clockwise order� in such a way that there exists a sequence � � k� � k� � � � � � km �

km�� � mi� � such that for � � j � m�

fk � vk � Tjg � fkj � kj � �� � � � � kj�� � �g�

T

1 

m

T

T

2 T

3

... f

Figure ��� The trees T�� � � � � Tm appear in clockwise order around any face of C�

We �rst establish the properties of the black vertices of the tree T � ��C��

Lemma ��
 Let v be an inner black vertex of T � Then v has inner degree � or ��

Proof� Let us translate the above statement in terms of the constellation C� let B be an m�gon of C�
di�erent from the root m�gon� Then at most � of its edges do not belong to the covering forest F �

Observe that� if u and v are any two adjacent vertices of B� taken in clockwise order� then by de�nition
of the rank r�u� � r�v� � �� We need to study separately two cases� depending on whether the equality
holds for an edge of B not belonging to F �

First case� there exists in B an edge e� not belonging to F � whose ends u and v� taken in clockwise
order� are such that r�u� � r�v� � �� We call e a special edge�

As ��u� � ��v� � �� the vertices u and v belong to the same tree of the forest F � say Ta� Let w be
the father of u in Ta� Then w has rank r�v� and label ��v�� According to the properties satis�ed by Ta
�Lemma �����

� either w �� v and w comes �rst in the right�to�left pre�x order of Ta �Fig� ��a��

� or w � v and the edge e� that connects v and u in Ta comes before e when we visit the edges of C
that are adjacent to v in clockwise order� starting from the edge that connects v to its father in Ta
�Fig� ��b��

Fig� �� and Property ��� imply that all vertices of B belong to Ta� and show that it is topologically
impossible to have a second special edge in B� All vertices x of B satisfy ��x�� r�x� � a� In particular�
any two di�erent vertices have di�erent ranks� Let us denote the vertices of B by v�� � � � � vm� in clockwise
order� in such a way that r� � rk for � � k � m� As rk � rk�� � � for � � k � m� we conclude� by
induction on i� that rm�i � r� � i� � for 
 � i � m� ��

Let ei be the edge of B connecting vi and vi��� for � � i � m� Assume the special edge e is ej � As ej
is the unique special edge� the fact that rk � rk�� � � for � � k � m implies that the edges e�� � � � � ej��
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Figure ��� How a special edge looks like�

and ej��� � � � � em belong to F � Therefore� the m�gon B has at most two edges �e� and ej� that do not
belong to F �

Second case� any edge e of B not belonging to F is such that r�u� � r�v� � �� where u and v are the
ends of e� taken in clockwise order�

In this case� we are going to prove our lemma ab absurdo� Assume at least three edges of B do not
belong to F � Let us denote v�� � � � � vm the vertices of B �in clockwise order�� and let ei be the edge of B
connecting vi and vi��� for � � i � m� Assume the three edges e�� ei and ej do not belong to F � with
� � i � j � m�

For � � k � m� we have rk � rk�� � �� Moreover� the inequality is strict� by assumption� when
k � f�� i� jg� Thus�

r� � r� � � � r� � � � � � � � ri � i� � � ri�� � i � � � � � rj � j � � � rj�� � j � � � � � r� �m�

Let p � ��v�� be the label of v�� Then for � � k � m� we have ��vk� � p� k � �� Hence�

p� r� 	 p� �� r� � � � � � p� i� �� ri 	 p� i� ri�� � � � �

� � � � p� j � �� rj 	 p� j � rj�� � � � � � p�m� r�� ���

Recall that a vertex v belongs to the tree Ta if and only if a � ��v� � r�v�� Let Ta �resp� Tb� Tc� be
the tree of F containing v� �resp� vi� vj�� and assume v� has been chosen in such a way that a � b and
a � c� There exist three integers k� k�� k�� such that p � r� � a � km� p � i � � � ri � b � k�m and
p� j ��� rj � c� k��m� According to ���� we have a� km 	 b� k�m 	 c� k��m 	 a� �k� ��m � This
imposes k � k� � k�� and a 	 b 	 c� which contradicts Property ��
�

We now establish the properties of the white vertices of the tree ��C��

Lemma ��� Let v be an inner white vertex of T � ��C�� of degree mi� Exactly i � � of its inner
neighbours have inner degree ��

Proof� Let us translate the above statement in terms of the constellation C� Let W be a white face of
C of degree mi� Every edge e of W belongs to a unique m�gon denoted B�e�� Let � be the number of
edges e of W satisfying the following condition�

e is the only edge of B�e� that does not belong to the forest F� ����

We wish to prove that � � i� ��

�� We �rst prove that � is at most i� Let v�� � � � � vmi denote the vertices of W � taken in clockwise order�
For � � k � mi� let ek denote the edge of W connecting vk and vk��� and let rk be the rank of vk� Then

��



can write rk � rk�� � ak� where ak m � if ek satis�es ���� and ak � otherwise� We have

r� � r� � a� � r� � a� � a� � � � � � rmi � a� � � � �� ami�� � r� � a� � � � �� ami� ����

which implies that a� � � � � � ami � 
� As � edges of W satisfy ����� we have a� � � � � � ami �
��m� ��� �mi� �� � m��� i�� and hence � � i�

	� Let us now rule out the hypothesis � � i� If � � i� then all the inequalities in ���� become equalities�
In other words� for every edge ek of W that does not satisfy ����� rk�� � rk � �� As �k�� � �k � ��
Lemma ��� shows that all vertices of W belong to the same tree of F � say Ta�

Assume that v� is a vertex of W of minimal rank� r� � rk for all k� We split the vertices of W in two
classes� right and left vertices� as follows �Fig� ����

� By convention� v� is a right vertex� let e� be the edge of Ta ending at v��
� If vk comes before v� in the right�to�left pre�x order of Ta� then vk is a right vertex�
� If vk lies in the subtree of Ta of root v� and the branch of Ta going from v� to vk begins with an

edge e lying between e� and e� �in clockwise order�� then vk is a right vertex�
� In all other cases� vk is a left vertex�

j
je

1
1

0

1

e

j+

mi
e

2

v

W

aT

v

v

v
v

Figure ��� Left and right vertices of a white face�

Observe that� if vk and v� are respectively right and left vertices� then vk comes before v� in the rl�pre�x
order of Ta� Moreover� if ej satis�es ���� and vj is a right vertex� then j �� mi and vj�� is a right vertex�
Let j � maxfk � vk is a right vertexg� Then ej cannot satisfy ����� Consequently� rj�� � rj � �� In
passing� note that this implies that j �� mi� since r� is minimal� in other words� vj�� is a left vertex�

The father of vj�� in Ta is a vertex v� of rank rj � If v �� vj � then� by construction of Ta� v comes
before vj in the rl�pre�x order of Ta� and so does vj��� This contradicts the fact that vj�� is a left vertex�
If v � vj � then j � �� because v� is the only right vertex of W that might have left sons� By construction
of Ta� the edge of Ta that links v� and v� lies between e� and e�� which makes v� a right vertex� and gives
a contradiction� Hence � � i� ��

�� Let us turn back to the tree T � ��C�� Let di be the number of white vertices of T of degree mi� For
j � f�� �g� let bj denote the number of inner black vertices of T of inner degree j� We have proved that
an inner white vertex of T of degree mi has at most i� � inner neighbors of inner degree �� This implies
that b� �

P
i�i� ��di� We are going to prove that the equality actually holds� b� �

P
i�i� ��di� and this

will conclude the proof of our lemma�
Let �b �resp� �w� denote the number of black �resp� white� leaves of T � We know that �b � �w �m�

Let us count in two di�erent ways the edges of T � using the fact that each of them has a white end and
a black end� We �nd�

�w �m
X
i

idi � �b �m�b� � b���

and hence b��b� � ���
P

i idi� Now� every inner white vertex of T � but one� is the child of an inner black
vertex of inner degree �� this gives

P
di � � � b�� and �nally b� � �� �

P
idi � ��

P
di �

P
�i� ��di�

��



��	� what remains to prove is the following lemma�

Lemma �� The m�Eulerian tree T � ��C� is balanced� and ��T � � C�

Proof� Let us alter the procedure that leads from C to T � ��C� as follows� having added a pair of
vertices on each edge e of S� we delete the central part of e �which connects the two new vertices� if e
is dual to an edge of the root m�gon of C� Otherwise� we just replace the central part of e by a dashed
edge� We need to prove that the dashed edges realize the matching of edges of T � This will imply that
the root edge of T � which is not incident to a dashed edge� is a single leaf of T � i�e�� that T is balanced�
and will also prove that ��T � � C�

What we want to prove is that the dashed edges satisfy the properties described at the beginning of
Section �� The only property that is not completely clear is ���� stating that T lies to the left of the
dashed edges� when we visit them from their white end to their black one�

Let e be a dashed edge� its dual e� belongs to a tree Ta of the rank forest F � Recall that Ta does not
intersect T � According to Property � of Lemma ���� the tree T has to be on the left of e �Fig� �	��
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