
PRIMES IN DIVISIBILITY SEQUENCES

GRAHAM EVEREST AND THOMAS WARD

Abstract. We give an overview of two important families of di-
visibility sequences: the Lehmer–Pierce family (which generalise
the Mersenne sequence) and the elliptic divisibility sequences. Re-
cent computational work is described, as well as some of the math-
ematics behind these sequences.

1. Introduction

An old problem in number theory concerns the sequence 1, 3, 7, 15, . . .
of numbers given by the formula Mn = 2n − 1. These were studied by
many people, but the French monk Marin Mersenne in the religious
order of the Minims made the most important investigations.

Mersenne wanted to use this sequence to find a formula that would
represent primes. He did not succeed in this, but the numbers Mp =
2p − 1 for p prime have proved to be of lasting interest in number
theory. To honour his work, the sequence Mn = 2n − 1 is now called
the Mersenne sequence. If a term in the sequence is a prime, it is
known as a Mersenne prime.

Lemma 1. If Mn = 2n − 1 is prime, then n must be a prime.

Proof. If n = ab with a, b > 1 then Ma = 2a − 1 is a non-trivial factor
of 2n − 1.

Of course this does not say that if n is prime, then 2n − 1 is prime! In
fact 211 − 1 = 2047 = 23 × 89. What it does say is that if we want to
search for primes in the sequence 2n − 1 we should restrict attention
to the sequence 3, 7, 31, 127, 2047, 8191, . . . given by the formula Nn =
2p(n) − 1 where p(n) is the nth prime number. The proof of Lemma 1
points to another important property of the Mersenne sequence: it
is a divisibility sequence. In other words,

for all m ≥ 1,m|n implies Mm|Mn.(1)

The problem we mentioned at the start is this: does the Mersenne

sequence contain infinitely many primes? The so-called Mersenne
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Prime Conjecture asserts the answer is ‘yes’, and it is an open problem
to this day.

A more refined problem to study is this: how do the primes in the
sequence (Nn) appear? That is, if 2n1 − 1, 2n2 − 1, . . . is the sequence
of Mersenne primes we find, how fast does the sequence n1, n2, . . .
grow? Of course this question does not really make sense until we know
that there are infinitely many Mersenne primes!

2. Heuristics

One approach to this problem is to use a heuristic argument. That is,
rather than trying to prove that there are infinitely many Mersenne

primes, we argue that if certain plausible things happen, then there
must be infinitely many Mersenne primes. This gives an approach
from probability that suggests the following: if Mn1 = 2n1 − 1,Mn2 =
2n2 − 1, . . . are the Mersenne primes, then

log logMnj

j
−→ log 2

eγ
,

where γ = 0.577 . . . is the classical Euler-Mascheroni constant.
Numerical evidence to support this conjectured growth rate comes from
simply testing the numbers 3, 7, 31, 127, 2047, 8191, . . . for primality:
the problem is these numbers grow very fast, so it is difficult to test
them. A huge network of thousands of computers have been used
together on this problem, and 38 Mersenne primes have been found.
Although the data set is not large, the observed growth rate does fit
the expected rate very closely, see [2].

3. Sequences associated to polynomials

Another way to approach the Mersenne Prime Conjecture is to
examine sequences which arise in an analogous way to see whether the
numerical evidence supports the natural analogous conjecture. Con-
sider a monic polynomial f(x) = xd + ad−1x

d−1 + · · ·+ a0 with integer
coefficients, which factorizes over C as

f(x) = (x− α1) . . . (x− αd).(2)

Following Pierce [11] and Lehmer [9], we can associate a sequence
of integers to f by defining

∆n(f) =
d∏
i=1

|αni − 1| for n ≥ 1.(3)
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To see that all the terms are integers, let Af denote the companion
matrix of f . Then one can check that for all n ≥ 1,

∆n(f) = | det(Anf − Id)|.(4)

We have found the formula (4) to be the most useful for computing
terms of the sequence ∆n(f), since it involves only integer arithmetic.

If f(x) = x − 2, then ∆n(f) = 2n − 1 is the Mersenne sequence.
Just like the Mersenne sequence, ∆n(f) is a divisibility sequence. We
assume for simplicity that no αi is a root of unity, so ∆n(f) is never
equal to zero. If we can obtain evidence for prime occurrence in these
sequences then it will strengthen our belief in the Mersenne Prime
Conjecture. To give ourselves the best chance of finding primes, we will
assume f is irreducible because if we can write f = f1f2 in a non-trivial
way then

∆n(f) = ∆n(f1)∆n(f2).

The question of how fast the sequence ∆n(f) grows – which determines
how difficult it is going to be to search for primes in the sequence – is
not simple. It is clear that

1

n
log |2n − 1| → log 2,

and for the same reason, if |αi| > 1, then

1

n
log |αni − 1| → log |αi|.

For zeros αi with |αi| < 1 there is no problem: in this case

1

n
log |αni − 1| → 0.

All that remains is the possibility that we may have zeros αi with
|αi| = 1 that are not roots of unity. It turns out – though this is not
trivial – that in this case also

1

n
log |αni − 1| → 0.

Putting all the three possibilities together and using some transcen-
dence theory to give error estimates, the following can be obtained (see
[6] or [8]).

Theorem 2. There are constants mf ≥ 0, and A = A(f) > 0, such
that

1

n
log ∆n(f) = mf +O((log n)A/n).
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The constant mf is given by the formula,

mf =
d∑
i=1

log max{1, |αi|}.

The quantity mf is called the (logarithmic) Mahler measure of f
and it is common to denote emf by Mf . It is a very important and
subtle measure of the ‘size’ of f . Theorem 2 means that ∆n(f) is
approximately Mn

f when n is large. This gives rise to a version of
Lemma 1 for Lehmer–Pierce sequences.

Corollary 1. For only finitely many composite n’s can ∆n(f) be prime.

Proof. Notice firstly that Theorem 2 shows that ∆n(f) → ∞ as n →
∞. So there can only be finitely many n for which ∆n(f) = 1. If the
statement of the corollary is false then there must be infinitely many
pairs 1 < m < n with ∆mn(f) prime as n → ∞. But ∆n(f)|∆mn(f)
and, by the previous remark, ∆n(f) for only finitely many n. This
forces ∆mn(f) = ∆n(f) for infinitely many n. Thus, as n → ∞, we
obtain a contradiction because ∆mn(f) grows like Mmn

f while ∆n(f)
grows like Mn

f .

We would like to find a monic polynomial f with very small Mahler

measure, and see how many primes appear in the sequence ∆n(f),
which will grow very slowly. There is a problem though: How do we
find such a polynomial? The following statement is sometimes known
as Kronecker’s Lemma. For a proof see [8, p.27].

Lemma 3. If m(f) = 0, then f has a zero that is a root of unity. If
f is irreducible and m(f) = 0 then the sequence ∆n(f) is periodic.

So the polynomials we are interested in all have strictly positive
Mahler measure. Lehmer [9] noticed that

g(x) = x10 + x9 − x7 − x6 − x5 − x4 − x3 + x+ 1

has mg = 0.162 . . . , and no smaller positive measure has been found
since! This remarkable polynomial has 8 of its 10 roots lying on the unit
circle, so these 8 roots have absolute value 1. It is not known whether
polynomials with positive Mahler measure can have arbitrarily small
measure – this is known as Lehmer’s problem. The book [8] discusses
what is known about this problem and shows how it relates to other
parts of mathematics.

Because the polynomial g is symmetric, the roots pair off, each with
its inverse. This forces the numbers ∆n(g) to be perfect squares when
n is odd. See [6] for a more detailed proof. Thus the correct analogue
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of the Mersenne problem is to ask: how often is the sequence Γn =√
∆n(g) prime? Since there will be at most finitely many composite n

for which Γn is prime, the same kind of heuristic argument as before
may be applied to this problem. This heuristic predicts that if n1 <
n2 < . . . are the primes for which Γnj are prime, then

log log Γnj
j

→ mg

2eγ
= 0.0455 . . .

4. Experimental results for Lehmer-Pierce sequences

As part of a broader investigation [6], the primes in the sequence
Γn were found for n ≤ 200, 000. The results are shown in Figure 1,
which gives a good agreement with the conjectured behaviour. In the
graph, nj is the sequence of primes for which Γnj was found to be
prime. We found 208 such primes in a few weeks on a single PC. This
compares with the 38 Mersenne primes found using many thousands
of computers over many years – the difference is that the sequence grows
more slowly. The predicted growth rate compared very well with that
observed.

    9.7

  208

Figure 1. Graph of log log Γnj against j for n ≤ 200, 000

5. Recurrence Relations

It is easily proved by induction that the Mersenne sequence satisfies
the linear recurrence relation

un+2 = 3un+1 − 2un for all n ≥ 1.(5)

The Lehmer–Pierce sequences we studied before also satisfy linear
recurrence relations, but involving more terms. This reminds us of a



6 GRAHAM EVEREST AND THOMAS WARD

sequence studied several centuries before Mersenne, the Fibonacci

sequence 1, 1, 2, 3, 5, . . . . Here the relation is the well-known

un+2 = un+1 + un for all n ≥ 1.(6)

We will write F for the Fibonacci sequence with the nth term denoted
Fn. It is widely believed — but not known — that the Fibonacci

sequence contains infinitely many prime terms Fn. There are other
well-known sequences which satisfy (6). For example the Lucas Se-
quence satisfies the same recurrence but starts 1, 3, 4, 7 . . . . We call
this sequence L with the nth term denoted Ln. The reference [3] gives
up-to-date information about primes in these sequences.

It seems plausible that a divisibility sequence which satisfies a lin-
ear recurrence relation should always contain infinitely many primes,
provided one takes account of generic factorization. By this term, we
mean there is something about the structure of the sequence that com-
pels it to be composite for all sufficiently large n. For example, the
Lehmer–Pierce sequences coming from reciprocal polynomials take
values which are squares. For another example, consider the sequence
3n − 1: All of the terms are even so at most one, when n = 1, can
be prime. Nonetheless, we expect that the sequence 3n − 1/2 will be
prime infinitely often. More generally, any divisibility sequence un will
have all its terms divisible by the first so we look for prime values of
un/u1. There is another kind of generic factorization that you see,
for example, with the sequence 4n − 1. Whenever n > 1, the terms
will have non-trivial factors 2n − 1 and 2n + 1. Essentially the same
kind of argument explains the example given by Ribenboim in [12, p.
64]. He notes that the sequence 0, 1, 3, 8, 21, 55 . . . (the even terms of
the Fibonacci sequence) contains only one prime, even though it is a
divisibility sequence with u1 = 1 and it satisfies a linear recurrence re-
lation. Using the characterization given in [1], it is possible to explain
precisely when a linear divisibility sequence will have generic factoriza-
tion. What we are saying is that provided this generic factorization is
taken into account, one expects infinitely many primes to appear.

6. Elliptic Divisibility Sequences

We are now going to discuss divisibility sequences which satisfy a
different kind of recurrence relation. These come from elliptic curves,
and have many interesting and subtle properties. There are two ap-
proaches: one is very formal and elementary but hides the geometry,
the other shows how the curve is used but is more sophisticated.
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For the first approach, say that a divisibility sequence un n ≥ 0 is
an elliptic divisibility sequence if

um+num−n = um+1um−1u
2
n − un+1un−1u

2
m(7)

for all m ≥ n ≥ 1. For technical reasons, we restrict attention to
sequences that have u0 = 1, u1 = 1, u2u3 6= 0 and u2|u4; call these
sequences proper. Morgan Ward studied many properties of proper
elliptic divisibility sequences in [14]. Later on, we will explain in what
sense these sequences are ‘elliptic’ – it might seem surprising since there
do not seem to be any ellipses on show!

The recurrence relation (7) is less straightforward than a linear recur-
rence, and you might wonder what the terms of such a sequence look
like. The first thing to say is that there are familiar examples. For
example, the sequence un = n satisfies (7) and so does the sequence
0, 1,−1, 0, 1,−1, 0 . . . . But these are trivial examples so we go on to
talk about the important non-trivial examples.

In order to calculate terms, notice firstly that the single relation (7)
gives rise to two relations

u2n+1 = un+2u
3
n − un−1u

3
n+1, and(8)

u2nu2 = un+2unu
2
n−1 − unun−2u

2
n+1.(9)

The relation (8) comes about by setting m = n + 1 whilst (9) comes
about by setting m = n + 2 then replacing n by n − 1. The relations
(8) and (9) can be subsumed into the single relation

unubn/b(n+1)/2cc = ub(n+4)/2cubn/2cu
2
b(n−1)/2c−ub(n+1)/2cub(n−3)/2cu

2
b(n+2)/2c,

where b·c denotes, as usual, the integer part.
If you just specify the terms u0, . . . , u4 of a proper sequence then you

can use the relation to compute all the other terms in the sequence. It
is remarkable that you always end up with a divisibility sequence.

7. Primes in elliptic divisibility sequences

Our theme has to do with primes in divisibility sequences which
satisfy recurrence relations. For the Lehmer-Pierce sequences, we
studied the growth rates to decide whether checking for prime appear-
ance was feasible. Thus, the first natural question which occurs is to
decide the growth rate for a proper elliptic divisibility sequence. We
answered this question in [7].
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Theorem 4. Suppose un denotes the nth term of a non-trivial proper
elliptic divisibility sequence. There are constants κ ≥ 0 and B such
that

log |un| = κn2 +O
(
(log n)B

)
.

If κ = 0 then the sequence is periodic with finite period.

Thus the only interesting sequences from our point of view are those
with κ > 0. This means the nth term is approximately eκn

2
for large

n, so the sequences grow very rapidly indeed. From Theorem 4 we can
make a familiar deduction.

Corollary 2. There are only finitely many composite indices n for
which un is prime.

If we wish to examine particular sequences for prime occurrence, we
will need to choose a sequence whose growth rate κ is small. Thus
we find ourselves asking a similar sort of problem to the one Lehmer

faced. Can we find sequences with arbitrarily small growth rate? We
are going to discuss this elliptic analogue of Lehmer’s problem later.

In the papers [4] and [5], Chudnovsky and Chudnovsky con-
sidered the arithmetic of elliptic divisibility sequences. The following
examples are taken from [4]. The first 5 terms are specified, then the
first 100 terms are calculated. Table 1 shows prime appearance for
prime indices up to n = 100. Also shown are the corresponding growth
rates κ.

Initial terms Growth rate κ Prime incidence up to n = 100
0,1,1,1,-2 0.0560 5,7,11,13,23,61,71
0,1,1,1,6 0.1107 5,7,13,23,43,47
0,1,2,1,4 0.1262 5,7,71
0,1,1,2,7 0.1311 11,17,73
0,1,1,1,-9 0.1383 7,47,79
0,1,1,1,10 0.1432 7,13,41,61
0,1,1,4,1 0.1730 71,79
0,1,1,4,3 0.1737 5,7,13,53,71
0,1,1,5,2 0.2010 7,43
Table 1. Elliptic divisibility sequences from the paper
[4] of Chudnovsky & Chudnovsky.

Some of the primes in this table are very large. For example, the
term u79 in the third sequence from the end is a prime with 469 decimal
digits. It might look as though we should be able to keep computing
terms and find larger and larger primes: This was thought to be the
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case for some time. But if you run the sequences out to n = 500 you
find no new primes. In [7] we provide a heuristic explanation of why we
believe these sequences should stop producing primes beyond a certain
point.

Finally, suppose that the terms u2 and u3 in a proper elliptic divis-
ibility sequence are not coprime, say the prime p divides both terms.
Then p|u4, one of the conditions for being a proper sequence. Now one
can show, by induction, using the formulæ (8) and (9), that all the
terms will be divisible by p. Thus, in these cases, we can see that we
will never obtain infinitely many primes in the sequence.

Suppose we write d = gcd(u2, u3) and let S denote the set of primes
which divide d. Write vn to be the same as un except with the primes
in S removed. Of course this is still a divisibility sequence, although it
might not satisfy (7). Now that we have removed generic factorization
from un, we can examine the sequence vn for prime appearance. In [7],
the growth rate of vn was considered.

Theorem 5. For some 0 < K < 2, and λ ≥ 0

log |vn| = λn2 +O(nK).

If we wish to examine these sequences vn for prime appearance then
we need to find examples where the growth rate λ is small. It is help-
ful then to supply some of the background from the theory of elliptic
curves. We will do this in the next section before supplying some ex-
amples of sequences vn with small λ. The Elliptic Lehmer Problem
states that the non-zero values of λ are bounded below uniformly away
from zero. It is a very difficult problem.

8. Elliptic Curves

Another approach to elliptic divisibility sequences is to start with an
elliptic curve

y2 = x3 + ax+ b(10)

with coefficients a, b in Z. An excellent reference for this topic is
Silverman’s book [13]. We must always suppose that the quantity
4a3 + 27b2 6= 0. This condition is equivalent to the cubic polyno-
mial x3 + ax + b having no repeated zeros. If Q = (x, y) is an integer
point on the curve then we can use it to begin an elliptic divisibility
sequence. Define

ψ2 = 2y,

ψ3 = 3x4 + 6ax2 + 12bx− a2,

ψ4 = 4y(x6 + 5ax4 + 20bx3 − 5ax2 − 4abx− 8b2 − a3).
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Now the formulæ (8) and (9) can be used to generate all the other
terms of an elliptic divisibility sequence un = ψn. This might seem an
incredibly complicated way to generate an elliptic divisibility sequence!
Before we explain why we do things this way we will exhibit a table to
show the prime appearance and growth rates for various sequences vn.
The table shows the coefficients a, b in (10) together with the starting
point Q = (x, y), the growth rate h for the sequence vn, N , the number
of prime values of vn with n prime up to 500, and the set S consisting
of the primes which divide gcd(u2, u3).

a b Q h N S
-12 20 (-2,6) 0.015621 8 {2, 3}
-4 4 (2,2) 0.020132 7 {2}
-1 1 (1,1) 0.024904 8 {2}
-67 226 (-3,20) 0.027047 9 {2, 5}
-187 991 (7,5) 0.027921 5 {2, 5}
-3 34 (5,12) 0.029759 6 {2, 3}
-21 61 (5,9) 0.038373 4 {2, 3}
-145 1825 (5,35) 0.038793 7 {2, 5, 7}

Table 2. Prime appearance and growth rate.

The formulæ in (11) come about because our elliptic curve has an
algebraic structure. The points on the curve (10) actually form a group
in the following sense. Suppose we draw the tangent to our starting
point Q, then this tangent will meet the curve again at a point (we
must allow the possibility that this is the point ‘at infinity’). This
point might not be an integral point, but its coefficients will certainly
be rationals. We write 2Q for the reflection of this new point in the
x-axis. Now join this new point 2Q to Q by a straight line which will
meet the curve at a new point, again rational. The reflection of this
new point in the x-axis we call 3Q. By induction, we form a sequence
of points on the curve nQ and each of them have rational coordinates.
What is going on here is that we are using the natural group operation
on the curve. If we wrote this operation using a ‘+’ sign then the
point nQ really is the result of adding Q to itself n− 1 times using the
operation ‘+’. The general case is illustrated in Figure 2, where points
P and Q are added to make R.

The connection with our complicated definitions at the start of this
section is that the x-coordinate of nQ can be expressed in terms of
the coordinates of Q and a and b as φn/ψ

2
n with ψn defined as above.

Here φn is another polynomial which can also be defined by a recur-
sion formula. The arithmetic of elliptic curves has been studied very
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Figure 2. R = P +Q on an elliptic curve

intensely and a great deal of knowledge now exists that can be used in
the study of elliptic divisibilty sequences. At the same time, problems
such as the Elliptic Lehmer Problem can be stated simply in terms of
elliptic divisibilty sequences. The growth rates we discussed earlier can
be understood in terms of quantities related to points on the curves:
The quantity λ is usually known as the global canonical height. We
used knowledge of elliptic curves to find sequences with small growth
rates. Table 2 is taken from [7].

9. Periodic Points

Suppose X denotes a set and T : X → X a map on X. We define,
for every n > 0

Pern(T ) = |{x ∈ X : T n(x) = x}|.(11)

This is the number of periodic points of order n for the map T on X.
In dynamical systems the properties of iterates of maps are studied.
Often, the set X will come equipped with some topological structure
and T will be a map which preserves that structure. For example, X
could be a topological space and T could be a continuous map. The
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following examples show the connection between these ideas and our
earlier ones about sequences.

Example 6. Let X = [0, 1) denote the additive circle, actually a
group. Let T : X → X denote the map T (x) = 2x mod 1. This
is a continuous map of the compact group X and it is easy to check
that

Pern(T ) = 2n − 1.

Thus the Mersenne sequence appears again, this time in connection
with a simple dynamical system.

We say a sequence of positive integers is realizable if it agrees with
Pern(T ) for any map T on any set X. The next example shows that
the Lehmer-Pierce sequences are realizable.

Example 7. Let f(x) = xd + · · · + a0 denote an integral polynomial,
and X = [0, 1)d the d-dimensional torus. The companion matrix of f
acts by multiplication on X (and reducing mod 1) to give our map T .
The number of periodic points is given by the formula

Pern(T ) = ∆n(f).

A different kind of example realizes the Lucas sequence.

Example 8. Let X be the space of all sequences of 0’s and 1’s in which
a 1 is always followed by a 0. This has a natural topology which turns
it into a compact space. If T now denotes the map which shifts any
sequence along one place to the left then

Pern(T ) = Ln.

Notice that in this example, the map is not an endomorphism of a
group as it was with the first two examples. When the map is a group
endomorphism, we always get a divisibility sequence for the sequence
of periodic points. This is because, the equation T n(x) = x can be
written (T n − I)(x) = 0, where I denotes the identity map on X and
thus the solutions x lie in the kernel of an endomorphism. If n|m then
the solutions of T n(x) = x form a subgroup of the group of solutions
of Tm(x) = x and Legendre’s Theorem implies the statement about
divisibility.

It seems a natural question to ask whether the Fibonacci sequence
itself can represent the periodic points of a dynamical system and the
answer is no. In fact, the following was proved recently (see [10]).

Theorem 9. Suppose U = a, b . . . denotes any sequence of positive
integers which satisfies (6). Then U is realizable if and only if b = 3a.
In other words U is realizable if and only if it is a multiple of L, the
Lucas sequence.
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The method of proof for this theorem rests on an apparently simple,
but very profound, observation. Let r(n) denote a sequence of non-
negative integers. Write r̂(n) = (r ∗µ)(n) for the convolution of r with
the Möbius function,

r̂(n) =
∑
d|n

µ(n/d)r(d).

Then r(n) is realizable if and only if

n|r̂(n) and r̂(n) ≥ 0 for every n ≥ 1.(12)

This condition can be used to rule out particular examples of se-
quences as being realizable. For example, the condition above says
that if n = p is a prime then

r(p) ≡ r(1) mod p.(13)

Consider the elliptic divisibility sequences in Table 1. Each of the
sequences of absolute values can be tested to see if they are realizable.
For the sequence 0,1,1,1,-2, the next term is -3 and already this fails
the condition (13) when p = 5. Similarly, the next term in the sequence
0, 1, 1, 1, 6 is 5 and this also fails the condition (13) when p = 5. More
generally, if we specify the terms 0, 1, 1, 1, c ≥ 2 then the formula (8)
gives u5 = c− 1. The only way this can be congruent to 1 mod 5 is if
c ≡ 2 mod 5. In this way it is easy to generate many elliptic divisibility
sequences which fail to be realizable. In fact, so far, we have not found a
single elliptic divisibility sequence whose absolute values are realizable.

10. Dynamics and the Mersenne Prime Conjecture

In this last section we will draw together some of the threads in an
attempt to suggest an approach to the Mersenne Prime Conjecture.
We have noticed that the sequences which are realizable also seem to
contain infinitely many primes, having taken account of any generic
factorization. By contrast, elliptic divisibilty sequences seem never to
be realizable, nor to contain infinitely many primes. Of course one
cannot press sequences neatly into two camps. For example, the Fi-

bonacci sequence is conjectured to have infinitely many primes but is
not realizable.

However, this behaviour does cause us to speculate that a fruitful ap-
proach to the Mersenne Prime Conjecture (and related conjectures
for Lehmer-Pierce and Lucas sequences) might be through dynam-
ical systems. Specifically, does the fact that they count periodic points
(and therefore come from numbers of points on individual orbits) en-
able anything to be said about their arithmetic properties?
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