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Abstract� The output feedback pole assignment problem is a classical problem in linear systems
theory� In this paper we calculate the number of complex dynamic compensators of order q assigning
a given set of poles for a q�nondegenerate m�input� p�output system of McMillan degree n � q�m�p�

�	 �mp� As a corollary it follows that when this number is odd� the generic system can be arbitrarily
pole assigned by output feedback with a real dynamic compensator of order at most q if and only if
q�m � p� �	 �mp � n�
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�� Introduction� The output feedback pole assignment of linear systems with
static or dynamic compensators is a classical problem in control theory and many the�
oretical and numerical research papers have been devoted to this problem�

Although the systems involved are linear� the problem is in fact not linear� It was
Brockett and Byrnes ��� who �rst explained the pole assignment problem with static
compensators as an intersection problem in a compacti�ed set of static compensators�
the Grassmann manifold Grass	m�m 
 p�� In making the connection to the classical
Schubert calculus they were able to show that there are

d	m� p� � degGrass	m�m
 p� �

��� � � � 	p� 
��	mp��

m�	m
 
�� � � � 	m
 p� 
��
	
�
�

complex static output feedback laws which assign a set of poles for a nondegenerate m�
input� p�output linear system of McMillan degree n � mp� In particular if the number
d	m� p� is odd� pole assignment by real static feedback is possible� because the set of
complex solutions has to be invariant under complex conjugation� Moreover even if
d	m� p� is even Wang showed in ���� using algebro geometric techniques that a real
solution exists for the generic system as soon as mp � n�

People have been looking for similar results for the dynamic pole assignment prob�
lem for a long time� A �rst attempt was made by Byrnes in ���� Recently Rosenthal
interpreted in �
�� 
�� the pole assignment problem with dynamic compensators� again
as an intersection problem in a compacti�ed space of dynamic compensators which
we denote by Kq

m�p� It was also proved in �
�� that if a plant has McMillan degree
n � q	m
 p� 
� 
mp and is q�nondegenerate then there exist

d	m� p� q� � degKq
m�p	
���
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complex dynamic feedback compensators of order q which assign a set of n 
 q closed
loop poles� At this point we want to mention that all major results derived in ��� 
�� ���
are based on a careful study of the associated pole assignment map� 	Compare with
Section � for more details�� Indeed the number d	m� p� q� can also be viewed as the
mapping degree of the associated pole assignment map and this map has geometrically
the type of a central projection�

One goal of our paper is to derive a formula for d	m� p� q�� Historically the for�
mula 	
�
� for d	m� p� � d	m� p� �� was �rst discovered in 
��� by Hannibal Schu�
bert �
��� a German high school teacher� using a symbolic formalism known as Schu�
bert calculus� Using modern language the number d	m� p� is equal to �mp

� where ��
denotes the �rst Chern class of the classifying bundle over the Grassmann manifold
Grass	m�m
 p�� By applying Pieri�s formula 	see Section � for more details�

	i�� i�� � � � � im� � �� �
X

il���il��

	i�� � � � � il � 
� � � � � im�	
���

repeatedly to 	p� p 
 �� p 
 �� � � � � p
m� � ��� one can compute the number d	m� p� �
degGrass	m�m
 p��

In �
�� we de�ned a set of subvarieties of Kq
m�p similar to the Schubert varieties

of Grass	m�m 
 p�� and proved a geometric formula similar to Pieri�s formula 	
����
This enables us to express d	m� p� q� � degKq

m�p as the solution of a partial di�erence
equation with boundary condition� In this paper 	Section �� we will solve this di�erence
equation and we will derive a closed formula for d	m� p� q� which is valid for all positive
integers m� p and q� From this formula we �nally will derive several new results which
predict real and complex solutions assigning a speci�c set of closed loop poles� One of
the main results of this paper is�

Theorem ���� The poles of an m�input p�output q�nondegenerate linear system
of McMillan degree

n � q	m
 p � 
� 
mp	
���

can be assigned arbitrarily by using output feedback with complex dynamic compensator
of order at most q� and there are

d	m� p� q�

� 	�
�q�m���	mp
 q	m
 p���
X

n������nm�q

Y
k�j

	j�k
	nj�nk�	m
p��

mY
j��

	p
j
nj	m
p��
��

	
���

complex solutions for each set of poles� In particular� if d	m� p� q� is odd a real solution
always exists� Moreover when d	m� p� q� is odd� the generic system can be arbitrarily
pole assigned by output feedback with real dynamic compensators of order at most q if
and only if

n � q	m
 p � 
� 
mp�	
���
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The variety Kq
m�p which parameterizes the set of m�input� p�output compensators

of McMillan degree q can also be viewed as a parameterization of the space of rational
curves of degree q on the Grassmann variety Grass	m�m 
 p�� This geometric link
originates from the well known Hermann�Martin identi�cation �
��� 	Compare also
with ��� 
����

Surprisingly to us there has been recently a tremendous interest in the intersection
theory of parameterized curves 	of arbitrary genus� on Grassmann varieties and other
homogeneous spaces ��� �� ��� �
�� Researchers working in conformal quantum �eld
theory conjectured several new intersection numbers and an interesting formula for all
numbers d	m� p� q�� di�erent from 	
��� was part of this conjecture� Readers interested
in the Physics behind this conjecture are referred to Vafa ����� The conjecture itself
is formulated by Intriligator in ��� as well as in ���� In �
�� we were able to verify this
conjecture for all numbers d	m� p� q�� More recently Siebert and Tian ���� presented a
proof covering the conjecture for all spaces of parameterized curves on a Grassmann
variety� For readers interested in these connections we will give some more details at
the end of Section ��

The paper is structured as follows� In the next section we review the notion of an
autoregressive system� This class of systems generalizes the class of transfer functions
and it allows us to de�ne the pole placement map using the behavioral approach to
systems modeling as proposed by Willems ���� ���� In this framework the points of the
variety Kq

m�p naturally parameterize all autoregressive compensators of a �xed number
of inputs� outputs and a bounded McMillan degree� We also restate the main results
derived in �
��� which were in part the motivation of this paper� We conclude this
section with two new theorems 	Theorem ��
� and Theorem ��
�� which sharpens the
main results derived in �
���

The main theorem 	Theorem 
�
� will be proven in Section �� The proof involves
the review of the generalized Pieri formula which was derived in �
��� In order to derive
the new formula 	
��� describing the degree of the pole placement map in the critical
dimension we will solve the partial recurrence relation mentioned earlier� This leads
not only to a closed formula for the degree of the pole placement map in the critical
dimension but also to a formula of the degree of some generalized Schubert varieties
	Theorem ����� The section will be concluded with several simpli�ed formulas covering
particular situations�

In Section � we concentrate on the question for which triples m� p� q the degree
d	m� p� q� is odd respectively even� In Theorem ��� and Corollary ��� we present a
relatively simple combinatorial procedure which computes the mod � degree of the
variety Kq

m�p for arbitrary m� p� q� Using this procedure we prove the existence of odd
degrees even if min	m� p� � �� covering in this way many multi�input� multi�output
feedback situations� 	If min	m� p� � � the degree of all Grassmann varieties is even� In
part because of this there do not exist any positive pole placement results over IR in
the critical dimension� i�e� when n � mp�� We conclude the section with a complete
description of all odd numbers d	m� p� q� for q � �� 
� ��

Finally in the last section we merge the derived results and provide a collection of
corollaries and consequences� In this section we also cover situations when the plant is
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represented by a �traditional� strictly proper transfer function or when the compensator
is supposed to be a proper transfer function only�

�� The set of autoregressive systems Aq
m�p� the projective variety Kq

m�p

and the pole placement map� In this section we collect some mathematical prelim�
inaries and simultaneously establish our notation� We will develop the theory using the
behavioral approach of Willems ���� because we believe that the problem formulation
in this setting is very natural� For the relation of this formulation to the traditional
transfer function formulation we refer to �
�� ��� ����

First we review the notion of signal space� behavior and autoregressive system� For
this let IK denote either the set of real numbers or the set of complex numbers� i�e�
IK � IR or C� Let IKIR denote the set of all functions � � IR � IK� With respect to
the usual addition and scalar multiplication of functions� IKIR is a real vector space� A
linear subspace H � IKIR which consists of functions which are arbitrarily many times
di�erentiable will be called a signal space 	see ��� ����� In other words H is a linear
subspace which is invariant under the linear transformation d

dt
� Usually we will assume

that H � C�	IR� IK�� though other function spaces are well possible� 	Compare with ���
page ��� and ������

Let p	s� be a polynomial with coe�cients in IK� i�e� p	s� � IK�s�� Such a polynomial
induces a linear transformation �p � H � H� w	t� �� p	 d

dt
�w	t�� More generally consider a

p	k polynomial matrix P 	s� with entries in IK�s�� P 	s� induces a linear transformation

�P � Hk �� Hp	��
�

w	t� ��� P 	
d

dt
�w	t��

Using the language of Willems ���� we call the kernel of the linear transformation �P the
behavior and will denote this subset of the signal set Hk by B�

In general the behavior B � ker	P 	 d
dt
�� is an in�nite dimensional IR�vector space

of the signal space Hk� In the case that P 	s� is square and invertible it is however well
known that the behavior B has real dimension n � deg detP 	s�� Moreover the dynamics
of this autonomous system is described by the roots of the characteristic polynomial
detP 	s� � ��

Recall that two p	k polynomial matrices P 	s� and �P 	s� are called 	row� equivalent
if there is a unimodular matrix U	s� with �P 	s� � U	s�P 	s�� Clearly row equivalent
matrices de�ne the same behavior� On the other hand if the signal space is su�ciently
rich� e�g� if C�	IR� IR� � H� one has the following result� 	Compare with ��� Section ����
and �
�� Theorem ������

Lemma ���� �cf� ���� Corollary 	�
�� If C�	IR� IR� � H then P 	s� and �P 	s� de
ne
the same behavior if� and only if they are row equivalent�

Based on this result we de�ne�
Definition ���� An equivalence class of full rank p 	 k polynomial matrices is

called an autoregressive system�
The class of autoregressive systems generalizes the class of transfer functions in the

following way� Consider a proper or improper p	m transfer functionG	s�� AssumeG	s�
has a left 	polynomial� coprime factorization D��	s�N	s� � G	s�� If �D��	s� �N	s� �
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G	s� is a second left coprime factorization then it is well known that the p 	 	m
 p�
polynomial matrices 	N	s� D	s�� and 	 �N	s� �D	s�� are row equivalent� In other words
	N	s� D	s�� de�nes an autoregressive system�

The following de�nition extends the notion of McMillan degree to the class of
autoregressive systems�

Definition ���� �
�� ��� ��� The degree of an autoregressive system P 	s� is given
by the maximal degree of the full size minors of P 	s��

Next we would like to introduce feedback� For this consider a p 	 	m
 p� autore�
gressive system P 	s� 	the plant� and an m 	 	m 
 p� autoregressive system C	s� 	the
compensator�� The closed loop system is then the dynamical system described through
the system of autoregressive equations

�
P 	 d

dt
�

C	 d
dt
�

�
� w	t� � ��	����

Note that the square polynomial matrix

�
P 	s�
C	s�

�
is in general not of full rank� i�e� 	����

describes not an autoregressive system as de�ned in De�nition ���� In order to single
out the compensators which give rise to a closed loop autoregressive system we de�ne
	compare with ������

Definition ���� A compensator C	s� is called admissible if the closed loop
characteristic polynomial

�	s� �� det

�
P 	s�
C	s�

�

� ��	����

We are now in a position to de�ne the pole placement map� Let P 	s� be a p 	
	m 
 p� autoregressive system of McMillan degree n and denote with Aq

m�p the set of
all m	 	m 
 p� autoregressive systems of McMillan degree at most q� Let B

P
� Aq

m�p

be the set of autoregressive systems which are not admissible compensators� Finally
identify the set of nonzero polynomials of degree at most d with the projective space
IPd� Then de�ne�

Definition ���� The pole placement map for a plant P 	s� is de�ned as the
rational map given by�

�P � Aq
m�p �BP �� IPn�q	����

C	s� ��� �	s� � det

�
P 	s�
C	s�

�

We want to note at this point that the roots of �	s� do not depend on the particular
representation of the plant P 	s� or the compensator C	s�� Indeed if �P 	s� � U�	s�P 	s�
and �C	s� � U�	s�C	s� then ��	s� � detU�	s� � detU�	s� � �	s�� Finally the roots of �	s�
correspond to the poles of the closed loop system in the transfer function formulation�
	See �
�� for details��
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For a given plant P 	s� we usually say that P 	s� is pole assignable 	almost pole
assignable� in the class of feedback compensators of degree at most q if the map �P is
onto 	almost onto�� Though many results are known when a system is pole assignable
in the class of feedback compensators of order at most q over the complex numbers
C �
��� the question is still far from being solved over the reals and in the ungeneric
situation� 	Compare with ������ Clearly a necessary condition for pole assignability is
the following property�

Definition ���� 	���� ���� An autoregressive system P 	s� is called controllable or
irreducible if the matrix P 	s� is of full row rank for all s � C�

Indeed if the system P 	s� is not controllable� the full size minors of P 	s� have a
common factor which is necessarily a factor of the closed loop characteristic polyno�
mial �	s�� Clearly� even if P 	s� is controllable one cannot expect that P 	s� is pole
assignable in the set of feedback compensators of degree at most q� The following
de�nition singles out an interesting class of systems which has the pole assignability
property in the critical dimension 	i�e� when dimAq

m�p � dim IPn�q� over the complex
numbers�

Definition ��	� 	�
��� A plant P 	s� is called q�nondegenerate if all compensators
C	s� of order at most q are admissible� To put it in other words P 	s� is q�nondegenerate
if the set B

P
introduced in 	���� is empty�

In the last part of this section we establish the connection to our earlier work
in �
�� ���� First we would like to point out the following observation� The pole
placement map �P as introduced in 	���� depends actually only on the full size minors
of P 	s� and C	s�� In other words if C	s� and �C	s� have the same full size minors�
then the resulting closed loop characteristic polynomial �P 	C	s�� and �P 	 �C	s�� have
the same roots� Based on this fact we assign to each autoregressive system C	s� � Aq

m�p

its full size minors� i�e� we consider the following Pl�ucker map�

	 � Aq
m�p �� IP	IKq�� ��mIKm�p�	����

C	s� ��� c�	s� � � � � � cm	s��

Here cl	s� denotes the l�th row vector of the m	 	m
 p� matrix C	s�� Of course when
describing the map 	 with respect to the standard basis

fei� � � � � � eim j 
 � i� 
 � � � 
 im � m
 pg	����

it is well known that the coordinates are exactly the full size minors of the matrix C	s��
In particular the map 	 is well de�ned�

In the following� whenever we will work with coordinates� we will assume the stan�
dard basis 	����� More speci�cally if

		C	s�� �
X

i�I�m�

fi	s� � ei� � � � � � eim	����

we will use the coordinates

fi	s� � z�i�q�s
q 
 z�i�q���s

q�� 
 � � �
 z�i�	��	����
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The map 	 is in general not an embedding as it is the case for the classical Pl�ucker
embedding 	the case q � ��� Indeed as shown in �
�� 		C	s�� � 		 �C	s�� if� and only
if the matrices C	s� and �C	s� are H�equivalent� 	See �
�� for details�� On the other
hand if C	s� and �C	s� are both controllable 	see De�nition ���� then C	s� and �C	s� are
H�equivalent if� and only if they are row equivalent� The following Lemma summarizes
those statements�

Lemma ��
� 	 restricted to the set of controllable autoregressive systems is an
embedding� in particular 	 is generically one�one�

From the earlier remarks it is clear that the pole placement map �
P
factors over

the image of 	� We introduce therefore the following notation�
Definition ���� Kq

m�p denotes the image of Aq
m�p under the map 	�

By de�nition the set Kq
m�p is a subset of the projective space

IPN �� IP	IKq�� � �mIKm�p��

Note that the Pl�ucker coordinates ffi	s�g introduced in 	���� satisfy a set of quadratic

relations coming from the description of Grass	m�m
 p� in IP	
m�p
m ��� ��� p� ���� Those

relations must hold for all s � IK� Equating coe�cients one gets a necessary set of
quadratic relations for the coordinates z�i�d� as well� The following Theorem states that
those relations de�ne Kq

m�p�

Theorem ���� 
��	��� Kq
m�p is a projective �sub��variety of IPN � The de
ning

relations are given by a set of homogeneous quadratic polynomials obtained from equating
the coe�cients in the Pl�ucker relations� The variety Kq

m�p is in general singular and
has dimension q	m
 p� 
mp�

The following example explains the situation�
Example ����� 	�
��� The only Pl�ucker relation of Grass	�� �� in IP
 is given by

x��x�� � x��x�� 
 x��x�� � ��	����

Let fij	s� � z�ij���s
 z�ij�	� and

f��	s�f��	s�� f��	s�f��	s� 
 f��	s�f��	s� � ��	��
��

we then have three quadratic equations

z������z������� z������z������ 
 z������z������ � �

z������z����	�� z������z����	� 
 z������z����	� 
 z����	�z������� z����	�z������ 
 z����	�z������ � �

z����	�z����	�� z����	�z����	� 
 z����	�z����	� � �

which de�nes the projective variety K�
��� in IP��� Because dimK�

��� � � it follows that
K�

��� is a complete intersection and by B ezout�s theorem ��� the degree is equal to �� � ��
As we can describe the compensator C	s� through the vector

c	s� � c�	s� � � � � � cm	s�	��

�

we can describe the plant P 	s� through the vector

p	s� � p�	s� � � � � � pp	s��	��
��
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Finally the closed loop characteristic polynomial is given through the linear pairing


 p	s�� c	s� ��� c�	s� � � � � � cm	s� � p�	s� � � � � � pp	s� � �	s��	��
��

Note that the linear pairing 
�� originally de�ned on Kn
p�m	Kq

m�p extends linearly

to the product space IP	IKn�� � �pIKm�p�	 IP	IKq�� � �mIKm�p��
Next we show that the pole placement map �

P
induces a central projection in

the projective space IPN � IP	IKq�� � �mIKm�p�� For this consider a �xed plant P 	s�
represented through the vector p	s� � p�	s� � � � � � pp	s�� Consider the subspace

E
P
�� fc	s�j 
 p	s�� c	s� �
 �g � IPN �	��
��

Then one has a central projection 	compare with �
�� ����

L
P

� IPN � EP �� IPn�q	��
��

f	s� ��� 
 g	s� � f	s� �

Let �
P
be the restriction map L

P
j�Kq

m�p�EP �� i�e�

�
P

� Kq
m�p � EP �� IPn�q�	��
��

The next Lemma explains the relation between the maps �
P
� L

P
and the pole placement

map �
P
�

Lemma ����� The pole placement map �
P

introduced in 	���� factors over the
variety Kq

m�p through

�
P
� L

P
� 	�	��
��

The map �
P

is onto �almost onto� if� and only if �
P

is� Finally a plant P 	s� is q�
nondegenerate if� and only if Kq

m�p � EP � ��
Proof� From the de�nition of the linear pairing 
�� it is clear that �

P
� L

P
� 	�

Moreover because

	 � Aq
m�p � Kq

m�p	��
��

is onto the second statement follows� Finally if P 	s� is q�degenerate there is a compen�
sator C	s� � Aq

m�p which is not admissible� But this is equivalent to the statement

c�	s� � � � � � cm	s� � Kq
m�p � E

P
�	��
��

This Lemma will allow us to study the pole assignment problem completely in the
projective space IPN � In the geometric picture the set Kq

m�p � EP will be of crucial
importance� Note that

		B
P
� � Kq

m�p � EP �

By abuse of notation we will denote Kq
m�p�EP with BP as well� the last Lemma justi�es

this choice� The set B
P
is sometimes called the base locus of the central projection �

P
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and by the last Lemma this set is empty if� and only if the plant P 	s� is q�nondegenerate�
The following theorem gives the result which mainly motivated this paper�

Theorem ���� 
��	��� For a q�nondegenerate system of McMillan degree n �
q	m
 p � 
� 
mp the pole assignment map �

P
is onto over C and there are degKq

m�p

�counted with multiplicity� complex dynamic compensators assigning each set of poles�
In particular� a real solution always exits if degKq

m�p is odd�
Proof� Since B

P
� � the pole placement map �

P
� Kq

m�p � IPn�q is �nite mor�
phism ��
� Chapter I� x�� Theorem ��� Therefore �

P
is onto over C ��
� Chapter I� x��

Theorem �� and deg�
P
� degKq

m�p �
�� Corollary 	������
Actually we can strengthen this result�
Theorem ����� Let P be a system of degree n 
 q	m
 p � 
� 
mp� If

dimB
P
� dimE

P
�Kq

m�p � q	m
 p� 
mp� n� q � 
	�����

then �
P
is onto over C� and over IR if degKq

m�p is also odd�
Proof� Let H be the q	m
 p� 
mp � n � q codimensional projective subspace in

IP
N

such that

B
P
�H � �	���
�

	such H exists by �
�� Corollary 	�������� 	� � Kq
m�p � IPq�m�p��mp be the central

projection with center E
P
� H and 	� � IPq�m�p��mp � 	�	BP

� � IPn�q be the central
projection with center 	�	EP

�� Then 	� is onto over C� and over IR if degKq
m�p is also

odd� and so is

�
P
� 	� � 	��

Theorem ����� The pole assignment map �
P
is onto over C for the generic system

if and only if

n � q	m
 p � 
� 
mp�	�����

This condition is also su�cient over IR if degKq
m�p is odd�

Proof� The necessity was proven by Willems and Hesselink in ����� On the other
hand if n � q	m
 p� 
� 
mp the generic system is q�nondegenerate by �
�� Corollary
���� and the su�ciency follows from Theorem ��
�� If n 
 q	m
 p � 
� 
mp then it
follows for the generic system from �
�� Theorem ���� that

dimB
P
� q	m
 p� 
mp� n� q � 
�	�����

By Theorem ��
� the su�ciency follows�

�� The subvarieties Z� of the variety Kq
m�p and a closed formula of their

degrees� In this section we derive a closed formula for the degree of a set of generalized
Schubert subvarieties of the variety Kq

m�p� As a corollary we will obtain a formula for
the mapping degree of the pole placement map in the critical dimension� For the
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convenience of the reader we quickly review some geometric aspects of the classical
Pieri formula 	
���� For this consider the index set

I � fi � 	i�� � � � � im�j
 � i� 
 � � � 
 img
equipped with the partial order

	i�� � � � � im� � 	j�� � � � � jm� � il � jl�l�	��
�

If a m�dimensional plane P � Grass	m�m
p� � IP	�mIKm�p� is expanded in terms
of the standard basis 	����� i�e� if P is represented through the vector

x ��
X
i�I

xi � ei� � � � � � eim	����

we will call the coordinates xi the Pl�ucker coordinates 	see ��� p� ���� of the plane P �
The set

Si �� fx � Grass	m�m
 p�jxj � � for all j 
� ig	����

is called a Schubert variety� Let Hi be the hyperplane de�ned by setting xi � � and let
jij ��Pm

l��	il � l�� Then the geometric version of Pieri�s formula states that

Si �Hi �
�
j�I

j�i� jjj�jij��

Sj	����

and that the intersection multiplicity along each Sj is 
� In terms of the intersection
ring� Si represents a Schubert cycle 	i�� i�� � � � � im� and Hi represents the Schubert cycle
�� �� 	p� p 
 �� p 
 �� � � � � p 
m� and the geometric intersection is expressed through a
formal multiplication as given in 	
���� Readers who want to learn more about Schubert
calculus are referred to the excellent survey article of Kleiman and Laksov ����

In �
�� we proved a similar formula as given in 	���� for subvarieties of Kq
m�p� In

order to explain this generalized Pieri formula we �rst re�index the coordinates z�i�d�
of Kq

m�p�
Definition ���� For each 	i! d�� i � 	i�� � � � � im�� 
 � i� 
 � � � 
 im � m
 p� let

� �� 	��� � � � � �m� be de�ned through�

�l �

�
�d
m�	m
 p� 
 il�d�m
d�m� for l � 
� �� � � � �m�d
m� 
m� d
	�d
m� 
 
�	m
 p� 
 il�d�m
d�m��m for l � m�d
m� 
m� d
 
� � � � �m�

Using this reindexing we can associate to every coordinate z�i�d� of Kq
m�p a new

coordinate z�� The following example shows the relation between the indices 	i! d�
and ��

z�i�	� � zi�

z�i��� � z�i������im�i��m�p��

z�i��� � z�i������im�i��m�p�i��m�p��

���

z�i�m� � z�i��m�p�����im�m�p��

z�i�m��� � z�i��m�p�����im�m�p�i����m�p���

���
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Note that the indices � belong to the index set

�I �� f� � Ij�m � �� 
 m
 pg	����

which is by de�nition a subset of the index set I� In particular �I is also equipped
with a partial order� Using this partial order we can now de�ne an interesting set of
subvarieties of Kq

m�p�
Definition ����

Z� �� fz � Kq
m�pjz� � � for all � 
� �g	����

The main results of �
�� are summarized as follows�
Proposition ��� 
������ For each index � Z� is a subvariety of dimension j�j�

If H� is the hyperplane of IP
N

de
ned by z� � � then

Z� �H� �
�
���I

���� j�j�j�j��

Z�	����

and the intersection multiplicity along each Z� is 
�
Using B ezout�s theorem 	��� Theorem 
����� the expression 	���� translates into a

partial recurrence relation� which the degrees of the varieties Z� have to satisfy�
Corollary ���� ��
�

degZ� �
X
���I

���� j�j�j�j��

degZ��	����

The partial recurrence relation 	���� has to be satis�ed for the whole index set
�I� It is possible to depict this relation with the help of a Hasse diagram� A Hasse
diagram corresponding to the variety Z� is a directed graph� whose vertices are all
� � �I� � � �� The directed edges � � � are precisely those ordered pairs such that �
covers � 	i�e� � � � and j�j � j�j
 
�� Then according to Corollary ���� the degree of
Z� can be computed graphically in the following way� If we label the vertices in such
a way that the number on 	
� �� � � � �m� is 
 and the number on � is the sum of the
numbers on the vertices covered by �� then the number on � is deg Z�� Following is an
example of Z�
��� � K�

���� Note that Rosenthal obtained degK�
m�p � �� by computing

the coe�cients of the Hilbert polynomial using the computer program CoCoA in �
���
For comparison we also include the Hasse diagram of the Schubert variety S�
���� whose
underlying diagram corresponds to all indices i � I� i � 	�� ���
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�
���
���



�
���
���QQs

���
��� �������
���QQs���

����������
���
���QQsQQs

������� ������
���QQs���

������
���
�
QQs ���QQs


���
� ������
QQs��� ���

����
�������
QQs ���QQs

���
�������
QQs��� ���

����������
QQs ���

�����
���

�����

Hasse Diagram of Z�
��� Hasse Diagram of S�
���

��
�
���
���QQs

�	�
��� �
�����
���QQs ���QQs

���
��� ������� �������
QQs��� QQs��� QQs���

���
��� ������� �	����� ������
QQs ���QQs ���QQs ���QQs

������� ������� ������ �����
���QQs ���QQs ���QQs ���


���
� ������ 
����� �����
QQs ���QQs QQs��� ���


���
� ������ �����
QQs��� QQs��� ���

������ ����
� �����
QQs ���QQs ���

���
�������
QQs��� ���

����������
QQs ���

�����
���

�����

From above example one can see that the Hasse diagram of Z� can be obtained
by �cutting o�� all the vertices of I which are not in �I in the Hasse diagram of S��
If we use d	��� � � � � �m� for the degree� then both degZ� and deg S� satisfy the partial
di�erence equation

d	��� � � � � �m� �
mX
l��

d	��� � � � � �l � 
� � � � � �m�	����

subject to the initial condition

d	
� �� � � � �m� � 
	��
��

and subject to the boundary conditions

d	�� � � � � �m� � �	��

�

d	� � � � k� k� � � �� � ��	��
��

degZ� is subject to one more boundary condition� namely

d	k� � � � � k 
m
 p� � ��	��
��

The computation of the degrees of the varieties Z� is therefore reduced to the
solution of a partial di�erence equation with boundary conditions� The next theorem
provides a closed formula for this problem�

Theorem ����

deg Z� � j�j� X
n������nm�	

Q
k�j	�j � �k 
 	nj � nk�	m
 p��Q

j	�j 
 nj	m
 p� � 
��
	��
��

with the convention that 

k� � � if k 
 ��
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Proof� Let g	�� � deg S�� Then 	see �

� p� 
��� and �����

g	�� � j�j�

Y
k�j

	�j � �k�

mY
j��

	�j � 
��

� j�j� det

�
������

�
�������

�
�������

� � � �
����m��

�
�������

�
�������

� � � �
����m��

���
���

���
�

��m����
�

��m����
� � � �

��m�m��

	





�	��
��

and 	��
�� becomes

degZ� �
X

n������nm�	

g	�� 
 n�	m
 p�� � � � � �m 
 nm	m
 p���	��
��

Let

d	�� �
X

n������nm�	

g	�� 
 n�	m
 p�� � � � � �m 
 nm	m
 p��

Then d	�� satis�es the equation 	���� because g	�� does� Moreover since

d	��� � � � � �m� � g	��� � � � � �m�

for �� 
 � � � 
 �m 
 m
p� d	�� satis�es the condition 	��
�� and 	��

� for �m 
 m
p�
We only need to verify 	��
�� and 	��
���

Notice that by 	��
��

g	� � � � �j� � � � � �k� � � �� � �g	� � � � �k� � � � � �j � � ��	��
��

If �j � �j�� then

g	� � � � �j 
 kj	m
 p�� �j�� 
 kj��	m
 p�� � � ��
� �g	� � � � �j 
 kj��	m
 p�� �j�� 
 kj	m
 p�� � � ���

On the other hand if �� 
m
 p � �m then

g	�� 
 k�	m
 p�� � � � � �m 
 km	m
 p��
� g	�m 
 	k� � 
�	m
 p�� � � � � �� 
 	km 
 
�	m
 p��
� �g	�� 
 	km 
 
�	m
 p�� � � � � �m 
 	k� � 
�	m
 p���

In either case d	�� � �d	��! i�e� d	�� � ��
Applying the formula 	��
�� to Kq

m�p we then have a formula for degKq
m�p�

Theorem ����

degKq
m�p

� 	�
�q�m���	mp
 q	m
 p���
X

n������nm�q

Y
k�j

	j�k
	nj�nk�	m
p��

mY
j��

	p
j
nj	m
p��
��

	��
��
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Proof� Let k � �q
m� and r � q � km� Then

Kq
m�p � Z�p�r���k�m�p������p�m�k�m�p��p����k����m�p������p�r��k����m�p���

So

degKq
m�p � 	sgn ��

X
n������nm�q

g	p 
 
 
 n�	m
 p�� � � � � p
m
 nm	m
 p��

where � is the permutation

	r 
 
� r 
 �� � � � �m� 
� �� � � � � r�� 	
� �� � � � �m��

and the sign of this permutation is given through

sgn � � 	�
�r�m�r� � 	�
��q�km���k���m�q� � 	�
��qkm�mq�q��k�k���m�

� 	�
�mq	�
�q
�
� 	�
�mq	�
�q�

Therefore

degKq
m�p � 	�
�q�m���

X
n������nm�q

g	p
 
 
 n�	m
 p�� � � � � p 
m
 nm	m
 p��

which is the formula 	��
���
Combining Theorem ��
�� ��
� and ��� we then have Theorem 
�
�
We conclude this section with several simpli�ed formulas� First recall the de�nition

of the Fibonacci numbers given through the recurrence relation f� � 
� f� � 
� and
fn�� � fn 
 fn�� for n � 
� From Corollary��� it follows immediately that

degKq
��� � f
q�
�	��
��

Using a well known expression for the Fibonacci sequence we therefore get

degKq
��� �


p
�

�

�
 


p
�

�

�
�q���

�
�

�p�

�

�
�q���
�
A �	�����

Note that formula 	����� has also been given by Intriligator ��� p� ����� as an illustration
of the conjectured intersection numbers arising from some computation in conformal
quantum �eld theory� For q � 
 we get again degK�

��� � �� 	compare with the Hasse
diagram of Z�
���� and for q � � we get degK�

��� � �
��
In general� for m � �� formula 	��
�� can be simpli�ed to

degKq
��p � 	�
�q	q	p
 �� 
 �p��

qX
j�	

	q � �j�	p 
 �� 
 


	p 
 j	p
 ����	p
 
 
 	q � j�	p 
 ����
�

In order to illustrate �the nonlinear character� of the pole placement map we derived
a table showing all degrees of the variety Kq

��p for p � 
� � � � � � and q � �� � � � � ��

pnq 	 � � � � 

� � � � � � �
� � � �� ��� 
�� �	��
� 
 

 ��	 ���
 �
	�
 ���	�	
� �� ��� ���� ��
��	 �����
� �����	���

 �� ���	 ������ ������� 
����	��	 �����
��	��
� ��� �

	� ���
�		 ��	������ ��
�������� 
������
���		
� ��� �		��� �	�����	 ���������� ���	�����
��� ���
�����	
���	
� ���	 �
��		 ��
�����	 ���������
�	 ��
��
�
���	��	 �	��	�
�������
��	
� ���� ������
 ���������� ��
���������
 �	�������	��
���� �����	�
�
�
	����	�
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�� Odd or even degrees� In this section we introduce some methods which can
be used to determine whether the degKq

m�p is odd or even without computing the degree
itself�

For Grass	m�m
 p� � K	
m�p� a well known fact is that degGrass	m� p
m� is even

whenever min	m� p� � � �
�� This is not the case for general Kq
m�p� i�e� in a certain sense

there are many more odd numbers for a �xed q � � than there are for q � ��
The main result of this section is Theorem ��� which provides a short combinatorial

description of all triples m� p� q which result in an odd degree� Using this theorem we
derive several corollaries classifying the odd and even degree varieties�

In order to prepare for the main theorem we �rst rewrite formula ��
��

degKq
m�p � 	�
�q�m���	mp
 q	m
 p���

X
n������nm�q

	�
�
m�m���

�

det

�
������

�
�p�m���n��m�p���

�
�p�m���n��m�p���

� � � �
�p�n��m�p���

�
�p�m���n��m�p���

�
�p�m���n��m�p���

� � � �
�p���n��m�p���

���
���

���
�

�p�nm�m�p���
�

�p���nm�m�p��� � � � �
�p�m���nm�m�p���

	





�	��
�

� 	�
�q�m���	�
�
m�m���

�

X
n������nm�q

X
	

sgn �

	mp
 q	m
 p���

	p�m
 �	
� 
 n�	m
 p��� � � � 	p� 
 
 �	m� 
 nm	m
 p���
�	����

Note that
Pm

i��		p�m� 
� 
 i
 �	i� 
 ni	m
 p�� � mp
 q	m
 p�� It therefore
follows that every summand in the expression 	���� is a multinomial coe�cient

�
k

k�� � � � � km

�
��

	k� 
 k� 
 � � �
 km��

k��k�� � � � km� �	����

For multinomial coe�cients there is a well known criterion frequently used by topol�
ogists which guarantees that such a coe�cient is odd� We formulate this criterion as a
lemma�

Lemma ���� The multinomial coe�cient
�

k
k������km

�
is odd if and only if there are no

�carry overs� in the summation k�
� � �
km when calculated using binary representation�
Proof� Let

k � �n� 
 � � �
 �nl � � � n� 
 � � � 
 nl�

Then

	x� 
 � � �
 xm�
k �

lY
i��

	x�
ni

� 
 � � �
 x�
ni

m � mod ��

In particular it follows from this Lemma that
�

k
k������km

�
is even as soon as two

numbers among fk�� � � � � kmg are equal or two numbers are odd�
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We will call a set fk�� k�� � � � � kmg of positive integers a disjoint binary partition of k

if the multinomial coe�cient
�

k
k������km

�
is odd� To put it in other words fk�� k�� � � � � kmg is

a disjoint binary partition of k if k�
k�
� � �
km � k� and if their binary representations

ki � �ni� 
 �ni� 
 � � �
 �niri � � � ni� 
 ni� 
 � � � 
 niri� i � 
� �� � � � �m

have disjoint exponents! i�e� nij 
� nrs for all i� j� r� s�
Theorem ���� Let a � min	m� p�� Then degKq

m�p is odd if and only if the number
of disjoint binary partitions fk�� � � � � kag of q	m
 p� 
mp having the property that

fk�� � � � � kag � fm
 p � 
�m
 p � �� � � � �m
 p � �a
 
g mod m
 p

is odd�
Before we give the proof we will illustrate Theorem ��� on several examples�
Example ����
a� m � �� p � �� q � �� q	m
 p� 
mp � �� � � 
 �� 
 �� 
 �� 
 �
� The disjoint

binary partitions equal to f
�� �g mod 

 are�

f�
� � 
 �� 
 �� 
 ��g � f��� ��g�
f� 
 �� 
 �� 
 �
� ��g � f��� �g�
f� 
 ��� �� 
 �� 
 �
g � f
�� ��g�

So degK�
��� � degK�

��� is odd�
b� m � �� p � �� q � �� q	m
 p� 
mp � �� � 
 
 � 
 �� 
 �� 
 �
� The disjoint

binary partitions equal to f�� �� �g mod � are�

f� 
 ��� �
� 
 
 ��g � f�� ��� �g�
f� 
 �
� ��� 
 
 ��g � f��� �� �g�
f
 
 �� 
 ��� �
� �g � f
�� ��� �g�
f
 
 �� 
 �
� ��� �g � f�
� �� �g�

So degK

��� � degK


��� is even�
c� m � �� p � �� q � �� q	m
 p� 
mp � �� � 
 
 �� 
�� 
�
� There is only one

disjoint binary partition equal to f�� �� �g mod ��

f��� 
 
 �
� ��g � f�� ��� �g

So degK�
��� � degK�

��� is odd�
d� m � �� p � �� q � �� q	m
 p� 
mp � �� � 
 
 � 
 �� 
 �� 
 �� 
 �
� There is

only one disjoint binary partition equal to f
�� �� �� �� �g mod 

�

f�
� ��� 
 
 ��� ��� �g � f��� �� 
�� �� �g

So degK�

�� � degK�

��
 is odd�
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Proof� Without loss of generality� assume m � p� Consider again the description
of the degree of the variety Kq

m�p as it was provided in formula 	����� It is our goal to
show that in the summation mod � the only relevant permutation is � � id� In other
words we will show by a clever �book keeping� that all other multinomial coe�cients
are either � or cancel each other�

First assume � is not an idempotent� i�e� �� 
� id or � 
� ���� In this case one
immediately veri�es that the sets

f		p �m� 
� 
 i
 �	i� 
 ni	m
 p�� j i � 
� � � � �mg

and

f		p�m� 
� 
 i
 ���	i� 
 n	���i�	m
 p�� j i � 
� � � � �mg

are equal as unordered sets� But this just means that the corresponding multinomial
coe�cients in the summation 	���� cancel each other mod �� So it follows that we only
have to sum over idempotent permutations�

Assume therefore that �� � id� If � 
� id then � contains a pure transposition�
i�e� there are two distinct integers a� b having the property that �	a� � b and �	b� � a�
Consider the ordered set

			p �m� 
� 
 i
 �	i� 
 ni	m
 p�� j i � 
� � � � �m� �

If na � nb then the corresponding multinomial coe�cient is zero since two numbers
in the binary partition 	namely the numbers at positions a and b� are equal� On the
other hand if na 
� nb then the corresponding multinomial coe�cient cancels with the
multinomial coe�cient obtained by interchanging na and nb�

It therefore follows that the only relevant summand in 	���� is � � id� The mod �
degree of Kq

m�p reduces therefore to the evaluation of the mod � sum of

X
n������nm�q

�
	mp
 q	m
 p��

p�m


n�	m
p�� p�m
�
n�	m
p�� � � � � p
m�

nm	m
p�

�
�	����

Since a summand�
	mp
 q	m
 p��

p�m


n�	m
p�� p�m
�
n�	m
p�� � � � � p
m�

nm	m
p�

�

is odd if and only if fp �m
 
 
 n�	m
 p�� � � � � p
m� 
 
 nm	m
 p�g is a disjoint
binary partition of mp 
 q	m 
 p�� the degKq

m�p is odd if and only if the number of
disjoint binary partitions equal to fp�m

� p�m
�� � � � � p
m� 
g mod m
 p of
q	m
 p� 
mp is odd�

For the Grassmann variety it is possible to identify the �rst Chern class c� 	re�
spectively the �rst Stiefel Whitney class w�� of the classifying bundle with the the �rst
elementary symmetric function

x� 
 � � �
 xm � Z�x�� � � � � xm��



DYNAMIC POLE ASSIGNMENT 
�

The degree 	respectively the mod � degree� of the Grassmann variety is then represented
through the coe�cient of a certain monom 	see ���� for details� in the expansion of

	x� 
 � � �
 xm�
dimGrass�m�m�p��

For the mod � degree of the variety Kq
m�p Theorem ��� gives a way to do a similar

computation� For this consider the polynomial ring Z��x�� � � � � xm�� the ideal

I ��
D
xm�p
� � 
� � � � � xm�p

m � 

E

and the factor ring R �� Z��x�� � � � � xm�
I� Then we have�
Corollary ���� If m � p the mod 	 degree of the variety Kq

m�p is equal to the

coe�cient of the monom xm�p��
� xm�p��

� � � � xp�m��
m in the expansion of

	x� 
 � � �
 xm�
dimK

q
m�p � R�

Proof� From the proof of Theorem ��� it follows that the mod � degree of Kq
m�p is

equal to the sum of certain multinomial coe�cients of the form�
dimKq

m�p

k�� � � � � km

�
�

�
q	m
 p� 
mp

k�� � � � � km

�
�

Since the mod 	m 
 p� identi�cation of disjoint binary partitions in Theorem ��� cor�
responds to the ideal theoretic identi�cation of monoms in the factor ring R the total
mod � number of identi�ed monoms is exactly the mod � degree of Kq

m�p�
In practice one often can use the �freshman�s dream�

	x� 
 � � �
 xm�
�k � x�

k

� 
 � � �
 x�
k

m mod ��

The following examples illustrate the corollary�
Example ����
a� m � �� p � �� q � �� In this case dimK�

��� � �
 and we know from the table
at the end of section � that degK�

��� � ����� Using the corollary we compute

	x
 y 
 z��� � 	x�� 
 y�� 
 z���	x
 y 
 z�
 � 	x� 
 y� 
 z��
�
�

Since the coe�cient in front of the monom x�y� is indeed 
 we conclude once
more that K�

��� is of odd degree�
b� m � �� p � �� q � ��� q	m
p�
mp � ��� � 

�
��
��
�

��
��
���

Since the dimension is quite large we reduce mod � already in the �rst step�

	
� �� ��� ��� �
� ��� ��� ��� � 	
� �� �� 
� �� 
� �� �� mod ��

Using this reduction we have�

	x
 y 
 z���
 � 	x
 y 
 z��	x� 
 y� 
 z���	x� 
 y� 
 z���

� 	x
 y 
 z�	x� 
 y� 
 z���

Since there is no monom x�y�z� in this expansion we conclude that K��
��� and

K��
��� both have an even degree�
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Corollary ���� Let min	m� p� � 
� Then any of the following conditions implies
that degKq

m�p is even�
a� m
 p is even�
b� mp
 � � 	m
 p�	q 
 ���
c� min	m� p� � q 
 � 


p
q� 
 �q 
 
�

d� The binary number of q	m
 p� 
mp has less than m 
�s besides the digit on
the �	 position�

e� �min�m�p��� � q	m
 p� 
mp
 ��
f�
Pl

i�� ri 
 mp where ri � ���m
 p� is the number equals the �ni mod m
 p in
the binary representation q	m
 p� 
mp � �n� 
 � � � 
 �nl �

g� m
 p � �k � 
�
Proof� Without loss of generality assume that m � p�
a� Whenm
p is even� all the integers p�m


n�	m
p�� � � � � p
m�

nm	m
p�

are odd� By the remark after Lemma ��
 all multinomial coe�cients appearing
in 	���� are even�

b� Let �r � q	m
 p� 
mp 
 �r��� Then a necessary condition for fp �m
 
 

n�	m
 p�� � � � � p 
m� 
 
 nm	m
 p�g to be a disjoint binary partition is

p �m
 �i� 
 
 ni	m
 p� � �r

for some i� In particular

p 
m� 
 
 q	m
 p� � �r � 	

��	q	m
 p� 
mp
 
�

which implies

	m
 p�	q 
 �� � mp
 ��

c� Consider �	m� � �	q 
 ��m 
 ��� It has two roots� q 
 � �p
q� 
 �q 
 
� So

when m � q 
 � 

p
q� 
 �q 
 
�

�	m� � �	q 
 ��m
 �� � ��

The degree is even if m � p by a�� If m 
 p 	note that q 
 � �m 
 ���

	m
 p�	q 
 �� �mp� � � �	m� � �	q 
 ��m
 �� 
 	q 
 � �m�	p�m�


 �	m� � �	q 
 ��m
 ��

� ��

So c� implies b��
d� Under the condition� q	m 
 p� 
 mp can not have a disjoint binary partition

fk�� � � � � kmg such that none of the ki is 
�
e� The smallest number such that d� is not satis�ed is �m��� �� So e� implies d��
f� A necessary condition for

	k�� � � � � km� � 	p �m
 
� � � � � p 
m� 
� mod m
 p� ki � �

is
Pm

i�� ki � mp�
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g� Notice that m 
 p is odd� So � � m 
 p� For any n � k� let n � ak 
 r�
� � r 
 k� Then

�n � �r	
 
 �k 
 � � �
 �k�a����	�k � 
� 
 �r�

So �n � �r mod m 
 p� Let the binary representation of q	m 
 p� 
 mp be
�n� 
 �n� 
 � � � 
 �nl and consider

lY
i��

	x�
ni

� 
 � � �
 x�
ni

m ��

By replacing �ni with �ri for ri � ni mod k� ri � ��� k�� and using the property

	x�
r

� 
 � � �
 x�
r

m�� � 	x�
r��

� 
 � � �
 x�
r��

m � mod �

repeatedly� one ends up in

jY
i��

	x�
ri

� 
 � � �
 x�
ri

m �	����

with fr�� � � � � rjg � ��� k� distinct� The polynomial 	���� has degree at most

 
 � 
 � � � 
 �k�� � m 
 p which is always less than mp under the condition
� � m 
 p� By the same argument as in the proof of f�� the degree is even�

An immediate corollary of Theorem ��� is the result of �
�� degGrass	m�m
 p� is
odd if and only if


� min	m� p� � 
 or
�� min	m� p� � �� max	m� p� � �k � 
�

Because when m � � � p� fp 
 
� p � 
g is a disjoint binary partition if and only if
p � �k � 
� and when min	m� p� � �� all the degrees are even by Corollary ��� c��

Corollary ��	� degK�
m�p is odd if and only if either

�� min	m� p� � 
 or
	� min	m� p� � �� max	m� p� � �n� 
 �n� 
 � � � 
 �nl � 
 with ni�� � ni 
 
� i �


� � � � � l� 
�
Proof� By letting m 
 p � 
 
 �n� 
 � � � 
 �nl one can easily show that neither of

the sets

fm
 p � 
�m
 p� ��m
 p� �g� f�	m
 p�� 
�m
 p� ��m
 p � �g�

fm
 p� 
� �	m
 p� � ��m
 p� �g� fm
 p � 
�m
 p� �� �	m
 p� � �g

can have disjoint exponents in the binary representations of the elements� So the degree
is even if min	m� p� � �� Now let m � �� p � m be odd� and

p
 
 � �n� 
 � � �
 �nl �
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Then �n� appears in both p
 
 � m
 p� 
 and �p
 
 � �	m
 p�� �� So degK�
��p is

odd if and only if

fp � 
� �p 
 �g � f� 
 �� 
 � � �
 �n��� 
 �n� 
 � � �
 �nl � 
 
 �n��� 
 � � �
 �nl��g
is a disjoint binary partition! i�e� if and only if ni�� � ni 
 
 for i � 
� � � � � l� 
�

Similar results can also be proven for q � 
� The combinatorics however becomes
very involved� We provide without proof the result for q � ��

Corollary ��
� degK�
m�p is odd if and only if either

�� min	m� p� � 
 or

	� min	m� p� � �� max	m� p� � �	�
k��
� � 
 
 or

�� min	m� p� � �� max	m� p� � ��

�� Corollaries and additional new positive pole placement results� In this
section we establish the connection to the classical state space and transfer function
formulation of the pole placement problem� We also will derive several results which
combine the results derived in Section � with some results derived in �
���

Consider a controllable observable linear system

"x � Ax
Bu� y � Cx	��
�

where x � IRn� u � IRm and y � IRp respectively� If a controllable observable dynamic
compensator of order q

"u � Fu
 Ey� u � Hu
Ky	����

is applied to the system� the closed loop system becomes

"�
x
u

�
�

�
A
BKC BH

EC F

��
x
u

�
� y � Cx�	����

So the closed loop characteristic polynomial is

�	s� � det

�
sI �A�BKC �BH

�EC sI � F

�
	����

If G	s� � C	sI �A���B and T 	s� � K 
H	sI �F ���E are the transfer functions
of the system 	��
� and compensator 	����� respectively and if G	s� � D	s���N	s� and
T 	s� � T��

d 	s�Tn	s� be left coprime fractions such that det	sI � A� � detD	s� and
det	sI � F � � detTd	s�� then �	s� can also be written as

�	s� � det	sI �A� det	I �G	s�T 	s�� det	sI � F � � det

�
D	s� N	s�
Tn	s� Td	s�

�
�	����

Let P 	s� � 	D	s� N	s�� and C	s� � 	Tn	s� Td	s��� Then P 	s� and C	s� can be viewed
as autoregressive systems describing the behavior of the plant and the compensator
respectively� The combined dynamics is then described through�

D	 d
dt
� N	 d

dt
�

Tn	
d
dt
� Td	

d
dt
�

�
�
�
y
�u

�
	t� � ��	����
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The following result combines Theorem ��
� with �
�� Corollary �����
Theorem ���� Consider a generic set of matrices 	A�B�C� � IRn�n�m�p� describ�

ing a plant as in 	��
� and consider an arbitrary monic polynomial �	s� � IR�s� of degree
n
 q� If

n � q	m
 p� 
� 
mp	����

then there exists a complex dynamic compensator of the form 	���� resulting in the
closed loop characteristic polynomial �	s�� If in addition the number d	m� p� q� intro�
duced in 	
��� is odd then there exists even a real compensator assigning the closed loop
characteristic polynomial �	s��

Proof� We only outline the main steps� Using the same argument as in Theorem ��
�
one veri�es that dimB

P
� q	m
 p�
mp�n� q� 
 for the generic and strictly proper

plant� Theorem ��
� therefore still applies and the pole placement map is onto if
one allows all autoregressive systems� Since the plant is strictly proper a closed loop
characteristic polynomial of degree n 
 q can only be achieved if the compensator is
proper�

The following example illustrates how this theorem can be applied�
Example ���� Assume the matrices 	A�B�C� describe the plant parameters of

a generic real ��input� ��output plant of McMillan degree n� From the table at the end
of Section � it follows immediately that there exists a real compensator of degree 
 as
long as n � ��� If e�g� n � �� then it follows that there is a real compensator of degree
� assigning an arbitrary set of self conjugate closed loop poles�

Combining Theorem ��
� with �
�� Corollary ���� one can �nally proof�
Theorem ���� Let G	s� be a generic m�input� p�output proper transfer function

of McMillan degree n and let �	s� � IK�s� be a generic polynomial of degree n
 q� If

n � q	m
 p� 
� 
mp	����

then there exists a proper complex compensator T 	s� of McMillan degree q such that the
closed loop transfer function

GT 	s� �� 	I �G	s�T 	s����G	s�

has characteristic polynomial �	s�� If in addition the number d	m� p� q� introduced
in 	
��� is odd then there exists even a real transfer function T 	s��
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