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Abstract. A substitution naturally determines a directed graph with an order-
ing of the edges incident at each vertex. We describe a simple method by which
any primitive substitution can be modified (without materially changing the bi-
infinite fixed points of the substitution) so that points in the substitution minimal
shift are in bijective correspondence with one-sided infinite paths on its associated
directed graph. Using this correspondence, we show that primitive substitutive se-
quences in the substitution minimal shift are precisely those sequences represented
by eventually periodic paths. We use directed graphs to show that all measures
of cylinders in a substitution minimal shift lie in a finite union of geometric se-
quences, confirming a conjecture of Boshernitzan. Our methods also yield sufficient
conditions for a geometric realization of a primitive substitution to be “almost
injective.”

1. Introduction

Every substitution has an associated prefix automaton, a directed graph whose vertices
are the letters of the substitution’s alphabet and whose edges are labeled with the strict
prefixes of the images of the letters under the substitution. In this paper we consider the
directed graph obtained by reversing the directed edges in the prefix automaton. This
graph is more natural from the point of view of iterated function systems.

∗ The second author was supported in part by NSF Grant INT-9726708 and a grant from the Texas
Advanced Research Program.
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Vershik introduced the notion of an adic transformation defined on the infinite path
space of a Bratteli diagram as a means of studying operator algebras. Livshitz outlined a
connection between substitution minimal systems and stationary adic transformations,
the underlying spaces of which are essentially the infinite path spaces on the associated
directed graphs: every substitution minimal shift is metrically isomorphic to a stationary
adic transformation [24]. Forrest [18] and Durand et al. [15] proved that every stationary
proper minimal Bratteli-Vershik system is topologically conjugate to either a substitution
minimal system or a stationary odometer system.

In this paper we describe a simple but completely general way of modifying a
primitive substitution so that the substitution minimal shift is homeomorphic to the
space of one-sided infinite paths on its directed graph. The induced dynamical system
on the infinite path space of the graph is just the continuous extension of the Vershik
map. Other constructions of this kind exist, for example, [15], [18], and [19].

A primitive substitutive sequence is, by definition, an image under a morphism of
a fixed point of a primitive substitution (see [13] and [21]). Directed graphs give a new
way to characterize primitive substitutive sequences. As part of the characterization, we
show that a point in the minimal shift arising from a primitive substitution is primitive
substitutive if and only if it is represented by an eventually periodic path in the graph
associated to the substitution. We also show that all primitive substitutive sequences in
any minimal shift can be completely described by a single directed graph.

As another application of the directed graph construction, we establish the following
conjecture of Boshernitzan: the measures of cylinders in a substitution minimal shift lie
in a finite union of geometric sequences [6]. This is an unsurprising reflection of the
self-similarity inherent in substitution dynamical systems.

Many substitutions admit geometric realizations equipped with piecewise translation
mappings (see [20]). Ei and Ito gave a characterization of those substitutions on two letters
whose geometric realization is an interval exchange [16]. In such cases the substitution
minimal system is a symbolic representation for the interval exchange transformation.
It is natural to ask which substitution dynamical systems admit an “almost injective”
geometric realization in the sense of Queff´elec [31]. In the last section we use the graph
directed construction to obtain some partial results.

2. Substitutions

By an alphabetwe mean a finite nonempty set of symbols. We refer to the members
of an alphabet asletters. A word of lengthk in the alphabetA is an expressionu =
u0u1 · · ·uk−1 where eachuj is a letter ofA.We write|u| for the length of a wordu. It is
convenient to define theempty wordε, having length 0 and satisfying the concatenation
rule εu = u = uε for every wordu. LetA+ be the set of all words of positive length in
the alphabetA and setA∗ = A+ ∪ {ε}.

A morphismdefined on alphabetA is a mapπ : A→ B∗, whereB is an alphabet.
The length ofπ is defined to be|π | = max{|π(a)|: a ∈ A}.We sayπ is aletter-to-letter
morphismif π(A) ⊂ B, andπ is callednonerasingif ε /∈ π(A). A morphismπ : A→
B∗ determines by concatenation a mapA∗ → B∗, also denotedπ. A substitutionis
a nonerasing morphismA → A∗. A substitutionζ on alphabetA determines a map
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AZ → AZ which we also denote byζ. With this slight abuse of notation we defineζ n

for n ≥ 0 onA,A+ andAZ in the obvious way.
Associated to a substitutionζ onA is theA×Amatrix Mζ with abth entry equal to

the number of occurrences of the lettera in the wordζ(b). The substitutionζ isprimitive
if there exists a positive integern such that for each lettera ∈ A the wordζ n(a) contains
every letter ofA. Equivalently,ζ is primitive if and only ifMζ is a primitive matrix, i.e.,
if some positive power ofMζ has all entries strictly positive. Ifζ is primitive, then

∀a ∈ A, |ζm(a)| → ∞ as m→∞. (1)

A sequenceω ∈ AZ is aperiodic pointof ζ if for some positive integern we have
ζ n(ω) = ω. Every primitive substitution has a periodic point. Denote by Per(ζ ) the set
of periodic points ofζ.

Forw ∈ A+ and 0≤ m ≤ n < |w| we writew[m,n] for the wordwmwm+1 · · ·wn

(such words are calledfactorsof w). Definew[m,n), w(m,n] andw(m,n) analogously, with
the convention thatw∅ = ε = ζ(ε). Similarly, if ω ∈ AZ andm < n, then we set
ω[m,n] = ωmωm+1 · · ·ωn and use the obvious interpretations forω[m,n), ω(m,n] andω(m,n).

The topology ofAZ is metrizable as the countable product of the discrete spaceA.
Specifically, we define a metricd onAZ by settingd(ω, υ) = e−N if N is the greatest
integer for whichω(−N,N) = υ(−N,N).

The languageof a substitutionζ is the setL(ζ ) of all factors of the wordsζm(a),
m ∈ N anda ∈ A. The subshift ofAZ spanned by the languageL(ζ ) is

X(ζ ) = {ω ∈ AZ: ω[− j, j ] ∈ L(ζ ) for all j ∈ N}.
It follows from (1) that ifζ is primitive, thenL(ζ ) is an infinite set andX(ζ ) is nonempty.
Thecylinderdetermined by a wordw is [w] = {ω ∈ X(ζ ): ω[0,|w|) = w}. Theshift map
T onX(ζ ) is defined by(Tω)j = ωj+1. It is easy to see thatX(ζ ) is a closed subset ofAZ,
T is a homeomorphismX(ζ )→ X(ζ ), and ifζ is primitive, then the dynamical system
(X(ζ ), T) is minimal, i.e., every point has a dense orbit under the shift map (see [31]).

3. Directed Graphs Associated with a Substitution

A directed graph Gconsists of a finite nonempty set of verticesV = V(G) and a finite
setE = E(G) of edges together with mapsi , t : E → V. A walkor pathonG is a finite
or infinite sequence of edgesel ∈ E such thati (el+1) = t (el ) for all relevant indicesl .
A finite walk (el )

k
l=1 starts at itsinitial vertexi (e1) and ends at itsterminal vertext (ek).

We say thatG is strongly connectedif for every ordered pair of vertices(a,b) there is
a finite walk onG starting ata and ending atb. A strongly connected directed graph
is said to beaperiodicif there are two walks of relatively prime lengths with the same
initial vertex and the same terminal vertex.

Theadjacency matrixof G is theV × V matrix M = M(G) with abth entryMab

equal to the number of edges starting at vertexa and ending at vertexb. It is easy to see
that(Mn)ab is the number of paths of lengthn starting ata and ending atb. Thus,G is
strongly connected if and only ifM is irreducible, andG is aperiodic if and only ifM is
primitive. (Recall that a nonnegative matrixM is irreducible if for all indicesa,b there
is a positive integern such that(Mn)ab > 0.)
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Fig. 1. Directed graph associated to the substitution in Example 3.1.

Denote byG∞ the space of (one-sided) infinite walks onG, viewed as a sub-
space of the countable product of the discrete edge set. With this topologyG∞ is com-
pact.

Let ζ be a substitution on an alphabetA. We associate toζ a directed graphG =
G(ζ ) with vertex setV(G) = A and the edge setE(G) = {( j,a): a ∈ A and 0≤
j < |ζ(a)|}, wherei ( j,a) = ζ(a)j andt ( j,a) = a. These graphs were independently
studied by Canterini and Siegel in [8]. The adjacency matrixM(G) is equal to the
incidence matrixMζ . Thusζ is primitive if and only ifG(ζ ) is aperiodic.

Example 3.1. The Thue–Morse substitution has alphabet{0,1}andζ(0) = 01, ζ(1) =
10. The associated graphG is shown in Figure 1.

Our construction naturally determines a partial ordering≺ on E in which edges
are comparable if and only if they have the same terminal vertex. Specifically, for
( j1,a1), ( j2,a2) ∈ E,

( j1,a1) ≺ ( j2,a2) ⇐⇒ a1 = a2 and j1 < j2. (2)

Conversely, a directed graphG having at least one edge ending at each vertex,
together with an ordering≺ on the set of edges ending at each vertex, determines a
substitutionζG on alphabetV(G) given byζG(a) = i (e1,a)i (e2,a) · · · i (eka,a), where
e1,a ≺ e2,a ≺ · · · ≺ eka,a are the edges ending ata ∈ V(G). It is readily verified that
ζG(ζ ) = ζ andG(ζG) = G.

Supposeζ is a primitive substitution on alphabetA andG is the associated directed
graph with partial ordering≺ on the edge set given by (2). We also denote by≺ the
partial ordering onG∞ defined by

(ej )
∞
j=1 ≺ ( f j )

∞
j=1 ⇐⇒ ∃k[(ek ≺ fk) and∀ j > k(ej = f j )].

An element ofG∞ is minimal(maximal) if it is minimal (maximal) with respect to this
partial ordering. Note that for each vertexa and for each positive integern there is a
unique walk of lengthn ending ata and consisting entirely of minimal edges (ditto for
maximal). Consequently,

Proposition 3.2. Minimal and maximal elements always exist and are periodic(as
sequences of edges), and there are, at most, |A| of each.

Every nonmaximal element has a unique successor, and we writeSfor the successor
mapG∞\{maximal walks} → G∞. That is, if( jl ,al )

∞
l=1 ∈ G∞ is not maximal andk is
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the least index for which( jk,ak) is not a maximal edge, then

S(( jl ,al )
∞
l=1) = (0, ζ k−2(a)0)(0, ζ

k−3(a)0)

· · · (0,a)( jk + 1,ak)( jk+1,ak+1)( jk+2,ak+2) · · · , (3)

wherea = ζ(ak)jk+1.

4. Words and Walks

Fix a primitive substitutionζ on an alphabetA such thatX = X(ζ ) is infinite. Our
first order of business is to give a method for coding points ofX by infinite walks
on G = G(ζ ). The coding is suggested by the following lemma which states that all
primitive substitutions have the unique admissable decoding (UAD) property of [25].

Theorem 4.1. Letω ∈ X. Then there is a unique pair(s(ω),m(ω)) ∈ X×Z such that
ω = Tm(ω)ζ(s(ω)) and0≤ m(ω) < |ζ(s(ω)0)|.Moreover, the mapω 7→ (s(ω),m(ω))
is continuous.

The idea for the proof is probably due to Martin [26]. The result can also be inferred
from work of Mossé in [30]. See [15] for more details.

Corollary 4.2. The mapζ : X→ ζ(X) is one-to-one.

We record a useful fact whose proof is straightforward.

Lemma 4.3. If ( jl ,al )
k
l=1 is a walk on G andυ ∈ X withυ0 = ak, then

(T j1 ◦ ζ ◦ T j2 ◦ ζ ◦ · · · ◦ T jk ◦ ζ )(υ) = Tmkζ k(υ),

where mk =
∑k

l=1 |ζ l−1(ζ(al )[0, jl ))| < |ζ l (al )|.

We define a mapH : X→ G∞, which we call thecoding mapof ζ, by

H(ω) = (m(sl−1(ω)), sl (ω)0)
∞
l=1.

ThusH(ω) starts at vertexa if and only ifω ∈ [a].

Proposition 4.4. The coding map H: X→ G∞ is a continuous surjection satisfying:

(a) H(ζ(ω)) = (0, ζ(ω)0)H(ω).
(b) H ◦ T = S◦ H whenever the latter is defined.
(c) H(ω) is minimal if and only ifω ∈ Per(ζ ).
(d) H(ω) is maximal if and only if Tω ∈ Per(ζ ).
(e) The infinite walk H(ω) begins in( j1,a1) · · · ( jk,ak) if and only if

ω ∈ (T j1 ◦ ζ ◦ T j2 ◦ ζ ◦ · · · ◦ T jk ◦ ζ )([ak]).
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Proof. The image ofH is dense inG∞, for if ( j1,a1)( j2,a2) · · · ( jk,ak) is a finite walk
onG andυ ∈ X is any point withυ0 = ak, thenω := (T j1 ◦ζ ◦T j2 ◦ζ ◦ · · · ◦T jk ◦ζ )(υ)
is a point ofX andH(ω) begins in( j1,a1)( j2,a2) · · · ( jk,ak). Continuity follows from
Theorem 4.1 and surjectivity from compactness ofX.

Assertions (a) and (e) follow immediately from the definition ofH. To prove (b)
supposeω ∈ X and H(ω) = ( jl ,al )

∞
l=1 is not maximal. Letk be the least index for

which ( jk,ak) is not maximal. Letυ be the unique point ofX for which υ0 = ak

and

ω = (T j1 ◦ ζ ◦ T j2 ◦ ζ ◦ · · · ◦ T jk ◦ ζ )(υ).
For any$ ∈ X we have

(T ◦ T |ζ($0)|−1 ◦ ζ )($) = ζ(T$), (4)

and repeated application of this identity yields

Tω = (T ◦ T j1 ◦ ζ ◦ T j2 ◦ ζ ◦ · · · ◦ T jk ◦ ζ )(υ)
= (ζ k−1 ◦ T jk+1 ◦ ζ )(υ).

Puttinga = ζ(ak)jk+1 we see from (a) that

H(Tω) = (0, ζ k−2(a)0)(0, ζ
k−3(a)0)

· · · (0, ζ(a)0)(0,a)( jk + 1,ak)( jk+1,ak+1)( jk+2,ak+2) · · · ,

which is, according to (3), the successor ofH(ω).
To prove (c) we observe thatH(ω) is minimal if and only ifω is in the image ofζ k

for all k. Assertion (c) now follows from the equality⋂
k≥0

ζ k(X) = Per(ζ ). (5)

To prove (d) we note that by (4) ifH(ω) is maximal, thenTω is in the im-
age of ζ k for every positive integerk; by (5), Tω must be in Per(ζ ). Conversely,
if H(ω) is not maximal, then (b) implies thatH(Tω) is a successor (the succes-
sor of H(ω)) and hence not minimal, whence it follows from (c) thatTω is not in
Per(ζ ).

We wish to extendS to a continuous map on all ofG∞ so that H becomes a
conjugacy. However, the mapH need not be one-to-one. To see how this difficulty can
arise, supposeζ has a pair of distinct periodic pointsω, υ with ω[0,∞) = υ[0,∞). (The
Thue–Morse substitution has two such pairs.) A substitution acts as a permutation on its
set of periodic points, so there is a positive integerk such thatζ k(ω) = ω andζ k(υ) = υ.
This implies for alll > 0,

sl (ω) = ζ (k−l )modk(ω) and ml−1(ω) = 0
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and the analogous statement forυ. Thus

sl (ω)0 = ζ (k−l )modk(ω)0 = ζ (k−l )modk(υ)0 = sl (υ)0,

whenceH(ω) = H(υ).
A pair as in the preceeding paragraph exists precisely when there are more maximal

elements than minimal elements inG∞. This is the only thing to check; it can be shown
that H is bijective if and only if

|{minimal elements ofG∞}| = |{maximal elements ofG∞}|.
To extend the successor mapS we modify the substitution so that the resulting

coding mapH is one-to-one. LetA[3] = A[3](ζ ) be the subset ofL(ζ ) consisting of the
words of length 3. We define a substitutionζ[3] onA[3] by setting for(abc) ∈ A[3],

ζ((abc))j = (ζ(abc)[|ζ(a)|+ j−1,|ζ(a)|+ j+1]), 0≤ j < |ζ(b)|.
Note|ζ[3]((abc))| = |ζ(b)|.Write T[3] for the shift map onX(ζ[3]). Forω ∈ X(ζ ) denote
by ω[3] the sequence in the letters ofA[3] with j th entry(ω[3])j = (ωj−1ωjωj+1). It is
easy to see that

Proposition 4.5. With the above notation, ζ[3] is primitive andω 7→ ω[3] is a conjugacy
X(ζ )→ X(ζ[3]). Moreover, (ζ(ω))[3] = ζ[3](ω

[3]) and[(abc)] = (T [abc])[3] .

Denote byH[3] : X(ζ[3])→ G(ζ[3])
∞ the coding map ofζ[3] . Let ( jl , (al bl cl ))

∞
l=1 ∈

G(ζ[3])
∞ and setmk =

∑k
l=1 |ζ l−1(ζ(al )[0, jl ))|. By Lemma 4.3 and (e) of Propo-

sition 4.4, if H[3](ω
[3]) = ( jl , (al bl cl ))

∞
l=1, thenω[3] ∈ Tmk

[3] ζ
k
[3]([(akbkck)]), so, by

Proposition 4.5,ω ∈ Tmkζ k(T [akbkck]). Any υ ∈ Tmkζ k(T [akbkck]) must satisfy
υ[−|ζ k(ak)|−mk,|ζ k(bk)|−mk+|ζ k(ck)|) = ζ k(akbkck), and therefore

diam Tmkζ k(T [akbkck]) ≤ exp(−min(|ζ k(ak)|, |ζ k(ck)|)),
where diam means diameter in the metricd. This together with (e) of Proposition 4.4
implies

H−1
[3] (( jl ,al bl cl )

∞
l=1) ⊂

∞⋂
k=1

(T j1 ◦ ζ[3] ◦ · · · ◦ T jk ◦ ζ[3])([(akbkck)]) = {ω[3]}.

Thus,H[3] is seen to be a homeomorphism and the successor mapS[3], initially defined
on the nonmaximal members ofG(ζ[3])

∞,may be extended to a continuous homeomor-
phism (also denotedS[3] ) on all of G(ζ[3])

∞. In this way,S[3] sends each maximal path
in G(ζ[3])

∞ onto a minimal path. We summarize this discussion as follows.

Proposition 4.6. If ζ is a primitive substitution, then there exists a primitive substitution
τ and a conjugacyϕ: X(ζ ) → X(τ ) such thatϕ ◦ ζ = τ ◦ ϕ and the coding map
H : X(τ )→ G(τ )∞ is a conjugacy.

For the remainder of the paper we assume thatζ is a primitive substitution on the
alphabetA and thatX = X(ζ ) is an infinite set conjugate toG = G(ζ ) via the coding
mapH.
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5. Characterizing Left Special Sequences

A point ω ∈ X is calledleft-specialif there existsυ ∈ X such thatω[0,∞) = υ[0,∞) and
ω−1 6= υ−1. Queffélec showed in [31] that the set of left-special points ofX is finite.

Proposition 5.1. If ω ∈ X is left-special, then H(ω) is eventually periodic.

Proof. LetS be the set of ordered pairs(ω, υ) ∈ X× X such thatω[0,∞) = υ[0,∞) and
ω−1 6= υ−1. It follows from Queffélec’s result thatS is finite. For(ω, υ) ∈ S we have
ζ(ω)[0,∞) = ζ(υ)[0,∞) andζ(ω) 6= ζ(υ) by Theorem 4.1, so there must be a nonnegative
integerL(ω, υ) such that

(T−L(ω,υ)ζ(ω), T−L(ω,υ)ζ(υ)) ∈ S.

We will show that each point ofS has at most one preimage under the mapS → S given
by

(ω, υ) 7→ (T−L(ω,υ)ζ(ω), T−L(ω,υ)ζ(υ)),

and hence this map is a permutation. For suppose(ω′, υ ′) is a preimage of(ω, υ). Let
m be the least nonnegative integer such that|ζ(ω′[−m,0))| ≥ L(ω′, υ ′). Then

T |ζ(ω
′
[−m,0))|−L(ω′,υ ′) ◦ ζ(T−mω′) = T−L(ω′,υ ′) ◦ ζ(ω′) = ω

and 0≤ |ζ(ω′[0,m))| − L < |ζ(ω′−m)|. By the uniqueness assertion of Theorem 4.1 we
haves(ω) = T−m(ω′). Likewise,υ ′ is in the shift orbit ofs(υ). SinceX has no periodic
points there can be only one pair of integers( j, k) for which(T j (s(ω)), Tk(s(υ))) ∈ S,
thus the preimage(ω′, υ ′) is unique.

We now fix a left-specialω ∈ X and letυ be such that(ω, υ) ∈ S. It follows that
for some integersn > 0 andN ≥ 0 we have

(T−Nζ n(ω), T−Nζ n(υ)) = (ω, υ).

From (a) and (b) of Proposition 4.4 we obtain

S−N((0, ζ n(ω)0)(0, ζ
n−1(ω)0) · · · (0, ζ(ω)0)H(ω)) = H(ω). (6)

If H(ω) is in the orbit of a minimal or maximal element, thenH(ω) is eventually periodic
by Proposition 3.2. IfH(ω) is not in theS-orbit of a minimal or maximal element of
G∞, thenH(ω) and SN(H(ω)) differ in only finitely many coordinates; this together
with (6) shows thatH(ω) is an eventually periodic sequence of edges.

Remark 5.2. Related toS is the numberN(ζ ) defined as follows. Let≈ be the equiv-
alence relation onX given by

ω ≈ υ ⇐⇒ ∃m∃n: ω[m,∞) = υ[n,∞).
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The≈ equivalence class〈ω〉 of ω is a union of finitely many orbits, namely those ofω
and all pointsυ such that(Tmω, υ) ∈ S for somem. Define

N(ζ ) :=
∑
〈ω〉
(# of orbits in〈ω〉 − 1) .

This sum is finite as only finitely many equivalence classes contain more than one orbit,
but no sharp bound is known. We conjecture thatN(ζ ) ≤ |A|(|A| − 1). The conjecture
holds when|A| = 2, and in this case there is a simple algorithm for finding all pairs of
S. The question seems to be open for|A| ≥ 3.

6. Primitive Substitutive Sequences

In [13] Durand adapted the notion of automatic sequences to the context of primitive
substitutions: a one-sided infinite sequenceω is calledprimitive substitutiveif and only
if it is the image of a fixed point of a primitive substitution under a letter-to-letter mor-
phism. Durand [13] showed that primitive substitutive sequences are precisely those
minimal sequences which admit only finitely many derived sequences on prefixes (see
Theorem 6.5 below). This description was generalized by Holton and Zamboni in [21]
to obtain a characterization ofprimitive substitutive subshifts. In this section we extend
the notion of primitive substitutive to bi-infinite sequences in the natural way, and derive
an alternative characterization in terms of the associated directed graph. A two-sided
infinite sequence is calledprimitive substitutiveif it is the image of a fixed point of
a primitive substitution under a letter-to-letter morphism. The main result of this sec-
tion is

Theorem 6.1. Letζ be a primitive substitution, and letπ be a morphism taking X(ζ )
into an infinite minimal shift space Y. Then, for everyω ∈ X(ζ ), the sequenceπ(ω) is
primitive substitutive if and only if H(ω) is eventually periodic.

We begin with a few technical remarks. Durand showed that the hypothesis that the
morphism be letter-to-letter in the definition of primitive substitutive may be relaxed
(see Proposition 3.1 of [13]) to arbitrary nonerasing morphisms. Durand’s proof extends
immediately to the bi-infinite case:

Lemma 6.2. Let ω ∈ AZ be primitive substitutive. If π is a morphism such that
|π(a)| ≥ 1 for some letter a occurring inω, then· · ·π(ω−2)π(ω−1) ·π(ω0)π(ω1) · · · is
primitive substitutive.

The next lemma characterizes the sequences inX represented by eventually periodic
paths inG∞. The proof is straightforward and is left to the reader.

Lemma 6.3. Letω ∈ X. Then H(ω) is eventually periodic with period n if and only if
ζ n(ω) andω lie in the same T -orbit.
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Our proof of Theorem 6.1 requires several lemmas. We begin with some terminology
adapted from [13]. LetY be a minimal shift space and letu be a factor of some (hence
every) sequence ofY. A return wordto u in Y is a nonempty wordw such that

• wu is a factor of some sequence ofY,
• (wu)[ j, j+|u|) = u if and only if j ∈ {0, |w|}.

Denote byRu = Ru(Y) the set of return words tou in Y. It follows from minimality ofY
thatRu is finite. Durand showed that primitive substitutive shifts arelinearly recurrent:

Lemma 6.4 [13, Theorem 4.5]. If Y is infinite and contains a primitive substitutive
sequence, then there exists a positive constant C such that for all u, every return word
w ∈ Ru(Y) satisfies C−1|u| < |w| < C|u|.

Fix, for eachu, a bijection2u: Ru → {1,2, . . . , |Ru|}. If υ ∈ Y with υ[0,|u|) = u,
thenυ can be written uniquely as a concatenation:

υ = · · ·w−2w−1 · w0w1w2 · · · , each wj ∈ Ru,

and we obtain thederived sequenceof υ with respect tou:

Du(υ) = · · ·2u(w−2)2u(w−1) ·2u(w0)2u(w1) · · · .
Derived sequences are unique up to permutation of their alphabets, and Durand’s result
holds for bi-infinite sequences:

Theorem 6.5 [13, Theorem 2.5]. Let Y be a minimal shift space. A sequenceυ ∈ Y
is primitive substitutive if and only if{Dυ[0,n) (υ): n > 0} is finite.

Remark 6.6. In caseυ ∈ Y has only finitely many derived sequences, Durand’s proof
gives a method for constructing a primitive substitutionζ fixing a pointω ∈ X and a
letter-to-letter morphismπ mappingX ontoY with π(ω) = υ. In view of Theorem 6.1
this is all one needs to identify all primitive substitutive sequences inY.

A bi-infinite sequenceω is primitive substitutive if and only ifT(ω) is primitive
substitutive (see Lemma 2 in [22]). We introduce the notion ofderived orbitto reflect
this fact. LetY be a minimal shift and letu,Ru and2u be as above. Ifυ ∈ Y, then
(by minimality of Y) there is a pointυ ′ in the shift orbit ofυ such thatυ ′[0,|u|) = u, and
we setOu(υ) equal to the shift orbit of the sequenceDu(υ

′). Clearly, the derived orbit
Ou(υ) depends only on the orbit ofυ.

The following lemma, together with Lemmas 6.2 and 6.3, establishes the “if” part
of Theorem 6.1.

Lemma 6.7. If υ ∈ X(ζ ) is such thatζ(υ) lies in the shift orbit ofυ, thenυ is primitive
substitutive.

Proof. Replacingυ with Tm(υ) if necessary and using Lemma 4.3 we may assume
thatυ = Tkζ(υ) for some integerk ∈ [0, |ζ(υ0)|). If k = 0 or k = |ζ(υ0)| − 1, then
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υ or Tυ is fixed by ζ, in which casesυ is primitive substitutive. Thus we consider
0 < k < |ζ(υ0)| − 1. Puta = υ0, letRa be the set of return words toa in X and let
2a: Ra→ {1,2, . . . , |Ra|} be a bijection. Ifw ∈ Ra, thenζ(wa)[k,|ζ(w)|+k)a is a factor
of υ which begins and ends ina (sincew0 = a = ζ(a)k) and thereforeζ(wa)[k,|ζ(w)|+k)

can be written uniquely as a concatenation of return words. We may thus define a
substitutionτ on {1,2, . . . , |Ra|} in the following way: ifb ∈ {1,2, . . . , |Ra|}, then we
may write

ζ(2−1
a (b)a)[k,|ζ(2−1

a (b))|+k) = r0r1 · · · rn, each r j ∈ Ra,

and we set

τ(b) = 2a(r0)2a(r1) · · ·2a(rn).

We leave it to the reader to verify thatτ is a primitive substitution fixingω = Da(υ).

The proof is completed by invoking Lemma 6.2 withπ = 2−1
a .

We now turn our attention to proving the “only if” part of Theorem 6.1. We show

π(ω) is primitive substitutive

⇒ ω is primitive substitutive

⇒ ω has only finitely many derived orbits

⇒ ∃l > 0: ω andζ l (ω) are in the same shift orbit. (7)

We begin by paraphrasing a result from [21].

Theorem 6.8[21, Theorem 1.3]. If Y is a minimal shift space containing a primitive
substitutive sequence, then there is a finite set of disjoint minimal shift spaces whose
union contains every derived sequence of every sequence of Y. Each of these shift spaces
contains a primitive substitutive sequence.

We say a functionf is bounded-to-oneif there is a positive integerL such that each
point in the range off has at mostL preimages. To establish the first implication of (7)
we need the following key fact.

Proposition 6.9. If Y is a minimal shift space containing a primitive substitutive se-
quence andπ is a morphism defined on the alphabet of Y such thatπ(Y) is infinite, then
π : Y→ π(Y) is bounded-to-one.

Proof. The hypotheses imply thatY is infinite. LetC be as in Lemma 6.4, so that every
word of lengthk in the language ofY occurs in every word of lengthkC in the language
of Y. Since some letter in the alphabet ofY is not sent byπ to the empty word, we must
havebC−1|u|c < |π(u)| < |π ||u| for every wordu in the language ofY.

Suppose thatω(1), ω(2), . . . , ω(n) are distinct sequences ofY, all sent to the same
sequence byπ, such thatπ(ω( j )

0 ) 6= ε. For all large enoughm the wordsω( j )
[−m,m],

j = 1,2, . . . ,n, are distinct. Fix suchm > C. For any two of the wordsπ(ω( j )
[−m,0)),
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j = 1,2, . . . ,n, one must be a suffix of the other; letw(l ) be the shortest of these words.
Likewisew(r ) := the shortest of the wordsπ(ω( j )

[0,m]), j = 1,2, . . . ,n, is a prefix of each
of these words. Putw = w(l )w(r ). Then|w| > 2bC−1mc > C−1m.

Now letu be a word in the language ofY of length(2m+1)C. Thenπ(u) is a word
of length≤ |π |(2m+ 1). Each of the wordsω( j )

[−m,m], j = 1,2, . . . ,n, must occur in

u, and if u[r,r+2m] = ω( j )
[−m,m] , thenw(l ) is a suffix ofπ(u[0,r+m)) andw(r ) is a prefix of

π(u[r+m,r+2m]). Sinceπ(ω( j )
0 ) 6= ε there must be at leastn occurrences of the wordw in

π(u).Let Z be the union of the first|π |shift images ofπ(Y).ThenZ is an infinite minimal
shift space which by Lemma 6.2 contains a primitive substitutive sequence. Denote by
C′ the return constant forZ guaranteed by Lemma 6.4. Thenπ(u) contains at leastn−1
return words tow in Z and by Lemma 6.4 we have|π |(2m+1) > (n−1)(C′)−1C−1m.
Thusn ≤ 1+ 2CC′|π |.

Finally, if ω ∈ Y and k is the least nonnegative integer for whichπ(ωk) 6= ε,
thenk < C and if ν is thekth shift image ofω, thenπ(ω) = π(ν). It follows that
π : Y→ π(Y) is at mostC(1+ 2CC′|π |)-to-one.

Remark 6.10. Proposition 6.9 can be seen as a consequence of a very general result
of Durand [14]: Let(X, T) be a linearly recurrent subshift. There exists a constantL
such that for every factor mapϕ: (X, T)→ (Y, T), whereY is a nonperiodic subshift,
and ally ∈ Y, we have #ϕ−1({y}) ≤ L .

The next proposition is a partial converse of Lemma 6.2.

Proposition 6.11. Let Y be a minimal shift space containing a primitive substitutive
sequence and supposeπ is a morphism such thatπ(Y) is infinite. If $ ∈ Y is such that
π($) is primitive substitutive, then$ is primitive substitutive.

Proof. Let C, Z and C′ be as in the proof of Proposition 6.9. For all sufficiently
large n, if w ∈ R$[0,n) (Y), thenπ(w) may be written uniquely as a concatenation
of elements ofRπ($[0,n))(Z). This defines a morphismϕn: {1,2, . . . , |R$[0,n) (Y)|} →
{1,2, . . . , |Rπ($)[0,n) (Z)|} having the property that

ϕn(D$[0,n) ($)) = Dπ($)[0,n) (π($)).

By Lemma 6.4|u| < C′|w| for anyw ∈ Ru(Z). This implies that|ϕn(b)| < CC′|π |n/
bC−1nc for any b ∈ {1,2, . . . , |R$[0,n) (Y)|}, from which we obtain the crude bound
|ϕn| < 2C2C′|π |, valid for n ≥ C. It follows from the bound on the|ϕn| that there are
only finitely many distinct mapsϕn.

By Durand’s theorem, there are only finitely many different derived sequences
Dπ($)[0,n) (π($)) and each is primitive substitutive. By Theorem 6.8, there is a finite
disjoint collection of minimal shift spacesY1,Y2, . . . ,Yk, each containing a primitive
substitutive sequence, with the property that any derived sequence of a sequence inY is
contained in one of them. IfD$[0,n) ($) ∈ Yl (n), thenϕn is defined onYl (n) and takes it to
an infinite subset of the closure of the shift orbit ofDπ($)[0,n) (π($)).By Proposition 6.9,
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there are only finitely many sequences inYl (n) which are sent toDπ($)[0,n) (π($)) byϕn,

andD$[0,n) ($) is one of them. Thus we see that there can be only finitely many distinct
sequencesD$[0,n) ($).

Lemma 6.12. A sequenceυ belonging to a minimal shift space Y is primitive substi-
tutive if and only if{Ou(υ): u a factor ofυ} is finite.

Proof. Suppose first thatυ is primitive substitutive. We will construct a finite collection
of sequences which contains a member of each derived orbit. Letu be any factor ofυ
and letn = n(u) be the least positive integer for whichu is a factor ofυ[0,n). Thenυ[0,n)

ends inu andn < (C + 1)|u| whereC is the constant from Lemma 6.4. Ifw is a return
word toυ[0,n), thenwυ[0,n) begins inυ[0,n) and therefore(wυ[0,n))[n−|u|,|w|+n) begins and
ends inu. Thus(wυ[0,n))[n−|u|,|w|+n−|u|) can be written uniquely as a concatenation of
return words tou,

(wυ[0,n))[n−|u|,|w|+n−|u|) = ru,w,0ru,w,1 · · · ru,w,m(u,w), each ru,w, j ∈ Ru.

It follows from Lemma 6.4 thatm(u, w) < C2(C + 1)+ 1.
Consider the morphismϕu: {1,2, . . . , |Rυ[0,n(u)) |} → {1,2, . . . , |Ru|} given by

ϕu(b) = 2u(ru,w,0)2u(ru,w,1) · · ·2u(ru,w,m(u,w)), w := 2υ[0,n(u)) (b).

One checks easily thatϕu(Dυ[0,n(u)) (υ)) is in Ou(υ). It follows from the bound on the
m(u, w) that there are only finitely many different possible mapsϕu, and by Du-
rand’s theorem there are only finitely many distinct derived sequencesDυ[0,n) (υ). Thus,
{ϕu(Dυ[0,n(u)) (υ)): u a factor ofυ} is a finite set containing a representative of each derived
orbit.

Now suppose{Ou(υ): u a factor ofυ} is finite. We may assume thatυ is not pe-
riodic. Then we can find positive integersn1 < n2 for whichDυ[0,n1)

(υ) ∈ Oυ[0,n2)
(υ)

and every return word toυ[0,n2) is longer than the longest return word toυ[0,n1). Every
return word toυ[0,n2) can be written uniquely as a concatenation of return words toυ[0,n1)

and thus we may define a substitutionτ : {1,2, . . . , |Rυ[0,n2)
|} → {1,2, . . . , |Rυ[0,n2)

|} by
puttingτ = 2υ[0,n1)

◦2−1
υ[0,n2)

. It is easy to verify thatτ is primitive, and ifm is the integer
for which (Dυ[0,n1)

(υ))j = (Dυ[0,n2)
(υ))m+ j holds for all j , then

τ(Dυ[0,n2)
(υ))j = (Dυ[0,n2)

(υ))j+m for all j .

Lemma 6.7 asserts thatDυ[0,n2)
(υ) is primitive substitutive, and an application of Lemma 6.2

with π = 2−1
υ[0,n2)

completes the proof thatυ is primitive substitutive.

We recall a well-known inequality (see [31]). Sinceζ is primitive the matrixMζ

is also primitive and the Perron–Frobenius theorem guarantees a positive eigenvalueθ

strictly greater in absolute value than any other eigenvalue ofMζ .
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Lemma 6.13. There exist positive constants C1,C2 such that C1|w|θn < |ζ n(w)| <
C2|w|θn for every wordw and for every positive integer n.

The next lemma completes the proof of Theorem 6.1.

Lemma 6.14. A sequenceω ∈ X(ζ ) has only finitely many distinct derived orbits if
and only if there exists a positive integer l such thatζ l (ω) is in the shift orbit ofω.

Proof. If ζ l (ω) is in the shift orbit ofω, then by Lemma 6.7ω is primitive substitutive,
whence it has only finitely many distinct derived orbits, by Lemma 6.12.

Now supposeω is primitive substitutive. Letu be any factor ofω and consider the
array

Ou(ω)

Oζ(u)(ω) Oζ(u)(ζ(ω))

Oζ 2(u)(ω) Oζ 2(u)(ζ(ω)) Oζ 2(u)(ζ
2(ω))

...
...

...
. . .

There are only finitely many distinct entriesOζ n(u)(ω) in the first column, by Lemma 6.12.
If w ∈ Ru, thenwu begins inu and is a factor ofω. It follows that ζ k(wu) is a

factor ofω which begins and ends inζ k(u), and thusζ k(w)may be written uniquely as
a concatenation of words ofRζ k(u). This induces a morphismϕk: {1,2, . . . , |Ru|} →
{1,2, . . . , |Rζ k(u)|}, defined forb ∈ {1,2, . . . , |Ru|} by

ϕk(b) = 2ζ k(u)(rk,b,0)2ζ k(u)(rk,b,1) · · ·2ζ k(u)(rk,b,l (k,b)),

where

ζ k(2−1
u (b)) = rk,b,0rk,b,1 · · · rk,b,l (k,b), each rk,b, j ∈ Rζ k(u),

is the unique representation ofζ k(2−1
u (b)) as a concatenation of return words toζ k(u).

One may verify that for anyυ ∈ X(ζ ),

ϕk(Ou(υ)) ⊂ Oζ k(u)(ζ
k(υ)).

Thus, for eachm≥ n ≥ 0 we have

ϕn(Ou(ζ
m−n(ω))) ⊂ Oζ n(u)(ζ

m(ω)).

By Lemmas 6.4 and 6.13 we have|ϕk(b)| < C2C/C1 for eachb ∈ {1,2, . . . , |Ru|},
independent ofk andu. This means there are only finitely many distinct morphismsϕk.
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It follows that the entire array has only finitely many distinct entries. In particular, for
somem,n, l > 0 we must haveOζ n(u)(ζ

m(ω)) = Oζ n(u)(ζ
m+l (ω)) from which we see

thatζm(ω) andζm+l (ω) lie in the same shift orbit. Thus,ζ l (ω) is in the shift orbit ofω.

7. Measures of Cylinders

It is well known that ifζ is primitive, thenX(ζ ) is uniquely ergodic [31]. Denote byν the
T-invariant probability measure onX. By the Perron–Frobenius theorem,M(G) admits
a simple positive eigenvalueθ, greater in absolute value than any other eigenvalue of
M(G), and a unique strictly positive (right) eigenvector(pa)a∈A, normalized so that∑

a∈A pa = 1. For a finite walke1e2 · · ·ek denote by [e1e2 · · ·ek] the cylinder set
{( f j )

∞
j=1 ∈ G∞: f j = ej for all 1≤ j ≤ k}, and set

µ([e1e2 · · ·ek]) = θ−k pt (ek). (8)

One readily verifies the consistency requirement∑
e∈E, i (e)=t (ek)

µ([e1e2 · · ·eke]) = µ([e1e2 · · ·ek]),

so by Kolmogorov’s theoremµ extends to a probability measure onG∞.

Proposition 7.1. The measureµ is S-invariant andµ ◦ H = ν.

Proof. The first assertion is proved by considering sets of the form [e1e2 · · ·ek] ⊂ G∞

while the second follows from unique ergodicity.

The following was conjectured by Boshernitzan [6].

Theorem 7.2. The measures of all cylinders in X lie in a finite union of geometric
sequences.

Proof. Fix positive constantsC1,C2 as in Lemma 6.13 and letK > 0 be such that
for each$ ∈ X and each wordw ∈ L(ζ ) the minimum gap between successive
occurrences ofw in$ is at leastK |w|. The valueC−1 of Lemma 6.4 will suffice forK .
Letw ∈ L(ζ ) and setn = d(log|w| − logC1)/ logθe. Then for every lettera we have
|w| < |ζ n(a)| < C2θ |w|/C1.

If u ∈ L(ζ ), thenH([u]) is compact and open inG∞ and hence is a finite union
of cylinders. Thus there is a positive integerm such that for every wordu of length 2
one can writeH([u]) as a union of cylinders of the form [e1e2 · · ·em]. Our choice of
n implies, for every wordu of length 2 and for every integer̀∈ [0, |ζ n(u0)|), either
T`(ζ n([u])) ⊂ [w] or T`(ζ n([u])) ∩ [w] = ∅. Our choice ofK ensures that at most
bC2θ/C1K c of thesè satisfyT`(ζ n([u])) ⊂ [w].

Now if ( j1,a1) · · · ( jn+m,an+m) is a walk onG, thenT jn+1◦ζ ◦· · ·◦T jm+n([an+m]) ⊂
[u] for some wordu of length 2 and if [( j1,a1) · · · ( jn+m,an+m)] meetsH([w]), then
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` :=∑n
l=1 |ζ l−1(ζ(al )[0, jl ))| is one of those few integers for whichT`(ζ n([u])) ⊂ [w].

Thus for each walken+1 · · ·en+m there are at mostbC2θ/C1K c choices ofe1e2 · · ·en

such that [e1e2 · · ·en+m] ∩ H([w]) 6= ∅, and [e1e2 · · ·en+m] ⊂ H([w]) whenever this
intersection is nonempty. SettingL equal to the number of walks onG of lengthm
this shows thatH(ω) is a union of no more thanbC2θL/C1K c cylinders of the form
[e1 · · ·en+m], and we can use (8) and Proposition 7.1 to write

ν([w]) = θ−(n+m)
∑
a∈A

ta pa,

where eachta ∈ Z and 0≤ tabc ≤ bC2θL/C1K c. Thus the measure of every cylinder
in X is in⋃

n≥0

θ−n

{∑
a∈A

ta pa: ta ∈ Z, 0≤ ta ≤
⌊

C2θL

C1K

⌋}
.

8. Geometric Realizations of Substitutions

In 1982 Rauzy showed that the subshift(X, T) generated by theTribonacci substitution
1 7→ 12, 2 7→ 13, 3 7→ 1 is a natural coding of a rotation on the two-dimensional
torus, i.e., is metrically isomorphic to an exchange of three fractal domains on a com-
pact set inR2, each domain being translated by the same vector modulo a lattice [32].
This example, also studied in great detail by Messaoudi in [28] and [29] and Ito and
Kimura in [23], prompted a general interest in the question of which substitutions admit
a geometric realization as in the case of Tribonacci. This question was made precise
by Queffélec in [31]. Since then many partial results have been obtained for various
types of substitutions (see [2]–[5], [7], [9], [11], [16], [17], [20], and [33] to name just
a few).

By acomplex geometric realization[20] of a primitive substitutionζ on an alphabet
A we mean a continuous functionh: X(ζ ) → C, a nonzero complex numberβ and a
nonzero vectorv = (va)a∈A ∈ C|A| such that

• h ◦ ζ = βh and
• h(Tω) = h(ω)+ vω0 for all ω ∈ X(ζ ).

One can deduce from the definition that|β| < 1, vMζ = βv and h(ω) = 0 for
eachω ∈ Per(ζ ) (see [20]). In [20] we showed that every nonzero eigenvector ofMζ

corresponding to a nonzero eigenvalue of modulus strictly less than 1 determines a
geometric realization ofζ.

Suppose that(h, β, v) is a geometric realization ofζ. Consider theedge weights

ρ( j,a) = vζ(a)0 + vζ(a)1 + · · · + vζ(a)j−1

for ( j,a) ∈ E . Let ω ∈ X andH(ω) = ( jl ,al )
∞
l=1. If k > 0 and$ is the unique point

of X for which$0 = ak andω = (T j1 ◦ ζ ◦ . . . T jk ◦ ζ )($), then

h(ω) = βkh($)+
k∑

l=1

β l−1ρ( jl ,al ). (9)
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Proposition 8.1. The functionψ : G∞ → C given by

ψ(( jl ,al )
∞
l=1) =

∞∑
l=1

β l−1ρ( jl ,al )

is continuous andψ ◦ H = h.

Proof. Continuity follows from the fact that|β| < 1. The second assertion follows
from (9).

For eachw ∈ L(ζ ) putÄw = h([w]), and for each finite walke1e2 · · ·ek on G set
Je1···ek = ψ([e1e2 · · ·ek]).

The functionψ above is related to the graph-directed construction of Mauldin
and Williams in [27]. Defineedge mapsψ( j,a): Äa → Äi ( j,a) by settingψ( j,a)(z) =
βz+ ρ( j,a). Then

Je1···ek = (ψe1 ◦ · · · ◦ ψek)(Ät (ek)). (10)

The Mauldin and Williams construction requires that the edge maps be defined on com-
pact subsets ofRn with nonempty interiors and have nonoverlapping images. Although
these conditions need not be satisfied by our edge maps, the methods can still be applied
to give an upper bound on the Hausdorff dimension ofÄ.

Proposition 8.2. The Hausdorff dimension ofÄ is no greater than− logθ/ logβ.

Proof. We see from (10) that diam(Je1···ek) ≤ βk diam(Ät (ek)).Setα = − logθ/ logβ.
For each positive integerk we have∑

(diamJe1···ek)
α ≤

∑
(βk diamÄt (ek))

α

=
∑

θ−k(diamÄt (ek))
α

=
∑

µ([e1e2 · · ·ek])(diamÄt (ek))
α/pt (ek)

≤ sup{(diamÄa)
α/pa: a ∈ A} ,

where the sums are over all walkse1e2 · · ·ek on G. This showsHα(Ä) < ∞ as
required.

We are interested in a condition which guarantees that the maph is one-to-one
off a set ofν-measure zero. The remainder of the section is devoted to some partial
results.
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SupposeHα(Ä) > 0. For eacha ∈ A, [a] = ⋃ {H−1([e]): e ∈ E, i (e) = a} and
thus

Äa =
⋃
{Je: e∈ E, i (e) = a}, (11)

and therefore

Hα(Äa) ≤
∑

e∈E, i (e)=a

Hα(Je)

=
∑

e∈E, i (e)=a

Hα(βÄt (e) + ρ(e))

= θ−1
∑

e∈E, i (e)=a

Hα(Ät (e))

= θ−1
∑
b∈A

MabHα(Äb). (12)

Writing h for the vector whoseath entry isHα(Äa),we haveMh ≥ θh.This implies that
in fact Mh = θh, so we must also have equality in the first line of (12). It follows from
this and (11) that ifeande′ are distinct edges withi (e) = i (e′), thenHα(Je∩ Je′) = 0.
A straightforward generalization of this argument to longer paths yields:

Proposition 8.3. If Hα(Ä) > 0 andw ∈ L(ζ ), then the restriction of h to[w] is
one-to-one off a set ofν-measure zero. Moreover, the restriction ofHα to h([w]) is a
multiple ofν ◦ (h|[w]

)−1
.

Remark 8.4. We have no general method for verifying the hypothesis of Proposi-
tion 8.3.

Conjecture 8.5. If θ |β| < 1, thenHα(Ä) > 0. If β ∈ C\R and θ |β|2 < 1, then
Hα(Ä) > 0.

We do not know whether Proposition 8.3 implies thath is one-to-one off a set of
ν-measure zero wheneverHα(Ä) > 0. One partial result is the following.

Supposea,b are vertices ofG andN,n are nonnegative integers such that

(A1) N < min(|ζ n(a)|, |ζ n(b)|),
(A2)

∑N−1
j=0 vζ n(a)j =

∑N−1
j=0 vζ n(b)j and

(A3) ζ n(a)N = ζ n(b)N .

Then there exist walkse1 · · ·en, f1 · · · fn, starting atζ n(a)N and ending ata, b, respec-
tively, for which

n∑
j=1

β( j−1)ρ(ej ) =
n∑

j=1

β( j−1)ρ( f j ).
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We have

Je1···en = βnÄa +
n∑

j=1

β( j−1)ρ(ej ) and Jf1··· fn = βnÄb +
n∑

j=1

β( j−1)ρ( f j ),

and the comments preceding Proposition 8.3 show

Hα(Je1···en ∩ Jf1··· fn) = 0

from which we deduceHα(Äa ∩Äb) = 0.
Thus, by Proposition 8.3, ifHα(Ä) > 0 and for each paira,b of vertices there exist

nonnegative integersN,n satisfying (A1)–(A3) above, thenh is one-to-one off a set of
ν-measure zero.

There is a simple combinatorial criterion on substitutions which guarantees (A1)–
(A3) will be satisfied for eacha,b. The substitutionζ is said to have thecoincidence
propertyif for each pairω,$ ∈ Per(ζ ) there is an integern for whichωn = $n and the
number of occurrences of each letter of the alphabet inω[0,n) is the same as that in$[0,n).

This condition was originally introduced by Dekking in [10] in the context of constant
length substitutions. Arnoux and Ito [4] generalized it to arbitrary substitutions.

Proposition 8.6. If Hα(Ä) > 0 andζ has the coincidence property, then h is one-to-
one off a set ofν-measure zero.
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