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“It is evident that the primes are randomly distributed but, unfortunately,
we don’t know what ‘random’ means.” — R. C. Vaughan (February 1990).

After the first world war, Cramér began studying the distribution of prime num-
bers, guided by Riesz and Mittag-Leffler. His works then, and later in the mid-
thirties, have had a profound influence on the way mathematicians think about the
distribution of prime numbers. In this article, we shall focus on how Cramér’s ideas
have directed and motivated research ever since.

One can only fully appreciate the significance of Cramér’s contributions by view-
ing his work in the appropriate historical context. We shall begin our discussion
with the ideas of the ancient Greeks, Euclid and Eratosthenes. Then we leap in
time to the nineteenth century, to the computations and heuristics of Legendre
and Gauss, the extraordinarily analytic insights of Dirichlet and Riemann, and
the crowning glory of these ideas, the proof the “Prime Number Theorem” by
Hadamard and de la Vallée Poussin in 1896.

We pick up again in the 1920’s with the questions asked by Hardy and Littlewood,
and indeed by Cramér. We shall see how their legacy has influenced research for
most of the rest of the century, particularly through the ‘schools’ of Selberg, and
of Erdös, and with the “large sieve” in the sixties. Then the eighties when the
hitherto seemingly solid bedrock of heuristic and conjecture was shattered by a
short, brilliant paper of Maier; and now, the nineties, when we are picking up the
pieces, trying to make sense of what we now know.

Let’s start with the one mathematical proof that every mathematician and statis-
tician knows, Euclid’s proof of the infinitude of primes:

Suppose, on the contrary, that there are only finitely many, call them p1, p2, . . . , pr.
Suppose that q is a prime factor of the integer p1 . . . pr + 1. Evidently q must be
in amongst the list p1, p2, . . . , pr, say q = pj , so that q divides both p1 . . . pr and
p1 . . . pr + 1. Therefore q must divide their difference, 1, which is impossible.

The other great contribution to our thinking about prime numbers, dating back
to Greek times, came from Eratosthenes. He showed how to create a list of all of
the primes up to x, simply by knowing all of the primes up to

√
x. His idea was to

write down all numbers up to x, then cross out every 2nd number, then every 3rd
number, then every 5th number, . . . and indeed every pth number for each prime
p ≤
√
x. Once one has finished doing that, the numbers that are not crossed out

(or ‘sieved’) are the primes between
√
x and x; and one can repeat this algorithm

to then get the primes between x and x2, and then between x2 and x4, et cetera.

∗Based on a lecture presented on 24th September 1993 at the Cramér symposium in Stockholm.
†An Alfred P. Sloan Research Fellow. Supported in part by the National Science Foundation.
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As an example we find the primes between 5 and 30:

�2 �3 �4 �5 �6 7 �8 �9 �10
11 �12 13 �14 �15 �16 17 �18 19 �20
�21 �22 23 �24 �25 �26 �27 �28 29 �30

The Sieve of Eratosthenes: Sieving with 2, 3 and 5.

We can even try to guess at how many primes there are up to x, using the ‘Sieve
of Eratosthenes’ as a guide:

Since there are x/2 even integers up to x within an error of ±1, the number of in-
tegers left after we sieve out those divisible by 2 is ≈ x−x/2 ≈ x/2. Similarly, of the
x/2 remaining integers, approximately one-third are divisible by 3, and so the num-
ber remaining after sieving by both 2 and 3 is ≈

(
1− 1

3

)
x/2 =

(
1− 1

3

) (
1− 1

2

)
x;

or, more precisely,
(
1− 1

3

) (
1− 1

2

)
x within an error of ±2. Continuing in this

way, if we sieve out the integers up to x by the k primes ≤ y, then there will be
≈
∏
p≤y

(
1− 1

p

)
·x integers remaining; in fact within an error of ±2k−1. Therefore,

if we sieve out with all of the primes p ≤
√
x (which we know will leave precisely

the prime numbers between
√
x and x) then we expect to have∏
p≤
√
x

(
1− 1

p

)
· x

integers left. However, this is by no means guaranteed since the potential error
term ±2k−1 is by now far, far larger than the main term. It seems plausible that
these ‘error terms’ do not accumulate in a surprising way, in that sieving by different
primes may be thought of as essentially independent events, and so we might expect
the number of integers left to be quite close to the estimate guessed at above.

In 1874, Mertens showed that the product above obeys the asymptotic formula∏
p≤y

(
1− 1

p

)
∼ e−γ

log y
(1)

where γ, the Euler-Mascheroni constant, is given by

γ = lim
n→∞

{
1 +

1
2

+
1
3

+ · · ·+ 1
n
− log n

}
.

Therefore, our heuristic here, based on the notion that sieving by the different
primes ≤

√
x are independent events, implies that we expect there to be

∼ 2e−γx/ log x (2)

primes ≤ x, where 2e−γ ≈ 1.12292 . . . 1.
At this point we digress to give Euler’s proof of the infinitude of primes (1793),

partly because of its influence on the later sensational work of Dirichlet and Rie-
mann, and partly because of its elegance and simplicity. Euler’s idea was to use an
identity based on what we now call the Fundamental Theorem of Arithmetic, that
is that every positive integer has a unique way of being written as a product of

1A constant which does not seem to have a simpler definition, and seems likely to be
transcendental.
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prime numbers. Since any product of prime numbers is evidently a positive integer,
we get the following identity: For any s with Re(s) > 1, we have∑

n≥1

1
ns

=
∑

a2,a3,a5,···≥0

1
2a2s3a3s5a5s . . .

=

∑
a2≥0

1
2a2s

 ·
∑
a2≥0

1
3a3s

 ·
∑
a5≥0

1
5a5s

 . . .

=
∏

p prime

∑
a≥0

1
pas

 =
∏

p prime

(
1− 1

ps

)−1

. (3)

Taking the limit as s→ 1 along the real line, from above, we see that∏
p prime

(
1− 1

p

)
= 1
/∑

n≥1

1
n

 = 0. (4)

This not only establishes that there are infinitely many primes, as promised, but
also gives some hint as to how many primes there are up to x: Since (4) implies
that ∑

p prime

1
p

diverges,

we might suppose that the primes are ‘more numerous’ than any sequence of integers
for which the corresponding sum converges. For example,

∑
n≥1

1
n2 converges and

so the primes are, in an appropriate sense, ‘more numerous’ than the squares. A
similar argument, based on the fact that

∑
n≥1

1
ns converges if s > 1 implies that

π(x), the number of primes up to x, is > x1−ε if x is sufficiently large, for any fixed
ε > 0.

If we return now to the sieve of Eratosthenes, but instead sieve with only the k
primes up to some fixed y, then we immediately get the upper bound

π(x)− π(y) ≤
∏
p≤y

(
1− 1

p

)
· x+ 2y,

where the “2y” bounds the accumulation of error terms. Letting y →∞, though at
a rate far slower than x (for instance taking y = log x), we find that π(x) = o(x);
in fact π(x) = O(x/ log log x).

Mathematicians (for instance, Legendre) had for some time recognized the im-
portance of proving the analogue of Euclid’s Theorem for arithmetic progressions:
That if the greatest common divisor of a and q is 1 (written (a, q) = 1) then there
are infinitely many primes ≡ a (mod q)2. In 1837 Dirichlet modified Euler’s iden-
tity (3) appropriately, and managed to solve this difficult question. The proof is
beautifully explained in Davenport’s book. We shall just comment that an essential
(and extremely surprising) ingredient in Dirichlet’s proof is a link made between
the value at s = 1 of a complicated analytic function3 and the structure of a group
that appears when describing the algebra of binary quadratic forms. In that we see
the principle that guides much of modern number theory and it can be said that
the Main Conjecture of Iwasawa Theory, the Birch-Swinnerton Dyer Conjectures,

2that is in the arithmetic progression a, a+ q, a+ 2q, . . .
3a ‘relation’ of the function in (3)
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as well as the Taniyama-Shimura-Weil Conjecture4, all propose suitable analogues
of Dirichlet’s formula.

Gauss, at the very end of the eighteenth century and Legendre, in the early part
of the nineteenth century, considered the question of estimating π(x), the number
of primes up to x. Gauss never published his work, but as an old man, wrote in a
letter to Encke, on Christmas eve 1849, (liberally translated)

“As a boy I considered the problem of how many primes there are up
to a given point. From my computations, I determined that the density
of primes around x, is about 1/ log x.”5

One can interpret this as a statement of probability in order to guess at a value for
π(x): Assume that an integer n, ‘close’ to x, is prime with ‘probability’ 1/ log x.
Evidently this is absolute nonsense, a given integer n is either prime or it isn’t, but
this will turn out to be useful when suitably formulated6, so let’s let things be for
now. Indeed it was this statement of Gauss that led, as we shall see, to Cramér’s
probabilistic approach for understanding the distribution of prime numbers, which
underpins most of the heuristic reasoning still used in the subject today. So the
‘expected’ number of primes up to x is

≈
∑

2≤n≤x

1
log n

=
∫ x

2

dt
log t

+O(1); (5)

we denote this integral as Li(x). Integrating by parts gives

x

log x
+

x

log2 x
+O

(
x

log3 x

)
; (6)

a somewhat different expected answer from that given by the heuristic based on
the Sieve of Eratosthenes (see (2)). So which one is correct? The argument that
gives (2), based on the assumption that the error terms do not ‘accumulate’ (that is
that there is a sufficient amount of ‘independence’ in sieving by different primes)?
Or Gauss’s ‘probability’ statement, based on viewing primes as having a specific
‘density’?

In 1851, Chebychev proved that if π(x)/(x/ log x) does tend to a limit as x goes
to infinity, then that limit must be one7. However he was unable to show that the
limit exists! Moreover, we can see in the following table that recent computational
evidence agrees well with Gauss’s prediction:

4It was Wiles’ work on this conjecture that led to his recent spectacular attack on Fermat’s
Last Theorem.

5The ‘as a boy’ preface by Gauss is probably more fact than arrogance: Indeed Gauss’s great
classic “Disquisitiones Arithmeticae” was completed by the time he was in his mid-twenties!

6as well as somewhat less ridiculous!
7Thus if either of predictions above is correct, it must be Gauss’s.
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x π(x) [Li(x)− π(x)]
108 5761455 754
109 50847534 1701
1010 455052511 3104
1011 4118054813 11588
1012 37607912018 38263
1013 346065536839 108971
1014 3204941750802 314890
1015 29844570422669 1052619
1016 279238341033925 3214632
4× 1016 1075292778753150 5538861

The number of primes, π(x), up to x.

Riemann, the (immediate) successor to Gauss and Dirichlet’s chair in Berlin,
‘resolved’ this dispute with his extraordinary eight page memoir, presented to the
Berlin Academy in 1859. In it, Riemann proposed a careful study of the function

ζ(s) =
∑
n≥1

1
ns

(Re(s) > 1)

considered now as a function of the complex variable s, analytically continued to
the whole-plane, though with a simple pole at s = 1. From the formula∑

p prime
m≥1

log p
pms

= −ζ
′(s)
ζ(s)

for Re(s) > 1 (7)

(which one can derive from (3)), one can use the discontinuous integral

1
2iπ

∫ c+i∞

c−i∞
ys

ds
s

=


0 if 0 < y < 1,
1
2 if y = 1 ,
1 if y > 1 ,

for c > 0,

to pick out the terms with pm ≤ x in (7)8, and deduce that if x is not a power of a
prime then ∑

pm≤x

log p =
1

2iπ

∫ c+i∞

c−i∞
−ζ
′(s)
ζ(s)

xs

s
ds for c > 1.

By moving the vertical line of integration away to infinity on the left, this can be
expressed as a sum of residues of −(ζ ′/ζ)(s)xs/s at its poles. In fact, since the pole
of ζ(s) at s = 1 contributes x, we arrive at the formula, for x ≥ 2,∑

pm≤x

log p = x−
∑
ζ(ρ)=0

xρ

ρ
+O(1). (8)

If we assume that all of the zeros satisfy Re(ρ) < 1, and that they are not ‘too
dense’ in any part of the complex plane (in particular near to Re(s) = 1) then (8)

8by taking y = x/pm
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leads to the asymptotic formula∑
pm≤x

log p ∼ x (as x→∞). (9)

By partial summation, this confirms Gauss’s prediction, (6).
It was not until 1896 that Hadamard and de la Vallée Poussin filled in the

details of the outline above, to prove (9), the “Prime Number Theorem”. Actually
Riemann went much further with his extraordinary approach, conjecturing what
we now call

The Riemann Hypothesis: If ζ(s) = 0 with 0 ≤ Re(s) ≤ 1 then Re(s) = 1/2.

Using (8) one can deduce from the Riemann Hypothesis (RH) that∑
pm≤x

log p = x+O(
√
x log2 x),

which implies, via partial summation,

π(x) =
∫ t

2

dt
log t

+O(
√
x log x) (assuming RH)(10)

This extraordinary and profound connection between the count of the number
of primes and the zeros of a complex analytic function energized thinking in math-
ematics at the beginning of this century.9 As Ingham put it in 1932,

“The solution10 . . . may be held to be unsatisfactory in that it intro-
duces ideas very remote from the original problem, and it is natural
to ask for a proof of the prime number theorem not depending on the
theory of functions of a complex variable . . . It seems unlikely that a
genuinely ‘real variable’ proof will be discovered.”

Ingham goes on to note how, via the formula (8), the prime number theorem is,
essentially, equivalent to the fact ζ(ρ) = 0 ⇒ Re(ρ) < 1, and so any proof must
use some complex analysis.

How wrong Ingham was (as well as Hardy, Bohr, and many others)! In 1949
Selberg and Erdös showed that it is possible to give an ‘elementary proof’ of the
prime number theorem11.

Since his student days Cramér had been interested in the size of gaps between
consecutive primes. From (10) one can easily deduce that

pn+1 − pn = O(
√
pn log2 pn) (assuming RH)

where p1, p2, . . . is the sequence of prime numbers. In 1920 Cramér sharpened this
to

pn+1 − pn = O(
√
pn log pn) (assuming RH)

9Indeed RH and subsequent investigations comprise the eighth of Hilbert’s 23 problems an-
nounced as a challenge for the forthcoming century at the International Congress of Mathemati-

cians held in Paris in 1900.
10that is, to the problem of proving the prime number theorem (9)
11For a thorough analysis of how and why one can avoid complex analysis, and indeed any

type of ‘infinite summation’ in such a proof see Ingham’s elegant Math Review [9].
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On 25th October 1920 G. H. Hardy read Cramér’s paper “On the distribution of
primes” to the Cambridge Philosophical Society. Here Cramér develops a ‘statistical
approach’ to this question showing that for any fixed ε > 0

pn+1 − pn = O(pεn) (assuming RH)

for ‘most’ pn: in fact for all but at most x1−3ε/2 of the primes pn ≤ x.
By the mid 1930’s, Cramér had shown that

pn+1 − pn = o(log3 pn) (assuming RH)

for all but at most o(x/ log4 x) primes pn ≤ x; and further that∑
pn≤x

pn+1−pn≥y

(pn+1 − pn) = O

(
x log3 x

y log y

)
(assuming RH)(11)

This kind of statistical result brought a whole new dimension to these consid-
erations. Evidently it had to be important to understand the ‘usual’ behaviour of
primes as well as the extreme cases. This was a big first step by Cramér and, within
a few years, Selberg significantly developed this type of idea, bringing this kind of
approach to maturity.

Various upper bounds on gaps between primes have been proved without the
assumption of an unproved hypothesis. In 1930 Hoheisel proved that pn+1 − pn =
O(p1−δ

n ) for some constant δ > 0. In 1936 Tchudakoff, and in 1937 Cramér, showed
one could take δ = 1/4 − ε. Successively bigger values of δ have been given since,
the latest results of R. C. Baker and Harman (1994) being close to what can be
proved assuming RH: they prove, unconditionally,

pn+1 − pn = O
(
p

1
2 + 7

200
n

)
.

Mathematicians have also attempted to show that there must be large gaps
between consecutive primes. One way to do this is to find a long run of consecutive
integers which each have a small prime factor12. For example, n! − j is divisible
by j for 2 ≤ j ≤ n and this gives rise to a gap of length ≥ n between consecutive
primes13. One can do a little better from (9), which implies that there must be
gaps > {1 + o(1)} log x between some pair of consecutive primes ≤ x. In 1931
Westzynthius improved this to

lim sup
n→∞

(pn+1 − pn)/ log pn =∞.

Following work of Erdös and Rankin we now know that there is an infinite sequence
of primes pn for which

pn+1 − pn >
c(log pn)(log log pn)(log log log log pn)

(log log log pn)2

for some fixed constant c > 014.
It is also interesting to try to determine the minimal order of gaps between

consecutive primes. A very famous open question in number theory is whether there

12Indeed most papers concerning this question have used this simple idea
13Thus, if x = n! we have an interval of length ≥ n ∼ log x/ log log x (by Stirling’s formula)

between consecutive primes near to x
14In the intervening half century, the constant c in this result has been repeatedly improved

but not the function itself. Erdös offers $5000 for such an improvement!
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are infinitely many ‘twin primes’, that is prime pairs p, p+2. In 1920 the Norwegian
mathematician Viggo Brun showed that they are nowhere near as numerous as the
primes; in that ∑

p,p+2
both primes

1
p

converges, whereas
∑

p prime

1
p

diverges.

In 1923, Hardy and Littlewood found a new perspective from which to study
such questions and conjectured15

#{p ≤ x : p, p+ 2 both prime} ∼ 1
2

∏
p≥3

(
1 +

1
p(p− 1)

)
· x

log2 x
. (12)

More generally, for any k-tuple of distinct integers a1, a2, . . . , ak they conjectured
that

#{p ≤ x : p+ a1, p+ a2, . . . , p+ ak are all prime} ∼ C(a) · x

logk x
(13)

where the constant C(a) depends only on a1, a2, . . . , ak. One has to be a little
careful here — evidently p and p+ 1 are only simultaneously prime if p = 2, since
one of the two numbers must be even. Thus we only make the above “prime k-
tuplets conjecture” when a1, a2, . . . , ak is an ‘admissible set’; that is that there is
no such obstruction mod 2 or mod 3 or mod any prime.

Actually no-one has yet proved that there are infinitely many primes pn such
that pn+1− pn < 1

10 log pn, a question that seems to be much more difficult than it
looks.

In 1937 Cramér decided to try to guess at the true order of max
pn≤x

(pn+1 − pn)

using a sophisticated heuristic argument based on Gauss’s observations above, but
quite unlike anything seen before in analytic number theory. In Cramér’s words:

“In investigations concerning the asymptotic properties of arithmetic
functions, it is often possible to make an interesting heuristic use of
probability arguments. If, e.g., we are interested in the distribution of
a given sequence S of integers, we then consider S as a member of an
infinite class C of sequences, which may be concretely interpreted as
the possible realizations of some game of chance. It is then in many
cases possible to prove that, with a probability = 1, a certain relation
R holds in C, i.e. that in a definite mathematical sense “almost all”
sequences of C satisfy R. Of course we cannot in general conclude that
R holds for the particular sequence S, but results suggested in this way
may sometimes afterwards be rigorously proved by other methods.

With respect to the ordinary prime numbers, it is well known that,
roughly speaking, we may say that the chance that a given integer n
should be a prime is approximately 1

logn . This suggests that by consider-
ing the following series of independent trials we should obtain sequences
of integers presenting a certain analogy with the sequence of ordinary
prime numbers pn.

15In 1871 Sylvester had conjectured a similar asymptotic formula but with a slightly different
constant. Hardy and Littlewood contrast their conjecture with Sylvester’s in the same way that

we have contrasted (6) with (2). They explained such discrepancies between different heuristic

models by stating, “Probability is not a notion of pure mathematics, but of philosophy or physics.”
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Let U1, U2, U3, . . . be an infinite series of urns containing black and
white balls, the chance of drawing a white ball from Un being 1

logn for
n > 2, while the composition of U1 and U2 may be arbitrarily chosen.
We now assume that one ball is drawn from each urn, so that an infinite
series of alternately black and white balls is obtained. If Pn denotes the
number of the urn from which the nth white ball in the series was drawn,
the numbers P1, P2, . . . will form an increasing sequence of integers, and
we shall consider the class C of all possible sequences (Pn). Obviously
the sequence S of ordinary prime numbers (pn) belongs to this class.

We shall denote by Π(x) the number of those Pn which are ≤ x,
thus forming an analogy to the ordinary notation π(x) for the number
of primes pn ≤ x. Then Π(x) is a random variable, and if we denote by
zn a variable taking the value 1 if the nth urn gives a white ball and
the value 0 in the opposite case, we have

Π(x) =
∑
n≤x

zn,

and it is easily seen that the mean value of Π(x) is, for large values
of x, asymptotically equal to Li(x). It is, however, possible to obtain
much more precise information concerning the behaviour of Π(x) for
large values of x. As a matter of fact, it may be shown that, with a
probability = 1, the relation

lim sup
x→∞

|Π(x)− Li(x)|
√

2x ·
√

log log x
log x

= 1

is satisfied. With respect to the corresponding difference π(x)−Li(x) in
the prime number problem, it is known that, if the Riemann hypothesis
is assumed, the true maximum order of this difference lies between the
functions

√
x

log x and
√
x · log x. It is interesting to find that the order of

the function occurring in the denominator in the above equation falls
inside this interval of indetermination.

We shall now consider the order of magnitude of the difference
Pn+1 − Pn. Let c > 0 be a given constant and let Em denote the event
that black balls are obtained from all urns Um+v with 1 ≤ v ≤ c(logm)2.
Then it is seen that the following two events have the same probability:
a) The inequality

Pn+1 − Pn > c(logPn)2 (*)

is satisfied for an infinity of values of n, and
b) An infinite number of the events Em are realized.”

Cramér next proves that the probability of the event Em occurring is � m−c.
Citing Cantelli he continues,

“Thus the probability of an infinite number of solutions of the in-
equality (*) is equal to zero if c > 1 and to one if c < 1. Combining
these two results, we obtain the following theorem: With a probability
= 1, the relation

lim sup
n→∞

Pn+1 − Pn
(logPn)2

= 1
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is satisfied. — Obviously we may take this as a suggestion that, for the
particular sequence of ordinary prime numbers pn, some similar relation
may hold.”

So what Cramér seems to be suggesting, on probabilistic grounds, is that the
largest gap between consecutive primes ≤ x is ∼ log2 x; more precisely,

max
pn≤x

(pn+1 − pn) ∼ log2 x. (14)

This statement (or the weakerO(log2 x)) is known as ‘Cramér’s Conjecture.’ Shanks
reformulated this statement to suggest that the first occurence of a gap between
consecutive primes of size > g would occur with pn = e{1+o(1)}√g. Computations of
gaps between consecutive primes indicate that Cramér may well have been correct:

pn pn+1 − pn (pn+1 − pn)/ log2 pn
31397 72 .6715
370261 112 .6812
2010733 148 .7025
20831323 210 .7394

25056082087 456 .7953
2614941710599 652 .7975
19581334192423 778 .8177

Record-breaking gaps between primes, up to 1014

Gauss’s assertion is really about the number of primes in a short interval near
to a given value of x: that is

π(x+ y)− π(x)
where y is ‘small’ compared to x.

Cramér’s analysis of Π(x) provided ‘expected results’ which are similar to those
obtained from assuming the Riemann Hypothesis, for y about the same size as
x. Since his predictions fit the facts so well for y around size x, we now consider
analogous arguments for smaller values of y.

The independent random variables zj , with j close to x, satisfy

Prob(zj = 1) ≈ p and Prob(zj = 0) ≈ 1− p
for each j, where p = 1/ log x. It is well known that if, for such binomial distribu-
tions, we let n→∞ while keeping np fixed, then we get a Poisson distribution for
the sum z1 + z2 + · · ·+ zn. Thus for any fixed λ > 0 and integer k ≥ 0, we have

#{integers x ≤ X : Π(x+ λ log x)−Π(x) = k} ∼ e−λ
λk

k!
X (15)

as X →∞, with probability 1 in C.
In 1966 Gallagher investigated some consequences of Hardy and Littlewood’s

conjecture (13) about the distribution of prime k-tuplets. By assuming (13) holds
in an appropriate ‘uniform’ way, Gallagher deduced that (15) holds for π, the
sequence of primes, as well as ‘almost certainly’ for Π. Yet another success for
predictions arising out of Cramér’s model, and especially interesting because the
ideas motivating Hardy and Littlewood’s conjecture are quite different from the
ideas motivating the Riemann Hypothesis.
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Thus, for y large (� x), Cramér’s model confirms what is known from assuming
the Riemann Hypothesis, and for y small (� log x), it confirms what is known from
assuming a uniform version of the Hardy-Littlewood conjecture.

It is not difficult to show that if y/ log2 x→∞ then

Π(x+ y)−Π(x) =
∫ x+y

x

dt
log t

+O(
√
y), (16)

and thus

Π(x+ y)−Π(x) = {1 + o(1)} y

log x
, (17)

holds with probability 1. In 1943 Selberg showed that if y/ log2 x→∞ then

π(x+ y)− π(x) = {1 + o(1)} y

log x
(assuming RH)(18)

for all but o(x) integers x ≤ X.16 So, in this intermediate range of y-values,
Cramér’s model yet again predicts what we believe to be true for other (good)
reasons.

With so much evidence to support predictions that come from Cramér’s model
it came as a great surprise when, in 1985, Maier proved a result that actually
contradicts what one expects from Cramér’s model:

As a consequence of (17) one can deduce that, for any fixed N > 2,

Π(x+ logN x)−Π(x) ∼ logN−1 x (19)

as x → ∞, with probability 1. Cramér’s ‘philosophy’ leads us to expect that (19)
holds for the sequence of primes. However Maier proved that this is not true.
Specifically, that there exists a constant δN > 0 such that

π(x+ + logN x+)− π(x+) > (1 + δN ) logN−1 x+

for arbitrarily large values of x+, and such that

π(x− + logN x−)− π(x−) < (1− δN ) logN−1 x−

for arbitrarily large values of x−.17

Maier’s result is totally unexpected from the perspective of Cramér’s original
model. What he does is to brilliantly combine the approaches of Eratosthenes and
of Gauss to exploit that old inconsistency between (6) and (2). To try to guess at
the number of primes between x and x+ y, Maier first removes those integers that
have a small prime factor (following Eratosthenes), and only then does he apply
density arguments (following Gauss). This surely must provide a more accurate
prediction than the previous model — what is surprising is that, on occasion, it
provides a quite different prediction . . .

16In the same paper Selberg also improved the upper bound in (11) to O((x/y) log2 x).
17The values of x± given by Maier’s proof are scarce, so this is still consistent with Selberg’s

result (18).
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Let Z3, Z4, . . . be a sequence of independent random variables with Zn = 0
whenever n has a prime factor ≤ T . When n is free of prime factors ≤ T then

Prob(Zn = 1) =
∏
p≤T

(
p

p− 1

)
· 1

log n

Prob(Zn = 0) = 1−
∏
p≤T

(
p

p− 1

)
· 1

log n
,

where T is a parameter to be chosen appropriately. Note that when T = 1 this
is exactly Cramér’s model; however, we shall take T to be at least some power
of log x. This new model has several important advantages over Cramér’s. For
example, from Cramér’s model one expects that there are ∼ x/ log2 x prime pairs
p, p+ 1 up to x, whereas our new model recognizes that one of these two numbers
must be even18. Also Cramér’s model leads one to expect that there are ∼ x/ log2 x
twin primes p, p + 2 up to x, whereas our new model will lead us to predict (12),
which is presumably correct.

Anyway, from our new model we believe that there are

≈ 1
log x

∏
p≤T

(
1− 1

p

)−1 ∑
x<n≤x+y

p-n for all p≤T

1

primes in (x, x+y]; and that this should be an asymptotic estimate if y/ log2 x→∞.
If this is consistent with the prediction (17) arising from Cramér’s model then we
must have ∑

x≤n≤x+y
p-n for all p≤T

1 ∼
∏
p≤T

(
1− 1

p

)
· y. (20)

However, if we take T = y1/2+o(1), and choose x so that it is divisible by
∏
p≤T p

then the left hand side of (20) equals19∑
n≤y

p-n for all p≤T

1 ≈ π(y) ∼ y

log y
,

whereas the right side of (20) is∏
p≤T

(
1− 1

p

)
· y ∼ ye−γ

1
2 log y

∼ 2e−γy
log y

.

So we see that old inconsistency between (6) and (2) appearing again!
In his very ingenious paper, Maier was able to exploit this inconsistency to prove

the existence of arbitrarily large x+ and x− above, a severe blow to Cramér’s model.
Moreover, with our new model above, Cramér’s arguments suggest that

max
pn≤x

(pn+1 − pn) & 2e−γ log2 x,

which contradicts Cramér’s conjecture (14)! The computational evidence alone
(see above) would not lead one to predict that (14) errs on the small side, but the

18however experienced researchers have long known not to apply Cramér’s model to try to
understand inappropriate problems!

19since prime p ≤ T divides x+ k if and only if it divides k
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data collected so far is very limited, and there are now a number of independent
computors trying to find examples with (pn+1 − pn)/ log2 pn > 1.

Let π(x; q, a) denote the number of primes ≤ x, that belong to the arithmetic
progression a (mod q). Euler’s ‘totient function’ φ(q) is defined to be the number
of integers a, 1 ≤ a ≤ q for which (a, q) = 1. We might expect the primes up to x
to be distributed equally amongst the φ(q) arithmetic progressions a (mod q) with
(a, q) = 120, so that

π(x; q, a) ∼ π(x)
φ(q)

(21)

whenever a and q are fixed integers for which (a, q) = 1, as x → ∞. This was
proved by de la Vallée Poussin in 1896, combining ideas used in the proof of the
Prime Number Theorem with ideas of Dirichlet.

Riemann’s analytic approach may be modified to investigate the distribution of
primes in arithmetic progressions. A suitable generalization of Riemann’s Hypoth-
esis implies that (21) holds uniformly for

2 ≤ q ≤ x 1
2 / log2+ε x with (a, q) = 1 , (22)

for any fixed ε > 0. A result of this strength would allow us to answer many
important questions of number theory and so one wishes to establish an estimate
like (21) for each (a, q) = 1 with values of q and x in as wide a range as possible.

The best such result was proved by Walfisz in 1936, applying an idea of Siegel.
He showed that (21) holds uniformly for any q ≤ logN x, for any fixed N > 0. In
the mid-sixties Bombieri21 used the ‘large sieve’ to show that (21) holds uniformly
for ‘almost all’ moduli q in the range (22) for all (a, q) = 1, for some fixed ε > 022.

One can analyze the distribution of primes in arithmetic progressions using a
probabilistic model much as Cramér did for primes in intervals: The total number of
primes up to x, summing over all arithmetic progressions a (mod q) with (a, q) = 1,
is π(x) minus the number of distinct prime factors of q, which is ∼ x/ log x. The to-
tal number of integers up to x in those arithmetic progressions is ∼ φ(q)x/q, and so
the probability that one such integer, chosen at random, is prime is ∼ φ(q)/(q log x).
Setting up our probability space as before we expect that the estimate

π(x; q, a) =
π(x)
φ(q)

+O

((
x

q

) 1
2

log(qx)

)
, (23)

and thus (21), holds uniformly in the range

2 ≤ q ≤ x/ log2+ε x with (a, q) = 1 (24)

for any fixed ε > 0. However, one can modify the method of Maier to show that
(23) cannot hold in at least part of this range.

With hindsight it is rather ambitious to expect (21) to hold for x as small as, say,
q log3 q, for all (a, q) = 1. On the other hand it is known that (21) holds for ‘almost
all’ pairs (a, q) in the range (24), and it was widely believed that (21) held for ‘almost
all’ q and all (a, q) = 1 in the range (24)23. However, Friedlander and I recently

20there is no more than one such prime if (a, q) > 1 since then (a, q) divides every number in
the arithmetic progression,

21improving on work of Linnik, Renyi, Roth, Vinogradov and others
22so more-or-less proving what follows from the generalized Riemann Hypothesis, for ‘most’

moduli q
23in other words, that the range in Bombieri’s result can be extended from (22) to (24).
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showed that even this averaged conjecture is untrue, by applying an appropriate
modification of Maier’s ideas. Specifically, in direct analogy with Maier’s result for
π(x + logN x) − π(x), we showed that for any fixed N > 0 there exists a constant
δN > 0 such that for any modulus q with ‘not too many’ small prime factors there
exist arithmetic progressions a± (mod q) and values x± ∈ [φ(q) logN q, 2φ(q) logN q]
such that

π(x+; q, a+) > (1 + δN )
π(x+)
φ(q)

and

π(x−; q, a−) < (1− δN )
π(x−)
φ(q)

.

Thus, for any modulus q with ‘few’ small prime factors, there exist values of x
around φ(q) logN q and of a with (a, q) = 1, for which (21) fails.

In 1992, Friedlander and I went somewhat further. First we showed that (21)
fails more often, the more prime factors that a has24. However we showed that
even when a has very few prime factors, (21) can still fail. For example, the primes
≡ 1 (mod q) do not satisfy (21) uniformly in the range q < x/ logN x, for any fixed
N > 0. It also seems that Maier’s idea may effect our understanding of the prime
k-tuplets conjecture (13), and of the distribution of the zeros of ζ(s) on the line
Re(s) = 1/2 (assuming RH).

It does appear that we need to re-appraise just about every conjecture concerning
the distribution of prime numbers, in the light of Maier’s revolutionary idea. Pre-
sumably we will remain unable to fully understand the finer details until a model is
proposed that adequately accounts for both the sieve of Eratosthenes, and Gauss’s
density statement. But perhaps it is hopeless, perhaps Euler was correct when he
wrote

“Mathematicians have tried in vain to discover some order in the se-
quence of prime numbers but we have every reason to believe that there
are some mysteries which the human mind will never penetrate.”

— L. Euler (1770).
To conclude, just in case you are starting to think that everything proved recently

concerning the distribution of prime numbers implies that what has long been
believed is wrong, I’d like to tell you about a beautiful recent result of Balog:

Balog has shown that, in an appropriate sense, the prime k-tuplets conjecture
(13) holds on average (in the tradition of Cramér). One delightful consequence is
the existence of infinitely many squares and triangles of primes in 3-term arithmetic
progressions as in this picture:

Balog even shows that there are infinitely many such n-dimensional cubes and
tetrahedrons.
A more detailed survey of these ideas, together with more applications and the
fullest strength of the results that have been proved, will appear in the author’s

24something that had not shown up in previous considerations.
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forthcoming article for the Proceedings of the 1994 International Congress of Math-
ematicians.

Acknowledgements: I’d like to thank Red Alford, Ken Ono and Carl Pomerance
for their comments on earlier drafts of this article.

Recommended further reading

Two essays that breathe life into the beauty and mystery of the distribution
of prime numbers are “Prime Territory” by E. Bombieri which appeared in The
Sciences, Sept/Oct 1992, 30-36; and “The first 50 million prime numbers” by D.
Zagier in Math. Intell. 1977, 7-19. P. Ribenboim’s “Book of Prime Number
Records”25 (Springer-Verlag), glows with the fun of learning about primes, though
many details are suspended.

There are two elegant treatments of the classical theory: H. Davenport’s “Mul-
tiplicative Number Theory” (Springer-Verlag), and A. E. Ingham’s “Distribution
of Prime Numbers” (C.U. Press) which is older but still worth looking at for its
eloquence.

For more about the Riemann zeta-function, the classic “The Theory of the Rie-
mann Zeta-function” (O.U. Press) by E. C. Titchmarsh is essential reading. To
learn about sieving one cannot do better than study the relevant material in A. Sel-
berg’s “Collected Works”, some of which has not appeared elsewhere. E. Bombieri’s
“Le Grand Crible en la theorie analytique des nombres” (Astérisque, 18) clearly
describes the large sieve with lots of applications, and H. L. Montgomery’s “Mul-
tiplicative Number Theory” (Springer Lecture Notes, 227) is indispensable for the
serious researcher.
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