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Abstract. A substitution naturally determines a directed graph with an order-
ing of the edges incident at each vertex. We describe a simple method by which
any primitive substitution can be modified (without materially changing the bi-
infinite fixed points of the substitution) so that points in the substitution minimal
shift are in bijective correspondence with one-sided infinite paths on its associated
directed graph. Using this correspondence, we show that primitive substitutive se-
guences in the substitution minimal shift are precisely those sequences represented
by eventually periodic paths. We use directed graphs to show that all measures
of cylinders in a substitution minimal shift lie in a finite union of geometric se-
guences, confirming a conjecture of Boshernitzan. Our methods also yield sufficient
conditions for a geometric realization of a primitive substitution to be “almost
injective.”

1. Introduction

Every substitution has an associated prefix automaton, a directed graph whose vertices
are the letters of the substitution’s alphabet and whose edges are labeled with the strict
prefixes of the images of the letters under the substitution. In this paper we consider the

directed graph obtained by reversing the directed edges in the prefix automaton. This

graph is more natural from the point of view of iterated function systems.

* The second author was supported in part by NSF Grant INT-9726708 and a grant from the Texas
Advanced Research Program.
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Vershik introduced the notion of an adic transformation defined on the infinite path
space of a Bratteli diagram as a means of studying operator algebras. Livshitz outlined a
connection between substitution minimal systems and stationary adic transformations,
the underlying spaces of which are essentially the infinite path spaces on the associated
directed graphs: every substitution minimal shift is metrically isomorphic to a stationary
adic transformation [24]. Forrest [18] and Durand et al. [15] proved that every stationary
proper minimal Bratteli-Vershik systemis topologically conjugate to either a substitution
minimal system or a stationary odometer system.

In this paper we describe a simple but completely general way of modifying a
primitive substitution so that the substitution minimal shift is homeomorphic to the
space of one-sided infinite paths on its directed graph. The induced dynamical system
on the infinite path space of the graph is just the continuous extension of the Vershik
map. Other constructions of this kind exist, for example, [15], [18], and [19].

A primitive substitutive sequence is, by definition, an image under a morphism of
a fixed point of a primitive substitution (see [13] and [21]). Directed graphs give a new
way to characterize primitive substitutive sequences. As part of the characterization, we
show that a point in the minimal shift arising from a primitive substitution is primitive
substitutive if and only if it is represented by an eventually periodic path in the graph
associated to the substitution. We also show that all primitive substitutive sequences in
any minimal shift can be completely described by a single directed graph.

As another application of the directed graph construction, we establish the following
conjecture of Boshernitzan: the measures of cylinders in a substitution minimal shift lie
in a finite union of geometric sequences [6]. This is an unsurprising reflection of the
self-similarity inherent in substitution dynamical systems.

Many substitutions admit geometric realizations equipped with piecewise translation
mappings (see[20]). Eiand Ito gave a characterization of those substitutions on two letters
whose geometric realization is an interval exchange [16]. In such cases the substitution
minimal system is a symbolic representation for the interval exchange transformation.
It is natural to ask which substitution dynamical systems admit an “almost injective”
geometric realization in the sense of Qeddt [31]. In the last section we use the graph
directed construction to obtain some partial results.

2. Substitutions

By an alphabetwe mean a finite nonempty set of symbols. We refer to the members
of an alphabet aketters A word of lengthk in the alphabet4 is an expression =
Ugus - - - Ux—1 Where eachy; is a letter of4. We write |u| for the length of a wordh. Itis
convenient to define thempty worde, having length 0 and satisfying the concatenation
rule su = u = ue for every wordu. Let A" be the set of all words of positive length in
the alphabetd and setd* = A1 U {¢}.

A morphismdefined on alphabed is a mapr: A — B*, whereB5 is an alphabet.
The length ofr is defined to bér | = maxX{ |7 (a)|: a € A}. We sayr is aletter-to-letter
morphismif 7 (A) C B, andr is callednonerasingf ¢ ¢ 7(A). A morphismz: A —

B* determines by concatenation a mdp — B*, also denotedr. A substitutionis
a nonerasing morphisd — A*. A substitution on alphabet4 determines a map
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A% — A” which we also denote by. With this slight abuse of notation we defigg
forn > 0on.A, A" and.A” in the obvious way.

Associated to a substitutignon A is the4 x A matrix M, with abth entry equal to
the number of occurrences of the letddn the wordz (b). The substitutior is primitive
if there exists a positive integarsuch that for each letter € A the wordz"(a) contains
every letter of4d. Equivalently is primitive if and only if M, is a primitive matrix, i.e.,
if some positive power oM, has all entries strictly positive. tf is primitive, then

Vae A, [c™@)] = oo as m— oo. 1)

A sequencey € AZ is aperiodic pointof ¢ if for some positive integen we have
{"(w) = w. Every primitive substitution has a periodic point. Denote by(Pethe set
of periodic points of.

Forw e At and 0< m < n < |w| we write wym nj for the wordwmwmy1 - - - wn
(such words are callef@ctorsof w). Definewm ny, wm,n andwm, n analogously, with
the convention thatvy = ¢ = ¢(¢). Similarly, if ® € A% andm < n, then we set
®m,n] = WmWm+1 - - - @ and use the obvious interpretationsdgk, ny, wm,n] aNdwm n).

The topology ofA? is metrizable as the countable product of the discrete sdace
Specifically, we define a metrit on A% by settingd(w, v) = e N if N is the greatest
integer for WhiC}’h)(,N’N) = U(=N,N)-

Thelanguageof a substitutiort is the set£(¢) of all factors of the wordg™(a),
m € N anda < A. The subshift of4A” spanned by the languad&?) is

X)) ={we A% w[-j,i] € L) forall j € N}

It follows from (1) that if¢ is primitive, thenZ(¢) is an infinite set ane (¢) is nonempty.
Thecylinderdetermined by aword is [w] = {w € X(¢): wjo,jw)) = w}. Theshift map

T onX(¢)isdefined byTw); = wj41. Itiseasytoseetha(¢) isaclosed subset ofZ,

T is ahomeomorphisiX (¢) — X(¢), and if¢ is primitive, then the dynamical system
(X(¢), T) is minimal, i.e., every point has a dense orbit under the shift map (see [31]).

3. Directed Graphs Associated with a Substitution

A directed graph Gconsists of a finite nonempty set of vertidés= V(G) and a finite
set€ = £(G) of edges together with mapst : £ — V. A walkor pathonG is a finite

or infinite sequence of edgese £ such that (g.1) =t (g) for all relevant indices.

A finite walk (g ),k:1 starts at itsnitial vertexi (e;) and ends at iteerminal vertex (e).

We say thaG is strongly connected for every ordered pair of vertice@, b) there is

a finite walk onG starting ata and ending ab. A strongly connected directed graph
is said to beaperiodicif there are two walks of relatively prime lengths with the same
initial vertex and the same terminal vertex.

Theadjacency matribof G is theV x V matrix M = M(G) with abth entry Map
equal to the number of edges starting at veg@nd ending at vertels. It is easy to see
that(M™)4y, is the number of paths of lengthstarting ata and ending ab. Thus,G is
strongly connected if and only M is irreducible, ands is aperiodic if and only iM is
primitive. (Recall that a nonnegative matfik is irreducible if for all indices, b there
is a positive integen such thatM"),p > 0.)
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Fig. 1. Directed graph associated to the substitution in Example 3.1.

Denote byG> the space of (one-sided) infinite walks @) viewed as a sub-
space of the countable product of the discrete edge set. With this topBRSgg com-
pact.

Let ¢ be a substitution on an alphahbét We associate t¢ a directed graplc =
G(¢) with vertex setV(G) = A and the edge s&él(G) = {(j,a): a € Aand0<
j < l¢@l}, wherei (j, a) = ¢(a); andt (j, a) = a. These graphs were independently
studied by Canterini and Siegel in [8]. The adjacency maliigG) is equal to the
incidence matriXM,. Thus¢ is primitive if and only ifG(¢) is aperiodic.

Example 3.1. The Thue—Morse substitution has alph&lfetl} andz (0) = 01, ¢ (1) =
10. The associated graph is shown in Figure 1.

Our construction naturally determines a partial orderingn £ in which edges
are comparable if and only if they have the same terminal vertex. Specifically, for
(Ji, &), (j2, &) €€,

(J.a) < (jz, @) <= a=aandj < jo. 2)

Conversely, a directed graph having at least one edge ending at each vertex,
together with an ordering on the set of edges ending at each vertex, determines a
substitutionsg on alphabed’(G) given by¢g(a) =i (e1a)i (€2a) - -i (&,.a), Where
€1a < &4 < -+ < g, a are the edges ending ate V(G). It is readily verified that
le) = ¢ andG(ss) = G.

Suppose is a primitive substitution on alphabdtandG is the associated directed
graph with partial ordering< on the edge set given by (2). We also denote<bthe
partial ordering orG* defined by

)2y < (fj2; <= FKl(a < f) andvj > k(g = fj)].

An element ofG* is minimal (maxima} if it is minimal (maximal) with respect to this
partial ordering. Note that for each vertaxand for each positive integerthere is a
unique walk of lengtm ending ata and consisting entirely of minimal edges (ditto for
maximal). Consequently,

Proposition 3.2. Minimal and maximal elements always exist and are perigds
sequences of edgeand there areat most |.A| of each

Every nonmaximal element has a unique successor, and weSfotehe successor
mapG>\{maximal walk$ — G. Thatis, if (ji, &), € G is not maximal and is
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the least index for whickijy, ax) is not a maximal edge, then
S((ji. a2y = (0. £ %(@)0)(0, £ 3(a)o)
e (Ov a)(Jk + 1» a-k)(jk+ls ak+1)(jk+29 ak+2) Y (3)

wherea = ¢ (aW)j+1.

4. Words and Walks

Fix a primitive substitutior; on an alphabe#d such thatX = X(¢) is infinite. Our
first order of business is to give a method for coding points<olby infinite walks

on G = G(¢). The coding is suggested by the following lemma which states that all
primitive substitutions have the unique admissable decoding (UAD) property of [25].

Theorem 4.1. Letw € X. Thenthere is a unique pais(w), M(w)) € X x Z such that
o =T"@¢(s(w)) and0 < M(w) < |¢(S(w)o)|. Moreoverthe mapw +— (S(w), M(w))
is continuous

The idea for the proof is probably due to Martin [26]. The result can also be inferred
from work of Mos& in [30]. See [15] for more details.

Corollary 4.2. The map;: X — ¢(X) is one-to-one
We record a useful fact whose proof is straightforward.
Lemma4.3. If (j|,a4),k=1 isawalk on G and) € X withug = a, then
(TiozoTloro---0Tkor)(v) = T™K(v),
where m = Y0, 1€ 1@ @)p. i)l < 1€ @)-
We define amapi: X — G, which we call thecoding mapof ¢, by
H(@) = (M), 8 (@)0);-
ThusH (w) starts at verter if and only if v € [a].

Proposition 4.4. The coding map HX — G is a continuous surjection satisfying

(@) H(¢ (@) = (0, { (@) H (w).

(b) H o T = So H whenever the latter is defined

(¢) H(w) is minimal if and only iftv € Per¢).

(d) H(w) is maximal if and only if T € Per¢).

(e) The infinite walk Hw) begins in(j1, a1) - - - (jk, &) if and only if

we(ThotoTloto---oThkog)(ay).
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Proof. Theimage oH isdenseirG®, forif (j1, a1)(j2, &) - - - (jk, a) is a finite walk
onG andv € X is any point withug = a, thenw := (TltofoTi20 0 -0 Tko)(v)
is a point of X andH (w) begins in(j1, a1)(j2, @) - - - (jk, a). Continuity follows from
Theorem 4.1 and surjectivity from compactness<of

Assertions (a) and (e) follow immediately from the definitiontbf To prove (b)
supposaw € X andH(w) = (ji, &), is not maximal. Lek be the least index for
which (j, ak) is not maximal. Letv be the unique point oK for which vy = a
and

wo=ThoroTloro---0Tkot)(v).
For anyew € X we have

(ToTE™I o o)(@) = ¢ (Tw), )
and repeated application of this identity yields

Tw = (T oTho{oszog‘o-noTjkog‘)(U)
= o TH o) ().

Puttinga = ¢ (aw)j+1 We see from (a) that

H(Tw) = (0, ¢*2(@)0)(0, ¢*3(@)0)
(0, 2(@0)(0, ) (jk + 1, @) (s, A1) sz Ap2) -« »

which is, according to (3), the successortbfw).
To prove (c) we observe that (w) is minimal if and only ifw is in the image ot
for all k. Assertion (c) now follows from the equality

(¢ (X) = Pex¢). )

k>0

To prove (d) we note that by (4) iH(w) is maximal, thenTw is in the im-
age of ¢k for every positive integek; by (5), Tw must be in Pei). Conversely,
if H(w) is not maximal, then (b) implies thatl (Tw) is a successor (the succes-
sor of H(w)) and hence not minimal, whence it follows from (c) thia® is not in
Per?). O

We wish to extendS to a continuous map on all d&*° so thatH becomes a
conjugacy. However, the map need not be one-to-one. To see how this difficulty can
arise, suppose has a pair of distinct periodic poinis, v With wjp ) = Uj0,0). (The
Thue—Morse substitution has two such pairs.) A substitution acts as a permutation on its
set of periodic points, so there is a positive intdgsuch that “(w) = w andzk(v) = v.

This implies for alll > 0,
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and the analogous statement forThus
s (@) = {4 (@)o = ¢ ©IMK(W)o = o,

whenceH (w) = H (v).

A pair as in the preceeding paragraph exists precisely when there are more maximal
elements than minimal elements@%°. This is the only thing to check; it can be shown
thatH is bijective if and only if

|{minimal elements 06>}| = |{maximal elements 0&>°}|.

To extend the successor m&we modify the substitution so that the resulting
coding mapH is one-to-one. Let®®! = ABl(¢) be the subset of (¢) consisting of the
words of length 3. We define a substitutigs on AP by setting for(abg) € AP,

¢((@bo)j = (¢(@boyz@+j-vic@i+j+1)- 0<j<l¢M]

Note |3 ((abo)| = |¢(b)|. Write Tg; for the shift map orK (¢[3)). Fore € X(¢) denote
by wf®l the sequence in the letters df¥! with jth entry (wB); = (0j_10jwj11). Itis
easy to see that

Proposition 4.5.  With the above notatigns is primitive andw +— o isaconjugacy
X(£) = X(g))- Moreovey (¢ (0)B = ¢35 () and[(abo)] = (T[abd)E.

Denote byHpz;: X(¢z) — G(¢z)*™ the coding map ofs;. Let (ji, (abic))2, €
G(¢aD™ and setm, = Z,k:1|§'*1(§(a4)[o,j,))|. By Lemma 4.3 and (e) of Propo-
sition 4.4, if Hig (@) = (ji, @ba))2,, thenwl e T ([@beco]), so, by
Proposition 4.5w € T™¢X(T[abeck]). Any v e T™¢K(T[acbkc]) must satisfy
UL g (@l -me ek bl -me k@) = & @bk, and therefore

diam T™ ¢ (T [akbkedd) < exp(—min(lc* @1, 1£4(c)),

where diam means diameter in the metticThis together with (e) of Proposition 4.4
implies

oo
H (G abie)i2y) € [T ogg oo T o g ((adico]) = {).
k=1
Thus,Hpz) is seen to be a homeomorphism and the successoiSxamitially defined
on the nonmaximal members Gf({j3)*, may be extended to a continuous homeomor-
phism (also denotefs)) on all of G({p3)). In this way, §3; sends each maximal path
in G(¢z)™ onto a minimal path. We summarize this discussion as follows.

Proposition 4.6. If ¢ isaprimitive substitutiofthen there exists a primitive substitution
7 and a conjugacyp: X(¢) — X(t) such thatp o ¢ = t o ¢ and the coding map
H: X(r) — G(r)* is a conjugacy

For the remainder of the paper we assume ¢higta primitive substitution on the
alphabet4 and thatX = X(¢) is an infinite set conjugate 8 = G(¢) via the coding
mapH.
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5. Characterizing Left Special Sequences

A pointw € X is calledleft-specialif there existsu € X such thatwjp ) = v,y and
w_1 # v_;. Quefiélec showed in [31] that the set of left-special pointas finite.

Proposition 5.1. If w € X is left-specialthen H(w) is eventually periodic

Proof. LetS be the set of ordered paif®, v) € X x X such thaty o) = vjo,«) and
w_1 # v_1. It follows from QuefElec’s result thas is finite. For(w, v) € S we have

L (W)o,00) = £ (V)0,00) ANAE (@) # ¢ (v) by Theorem 4.1, so there must be a nonnegative
integerL (w, v) such that

(T (@), THO ) € 8.

We will show that each point & has at most one preimage under the iap- S given
by

(@,v) > (T (), T-HOVe (v)),

and hence this map is a permutation. For supgasev’) is a preimage ofw, v). Let
m be the least nonnegative integer such thab;_, ;)| > L (@', v"). Then

TR mo)ImL@V) e (T=myy/y = T-L@Y) 6 r (o)) = @

and 0< |§(wfo,m))| — L < [¢(@_)|. By the uniqueness assertion of Theorem 4.1 we
haves(w) = T ™(w'). Likewise,v’ is in the shift orbit ofs(v). SinceX has no periodic
points there can be only one pair of integersk) for which (T1(s(w)), T(s(v))) € S,
thus the preimagé’, v’) is unique.

We now fix a left-speciab € X and letv be such thatw, v) € S. It follows that
for some integera > 0 andN > 0 we have

T N"@), TV ") = (@, v).
From (a) and (b) of Proposition 4.4 we obtain

SN0, £"(@)0) (0, " H(@)o) - - (0, L (@)o) H (w)) = H(w). (6)

If H(w) isinthe orbit of a minimal or maximal element, thEl{w) is eventually periodic
by Proposition 3.2. IfH (w) is not in theS-orbit of a minimal or maximal element of
G, thenH (w) and SN(H (w)) differ in only finitely many coordinates; this together
with (6) shows that (w) is an eventually periodic sequence of edges. O

Remark 5.2. Related taS is the numbeN (¢) defined as follows. Let be the equiv-
alence relation oiX given by

o~ v = AMIN. Om ) = Vn,o0)-



Directed Graphs and Substitutions 553

The~ equivalence clasgv) of w is a union of finitely many orbits, namely thosewf
and all pointsu such thatT™w, v) € S for somem. Define

N(¢) := ) (# of orbits in(w) — 1).
(@)

This sum is finite as only finitely many equivalence classes contain more than one orbit,
but no sharp bound is known. We conjecture tN&t) < |A|(].A| — 1). The conjecture
holds when 4| = 2, and in this case there is a simple algorithm for finding all pairs of
S. The question seems to be open ffdit > 3.

6. Primitive Substitutive Sequences

In [13] Durand adapted the notion of automatic sequences to the context of primitive
substitutions: a one-sided infinite sequends calledprimitive substitutivef and only

if it is the image of a fixed point of a primitive substitution under a letter-to-letter mor-
phism. Durand [13] showed that primitive substitutive sequences are precisely those
minimal sequences which admit only finitely many derived sequences on prefixes (see
Theorem 6.5 below). This description was generalized by Holton and Zamboni in [21]
to obtain a characterization pfimitive substitutive subshiftin this section we extend

the notion of primitive substitutive to bi-infinite sequences in the natural way, and derive
an alternative characterization in terms of the associated directed graph. A two-sided
infinite sequence is callegrimitive substitutivef it is the image of a fixed point of

a primitive substitution under a letter-to-letter morphism. The main result of this sec-
tion is

Theorem 6.1. Let¢ be a primitive substitutiorand letr be a morphism taking &)
into an infinite minimal shift space. Yhen for everyw € X(¢), the sequence () is
primitive substitutive if and only if k) is eventually periodic

We begin with a few technical remarks. Durand showed that the hypothesis that the
morphism be letter-to-letter in the definition of primitive substitutive may be relaxed
(see Proposition 3.1 of [13]) to arbitrary nonerasing morphisms. Durand’s proof extends
immediately to the bi-infinite case:

Lemma6.2. Letw e A% be primitive substitutivelf 7 is a morphism such that
| (@)| > 1for some letter a occurring i, then- - - w(w_2)m (w_1) - T (wo) 7w (w1) - - - IS
primitive substitutive

The nextlemma characterizes the sequenc¥sapresented by eventually periodic
paths inG*°. The proof is straightforward and is left to the reader.

Lemma 6.3. Letw € X. Then Huw) is eventually periodic with period n if and only if
{"(w) andw lie in the same T -orbit
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Our proof of Theorem 6.1 requires several lemmas. We begin with some terminology
adapted from [13]. LeY be a minimal shift space and letbe a factor of some (hence
every) sequence of. A return wordto u in Y is a nonempty wordv such that

e wuis a factor of some sequencef
o (WU)[j,j+jup = uifandonlyif j € {0, w|}.

Denote byR, = Ry (Y) the set of return words win Y. It follows from minimality of Y
thatR, is finite. Durand showed that primitive substitutive shifts larearly recurrent

Lemma 6.4 [13, Theorem 4.5]. If Y is infinite and contains a primitive substitutive
sequencgthen there exists a positive constant C such that for aétwery return word
w € Ry(Y) satisfies Clu| < |w| < C|ul.

Fix, for eachu, a bijection®,: Ry — {1,2,..., |Rul}. If v € Y with v ;4 = U,
thenuv can be written uniquely as a concatenation:

VU= W_ow_1 - WoWIW? - - -, each wj € Ry,
and we obtain theerived sequencef v with respect tai:
Dy(v) = -+ - Ou(w-2)Oy(w-1) - Oy(we)Oy(wy) - - .

Derived sequences are unique up to permutation of their alphabets, and Durand’s result
holds for bi-infinite sequences:

Theorem 6.5 [13, Theorem 2.5]. Let Y be a minimal shift spac& sequence € Y
is primitive substitutive if and only {fD,,,, (v): n > 0} is finite

Remark 6.6. Incasev € Y has only finitely many derived sequences, Durand’s proof
gives a method for constructing a primitive substitutiofixing a pointw € X and a
letter-to-letter morphismr mappingX ontoY with 7 (w) = v. In view of Theorem 6.1
this is all one needs to identify all primitive substitutive sequencés in

A bi-infinite sequencev is primitive substitutive if and only ifT (w) is primitive
substitutive (see Lemma 2 in [22]). We introduce the notioderfived orbitto reflect
this fact. LetY be a minimal shift and leti, R, and ®, be as above. I € Y, then
(by minimality of Y) there is a point" in the shift orbit ofv such thaty, ,, = u, and
we setO,(v) equal to the shift orbit of the sequenbg(v’). Clearly, the derived orbit
Oy (v) depends only on the orbit af.

The following lemma, together with Lemmas 6.2 and 6.3, establishes the “if” part
of Theorem 6.1.

Lemma6.7. If v e X(¢)issuchthat (v) liesinthe shift orbit ob, thenuv is primitive
substitutive

Proof. Replacingv with T™(v) if necessary and using Lemma 4.3 we may assume
thatu = Tkz(v) for some integek € [0, |z(vo)]). If k = 0 ork = |¢(vo)| — 1, then
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v or Tu is fixed by ¢, in which cases is primitive substitutive. Thus we consider

0 < k < [¢(vg)| — 1. Puta = vy, let R, be the set of return words #in X and let

Oa: Ra — (1,2, ..., |Ral} be abijection. Ifw € R4, thens (wa)k |z w)+x @ is a factor

of v which begins and ends @(sincewy = a = ¢(a)k) and therefore (wa) i |c (w)|+k)

can be written uniquely as a concatenation of return words. We may thus define a

substitutionr on{1, 2, ..., |Ra|} in the following way: ifb € {1, 2, ..., |Ral}, then we
may write

£(O©1 (D)@ o7ty k) = Fol1- T, each rj € Ra,
and we set

7(D) = Oa(r9)Oa(ry) - - - Oa(rn).

We leave it to the reader to verify thatis a primitive substitution fixingoe = D, (v).
The proof is completed by invoking Lemma 6.2 with= ;. O

We now turn our attention to proving the “only if” part of Theorem 6.1. We show
7 (w) is primitive substitutive

= w is primitive substitutive

= w has only finitely many derived orbits

= 3l > 0: w and¢' (w) are in the same shift orbit. @)

We begin by paraphrasing a result from [21].

Theorem 6.8[21, Theorem 1.3]. If Y is a minimal shift space containing a primitive
substitutive sequencthen there is a finite set of disjoint minimal shift spaces whose
union contains every derived sequence of every sequenc&atly of these shift spaces
contains a primitive substitutive sequence

We say a functiorf is bounded-to-oné there is a positive integdr such that each
point in the range of has at mostL preimages. To establish the first implication of (7)
we need the following key fact.

Proposition 6.9. If Y is a minimal shift space containing a primitive substitutive se-
guence and: is a morphism defined on the alphabet of Y such#tiat) is infinite then
7. Y — m(Y) is bounded-to-one

Proof. The hypotheses imply thatis infinite. LetC be as in Lemma 6.4, so that every
word of lengthk in the language of occurs in every word of lengthC in the language
of Y. Since some letter in the alphabet\ofs not sent byr to the empty word, we must
have|C~|u|| < |7 (u)| < |7||u] for every wordu in the language of.

Suppose thab®, v@, ..., o™ are distinct sequences ¥f all sent to the same

sequence byr, such thatn(wé”) # ¢. For all large enoughm the WOdew[(];)m’m],

j =1.2.....n, are distinct. Fix sucim > C. For any two of the words (&), )).
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j =1,2,...,n, one must be a suffix of the other; ket be the shortest of these words.
Likewisew™ :=the shortest of the Words(wfc‘,fm]), i =1,2,...,n,isaprefix of each
of these words. Pub = w®w®. Then|w| > 2|C~'m| > C~Im.

Now letu be a word in the language ¥fof length(2m+ 1)C. Thenx (u) is a word
of length< |7|(2m + 1). Each of the word&)E’_)m,m], j =1,2,...,n, must occur in
u, and if ugrr1om = “’[(]—)m,m]' thenw® is a suffix of (U r+m)) andw® is a prefix of
77 (U[r +myr +2m)) - Sincen(a)é”) # ¢ there must be at leastoccurrences of the word in
7 (u). LetZ be the union of the firgtr | shiftimages ofr (Y). ThenZ is aninfinite minimal
shift space which by Lemma 6.2 contains a primitive substitutive sequence. Denote by
C’ the return constant faf guaranteed by Lemma 6.4. Theiu) contains at least— 1
return words taw in Z and by Lemma 6.4 we haye |(2m+1) > (n —1)(C)~C'm.
Thusn < 1+ 2CC/|7|.

Finally, if ® € Y andk is the least nonnegative integer for whigtiwx) # ¢,
thenk < C and if v is thekth shift image ofw, thenz(w) = 7 (v). It follows that
m: Y = 7(Y)is at mostC(1 + 2CC/|r|)-to-0one. O

Remark 6.10. Proposition 6.9 can be seen as a consequence of a very general result
of Durand [14]: Let(X, T) be a linearly recurrent subshift. There exists a condtant
such that for every factor mag (X, T) — (Y, T), whereY is a honperiodic subshift,

and ally € Y, we have #1({y}) < L.

The next proposition is a partial converse of Lemma 6.2.

Proposition 6.11. Let Y be a minimal shift space containing a primitive substitutive
sequence and supposds a morphism such that(Y) is infinite If @ € Y is such that
7 (@) is primitive substitutivethene is primitive substitutive

Proof. Let C, Z andC’ be as in the proof of Proposition 6.9. For all sufficiently
largen, if w € Ry, (Y), thenz(w) may be written uniquely as a concatenation
of elements ofR; () (Z). This defines a morphism,: (1,2, ..., [Ryp, (Y)I} —
{12, ..., Ra@)pn (£)]} having the property that

@n(Dao,p) (@) = D)o,y (0 (@)).

By Lemma 6.4)u| < C'|w| for anyw € Ry(Z). This implies thaien(b)| < CC|z|n/
|C~n| foranyb € {1,2,..., IR, (Y)I}, from which we obtain the crude bound
lon| < 2C2C’|r|, valid for n > C. It follows from the bound on thép,| that there are
only finitely many distinct mapg,.

By Durand’s theorem, there are only finitely many different derived sequences
Dr(wypn (T () and each is primitive substitutive. By Theorem 6.8, there is a finite
disjoint collection of minimal shift space$, Y, ..., Yk, each containing a primitive
substitutive sequence, with the property that any derived sequence of a sequénse in
contained in one of them. B, (@) € Y|n), thengy, is defined or;, and takes it to
an infinite subset of the closure of the shift orbit®f ., (7w (z)). By Proposition 6.9,
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there are only finitely many sequencesim, which are sentt®; (), , (77 (@) by ¢n,
andD,,,, (=) is one of them. Thus we see that there can be only finitely many distinct
sequence®y,, , (). O

Lemma 6.12. A sequence belonging to a minimal shift space Y is primitive substi-
tutive if and only iffOy(v): u a factor ofv} is finite

Proof. Suppose first that is primitive substitutive. We will construct a finite collection
of sequences which contains a member of each derived orbiti hetany factor ofs
and letn = n(u) be the least positive integer for whidhs a factor ofu ). Thenug ny
ends inu andn < (C + 1)|u| whereC is the constant from Lemma 6.4.uf is a return
word touvyo ny, thenwuyo ny begins inuy ny and thereforéwuvyo ny)m—juy,jwi+n begins and
ends inu. Thus (wujo,n))n—u),jw+n—jup €an be written uniquely as a concatenation of
return words tau,

(wv[o,n))[nf\uL|w\+n—|u\) = Ty,w,0luw,1" " Tuwmuuw), each Muw,j € Ru.

It follows from Lemma 6.4 thatn(u, w) < C3(C + 1) + 1.
Consider the morphismy: {1, 2, ..., [Ryg.u, 1} = {12, ..., [Rul} given by

Wu(b) = ®u(ru,w,0)®u(ru.w,l) e ®u(ru.w,m(u.w))a w = ®U[o<n(u))(b)-

One checks easily that,(Dyy ., (v)) is in Oy(v). It follows from the bound on the
m(u, w) that there are only finitely many different possible magps and by Du-
rand’s theorem there are only finitely many distinct derived sequelges(v). Thus,
{#u(Dyp.nu, (V)): U a factor ofu} is afinite set containing arepresentative of each derived
orbit.

Now suppos€ Oy (v): u a factor ofv} is finite. We may assume thatis not pe-
riodic. Then we can find positive integems < n, for which Dy, (V) € Oy, (V)
and every return word to n,) is longer than the longest return wordug ). Every
return word toupg n,) Can be written uniquely as a concatenation of return wordg g,
and thus we may define a substitution{1, 2, . . ., Rupuplt = {12, Ry, 1} by
puttingr = © 0®:1 | ltis easy to verify that is primitive, and ifm s the integer

v[o,ny) v[o,ny) *

for which (Duygnyy () = (Duyg (V) m holds for allj, then

T (DU[O,nZ) (U))j = (DU[O.nz) (U))J +m for a'" ] .

Lemma6.7 assertsthgy,, ,, (v) is primitive substitutive, and an application of Lemma 6.2
with 7 = ®-1 completes the proof thatis primitive substitutive. O

Y[0,ny)

We recall a well-known inequality (see [31]). Singds primitive the matrixM,
is also primitive and the Perron—Frobenius theorem guarantees a positive eigénvalue
strictly greater in absolute value than any other eigenvalué,of



558 C. Holton and L. Q. Zamboni

Lemma 6.13. There exist positive constantsg, @, such that Glw|0" < |{"(w)| <
C,|w|6" for every wordw and for every positive integer.n

The next lemma completes the proof of Theorem 6.1.

Lemma 6.14. A sequence € X(¢) has only finitely many distinct derived orbits if
and only if there exists a positive integer | such thiat) is in the shift orbit ofw.

Proof. If ¢! (w) is in the shift orbit ofw, then by Lemma 6.% is primitive substitutive,
whence it has only finitely many distinct derived orbits, by Lemma 6.12.
Now supposev is primitive substitutive. Leti be any factor ofv and consider the
array
Ou(w)
Orw(@)  Orwy (¢ ()

Opzy(@) Oy (£ (@) Oz (£3(w))

There are only finitely many distinct entri€sn, (w) inthe first column, by Lemma 6.12.

If w € Ry, thenwu begins inu and is a factor of. It follows thatzK(wu) is a
factor ofw which begins and ends iff(u), and thus:*(w) may be written uniquely as
a concatenation of words ® . This induces a morphisi: {1,2, ..., |Ryl} —
{1,2,...,Rexwl}, defined forb € {1, 2, ..., [Ryl} by

k(D) = Ok Nk b,0) Ok ) (Nkb,1) - - Orkuy Nk b kb))
where
Ky o—1
(O5 (D) =Tkpolkb1- - Tkb,lkbs each rypj € Rexu),

is the unique representation gf(©;(b)) as a concatenation of return words;tau).
One may verify that for any € X(¢),

P(Ou(v)) C Oy (£*(V)).
Thus, for eachm > n > 0 we have
on(Ou(C™ N (@))) C Opny (£ (w)).

By Lemmas 6.4 and 6.13 we hang (b)| < C,C/C foreachb € {1,2,..., |Rul},
independent ok andu. This means there are only finitely many distinct morphigms
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It follows that the entire array has only finitely many distinct entries. In particular, for
somem, n,| > 0 we must have,({™(w)) = O;n(u)(g””f' (w)) from which we see
that;™(w) andz ™ () lie in the same shift orbit. Thug! () is in the shift orbit ofw. O

7. Measures of Cylinders

Itis well known that if¢ is primitive, thenX (¢) is uniquely ergodic [31]. Denote bythe
T-invariant probability measure oX. By the Perron—Frobenius theoremM(G) admits

a simple positive eigenvalug greater in absolute value than any other eigenvalue of
M (G), and a unique strictly positive (right) eigenveci@,)ac.4, Normalized so that

Y aca Pa = 1 For a finite walkee; - - - & denote by ¢ - - - &] the cylinder set
{(fJ-)JF'i1 e G™: fj =g foralll < j <k}, and set

nere - ad) = 07pi e ®
One readily verifies the consistency requirement

> u(ee--ad) = plee - al,
ect,i(e)=t (&)

so by Kolmogorov's theorem extends to a probability measure G&°.

Proposition 7.1. The measurg is S-invariantangt o H = v.

Proof. The first assertion is proved by considering sets of the fef® [ - - &] c G*
while the second follows from unique ergodicity. O

The following was conjectured by Boshernitzan [6].

Theorem 7.2. The measures of all cylinders in X lie in a finite union of geometric
sequences

Proof. Fix positive constant€;, C, as in Lemma 6.13 and lé&d > 0 be such that
for eachw € X and each wordv € L£(¢) the minimum gap between successive
occurrences o in @ is at leasK |w|. The valueC~1 of Lemma 6.4 will suffice foiK .
Letw € £(¢) and seh = [(log|w| — logC;)/log#7. Then for every lettea we have
lw] < [¢"@)] < C20lwl]/Cy.

If u e L(¢), thenH(u]) is compact and open iG> and hence is a finite union
of cylinders. Thus there is a positive integarsuch that for every word of length 2
one can writeH ([u]) as a union of cylinders of the fornefe; - - - e,]. Our choice of
n implies, for every wordu of length 2 and for every integér € [0, |"(Uo)|), either
TEE"(UD) C [w] or T ([u])) N [w] = @. Our choice ofK ensures that at most
|C.0/C1K | of theset satisfyT*(c"([u])) C [w].

Now if (j1, @1) - - - (jnsm, @nsm) iISawalk onG, thenT ntloz o - .o T ([ag m]) C
[u] for some wordu of length 2 and if {j1, @1) - - - (jnam, @8+m)] MmeetsH ((w]), then
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€:=Y11 ¢ @)p.j)] is one of those few integers for whidi (¢"([u])) C [w].
Thus for each walle,,; - - - €,ym there are at mostC,6/C;K | choices ofeje; - - - &,
such that§e; - --exm] N H(w]) # @, and 1€ - - - én+m] € H([w]) whenever this
intersection is nonempty. Settirlg equal to the number of walks 0@ of lengthm
this shows thaH () is a union of no more thahC,6L /C1K | cylinders of the form
[e1---enrm], and we can use (8) and Proposition 7.1 to write

v([w]) =6~ D " tap,,

ac A
where each, € Z and 0< typ. < |Co0L/C1K]. Thus the measure of every cylinder
in Xisin

CafL
e Ztapa:tan,OStaS{CZK”. O

n>0 acA 1

8. Geometric Realizations of Substitutions

In 1982 Rauzy showed that the subsli}t T) generated by th&ribonacci substitution
1~ 12 2+ 13 3 +— 1 is a natural coding of a rotation on the two-dimensional
torus, i.e., is metrically isomorphic to an exchange of three fractal domains on a com-
pact set inR?, each domain being translated by the same vector modulo a lattice [32].
This example, also studied in great detail by Messaoudi in [28] and [29] and Ito and
Kimura in [23], prompted a general interest in the question of which substitutions admit
a geometric realization as in the case of Tribonacci. This question was made precise
by Queflec in [31]. Since then many partial results have been obtained for various
types of substitutions (see [2]-[5], [7], [9], [11], [16], [17], [20], and [33] to name just
a few).

By acomplex geometric realizatid20] of a primitive substitutiors on an alphabet
A we mean a continuous functidn X(¢) — C, a nonzero complex numbgrand a
nonzero vector = (va)aca € CH! such that

e ho¢ =pghand

e h(Tw) = h(w) + v,, forall w € X(¢).
One can deduce from the definition th#] < 1, vM, = gv andh(w) = 0 for
eachw € Per¢) (see [20]). In [20] we showed that every nonzero eigenvectdvl of
corresponding to a nonzero eigenvalue of modulus strictly less than 1 determines a
geometric realization of.

Suppose thath, 8, v) is a geometric realization @f Consider theedge weights

p(J, @) = Ve@y, + Ve T F V) 4

for (j,a) € €. Letw € X andH (w) = (ji, &)2,. If k > 0 andw is the unique point
of X forwhichwy =ax andw = (T2 o¢o... Tk o ¢)(w), then

k
h(@) = Bh@) +Y_ B 'p(ji, ). ©)
1=1
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Proposition 8.1. The functiony: G* — C given by
Y adiz) =Y B el a)
1=1

is continuous andy o H = h.

Proof. Continuity follows from the fact tha| < 1. The second assertion follows
from (9). O

For eachw € L(¢) put, = h(Jw]), and for each finite walle;e; - - - e, on G set

Joye = V(@162 &l).

The functiony above is related to the graph-directed construction of Mauldin
and Williams in [27]. Defineedge maps)(j a): Qa — i (j,a) by settingyj 4 (2) =
Bz+ p(j,a). Then

Jorge = (W 0+ - 0 Y ) (Rt ()- (20)

The Mauldin and Williams construction requires that the edge maps be defined on com-
pact subsets dk" with nonempty interiors and have nonoverlapping images. Although
these conditions need not be satisfied by our edge maps, the methods can still be applied
to give an upper bound on the Hausdorff dimensiofof

Proposition 8.2. The Hausdorff dimension 6% is no greater than-log6/ log 8.

Proof. We see from (10) that diatde,..e,) < B diam($2 ). Sete = —logé/ log B.
For each positive integdrwe have

Y (diamJe..e)* < Y (B diamg; )"
= Zgik(diamﬂt (e())a
= u(ee - al)(diam @)/ @)
< sup{(diam2,)*/pa: a € A},

where the sums are over all walkse;--- e, on G. This showsH%(2) < oo as
required. O

We are interested in a condition which guarantees that the hmigpone-to-one
off a set ofv-measure zero. The remainder of the section is devoted to some partial
results.
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Supposé*(2) > 0. Foreacha € A, [a] = |J{H *([€]): ec &, i (e) = a} and
thus

Qa=|JJect i(®=a) (11)
and therefore

H*(Ra)

IA

> M)

ect, i (e)=a

> HUBQue + o)

eck, i (e)=a

=07 ) H'(Que)

eeé, i (e)=a

=071 MapH" (Q). (12)
be A

Writing h for the vector whosath entry iSH® (2,), we haveMh > 6h. This implies that

in fact Mh = 6h, so we must also have equality in the first line of (12). It follows from
this and (11) that iE ande’ are distinct edges with(e) =i (¢), thenH*(J.N Jo) = 0.

A straightforward generalization of this argument to longer paths yields:

Proposition 8.3. If H*(2) > 0 andw € L(¢), then the restriction of h tdw] is
one-to-one off a set af-measure zerdMoreover the restriction of H* to h([w]) is a

multiple ofv o (hip)

Remark 8.4. We have no general method for verifying the hypothesis of Proposi-
tion 8.3.

Conjecture 8.5. If 0|8] < 1,thenH*(®) > 0. If B € C\R and#|B|?> < 1, then
H*(R2) > 0.

We do not know whether Proposition 8.3 implies that one-to-one off a set of
v-measure zero whenevgt® (2) > 0. One partial result is the following.
Suppose, b are vertices ofs andN, n are nonnegative integers such that

(AL) N < min(¢"@], [¢"(B)),

(A2) Zj:o Veny; = Zj:o VUen(); @nd

(A3) ¢"(@)n = ¢"(b)n.
Then there exist walks; - - - e,, f;--- f,, starting at"(a)y and ending a&, b, respec-
tively, for which

DIARVICIED DY A AC/
j=1 j=1
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We have

n n
Jopey = "+ D> _BIPp(g) and Ji.q, ="+ > LI Vp(f),
i=1 j=1

and the comments preceding Proposition 8.3 show
7‘(‘%(\]91...31 N Jfl...fn) =0

from which we deducé{* (25, N Q2p) = 0.

Thus, by Proposition 8.3, #“(£2) > 0 and for each pa, b of vertices there exist
nonnegative integem, n satisfying (A1)-(A3) above, theis one-to-one off a set of
v-measure zero.

There is a simple combinatorial criterion on substitutions which guarantees (Al)—
(A3) will be satisfied for eacla, b. The substitutiort is said to have theoincidence
propertyif for each pairw, @ € Per¢) there is an integer for which w, = @y, and the
number of occurrences of each letter of the alphabefgin, is the same as that tg ).

This condition was originally introduced by Dekking in [10] in the context of constant
length substitutions. Arnoux and Ito [4] generalized it to arbitrary substitutions.

Proposition 8.6. If H*(2) > 0 and¢ has the coincidence properihen h is one-to-
one off a set of-measure zero
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