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Abstract. On pages 51–53 of his lost notebook, S. Ramanujan ex-
pressed several integrals of products of Dedekind eta-functions in terms
of incomplete elliptic integrals of the first kind. In this paper, we prove
these identities using only results found in Ramanujan’s notebooks. We
then construct several new elliptic integrals of this type using modular
identities associated with certain “Hauptmoduls.”

1. Introduction

On pages 51–53 in his lost notebook [17], Ramanujan recorded several
identities involving integrals of theta-functions and incomplete elliptic inte-
grals of the first kind. We offer here one typical example, proved in Theorem
7.5 below. Let (in Ramanujan’s notation) f(−q) = (q; q)∞. (Detailed no-
tation is given in Section 2. The function f is essentially the Dedekind
eta-function; see (2.4).) Let

(1.1) v := v(q) := q
f3(−q)f3(−q15)
f3(−q3)f3(−q5)

.

Then
(1.2)∫ q

0
f(−t)f(−t3)f(−t5)f(−t15)dt =

1
5

∫ 2 tan−1(1/
√

5)

2 tan−1

�
1√
5

r
1−11v−v2

1+v−v2

� dϕ√
1− 9

25 sin2 ϕ
.

The reader will immediately realize that these are rather uncommon inte-
grals. Indeed, we have never seen identities like (1.2) in the literature.

In a wonderful paper [13], all of these integral identities were proved by
S. Raghavan and S. S. Rangachari. However, in almost all of their proofs,
they used results with which Ramanujan would have been unfamiliar. In
particular, they relied heavily on results from the theory of modular forms,
evidently not known to Ramanujan. For example, for four identities, in-
cluding (1.2), Raghavan and Rangachari appealed to differential equations
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satisfied by certain quotients of eta-functions, such as (1.1), which can be
found in R. Fricke’s text [9].

In an effort to discern Ramanujan’s methods and to better understand
the origins of identities like (1.2), the present authors have devised proofs
independent of the theory of modular forms and other ideas with which
Ramanujan would have been unfamiliar. In particular, we have relied exclu-
sively on results found in his ordinary notebooks [15] and his lost notebook
[17]. It should be emphasized that at the time of the publication of Ragha-
van and Rangachari’s paper [13] a decade ago, many of these results had not
yet been proved. Particularly troublesome for us were the aforementioned
four differential equations for quotients of eta-functions. To prove these,
we used identities for Eisenstein series found in Chapter 21 of Ramanujan’s
second notebook and several eta-function identities scattered among the un-
organized pages of his second notebook [2, Chap. 25]. We have also utilized
several results in the lost notebook found on pages in close proximity to the
elliptic integral identities.

The authors owe a huge debt to Raghavan and Rangachari’s paper [13].
In many cases, we have incorporated large portions of their proofs, while
in other instances we have employed different lines of attack. This paper
could have been made shorter by referring to their paper for large portions
of certain proofs, but considerable readability would have been lost in doing
so.

In Section 3, we prove two identities for integrals of theta-functions of
forms unlike (1.2). The first proof is virtually the same as that given by
Raghavan and Rangachari, while the latter proof is completely different. In
Sections 4–6, we prove several integral identities associated with modular
equations of degree 5. Here some transformations of incomplete elliptic
integrals due to J. Landen and Ramanujan play key roles. In Section 7,
several identities of order 15 are established. Here two of the aforementioned
differential equations are crucial. Differential equations are also central in
Sections 8 and 9, where identities of orders 14 and 35, respectively, are
proved.

Since differential equations for quotients of eta-functions are of such para-
mount importance in proving identities akin to (1.2), we have systematically
derived several new differential equations for eta-function quotients in Sec-
tion 10. We have used two of these new differential equations to derive two
new formulas in the spirit of (1.2). In Section 10, we also point out the
connection of such integrals with elliptic curves. We plan to return to these
matters in a future paper.
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2. Preliminary Results

As usual, set, for each nonnegative integer n,

(a; q)n =
n−1∏

k=0

(1− aqk)

and
(a; q)∞ = lim

n→∞(a; q)n, |q| < 1.

Ramanujan’s general theta-function f(a, b) is defined by

f(a, b) =
∞∑

n=−∞
an(n+1)/2bn(n−1)/2, |ab| < 1.

Theta-functions satisfy the very important and useful Jacobi triple product
identity [1, p. 35, Entry 19],

(2.1) f(a, b) = (−a; ab)∞(−b; ab)∞(ab; ab)∞.

The most important special cases are given by

ϕ(q) :=f(q, q) =
∞∑

n=−∞
qn2

=
(−q; q2)∞(q2; q2)∞
(−q2; q2)∞(q; q2)∞

,(2.2)

ψ(q) :=f(q, q3) =
∞∑

n=0

qn(n+1)/2 =
(q2; q2)∞
(q; q2)∞

,(2.3)

and

f(−q) :=f(−q,−q2) =
∞∑

n=−∞
(−1)nqn(3n−1)/2 = (q; q)∞

= : e−2πiz/24η(z), q = e2πiz, Im z > 0.(2.4)

The product representations in (2.2)–(2.4) are instances of the Jacobi
triple product identity (2.1). The function η(z), defined in (2.4), is the
Dedekind eta-function. It has the transfomation formula

(2.5) η(−1/z) =
√

z/iη(z).

The functions ϕ,ψ, and f in (2.2)–(2.4) can be expressed in terms of
the modulus k and the hypergeometric function z := 2F1(1

2 , 1
2 ; 1; k2). For a

catalogue of formulas of this type, see [1, pp. 122–124]. We will need two
such formulas in the sequel. If α = k2 and

q = exp

(
2F1(1

2 , 1
2 ; 1; 1− α)

2F1(1
2 , 1

2 ; 1;α)

)
,

then

(2.6) ψ(−q) =
√

1
2z {α(1− α)/q}1/8
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and

(2.7) f(−q2) =
√

z2−1/3 {α(1− α)/q}1/12 .

The Eisenstein series P (q), Q(q), and R(q) are defined by

P (q) :=1− 24
∞∑

n=1

nqn

1− qn
,(2.8)

Q(q) :=1 + 240
∞∑

n=1

n3qn

1− qn
,(2.9)

and

R(q) :=1− 504
∞∑

n=1

n5qn

1− qn
.(2.10)

(This is the notation used by Ramanujan in his lost notebook and paper [14],
[16, pp. 136–162], but in his ordinary notebooks, P, Q, and R are replaced
by L, M, and N, respectively.)

The Rogers–Ramanujan continued fraction u(q) is defined by

(2.11) u := u(q) :=
q1/5

1 +
q

1 +
q2

1 +
q3

1 + · · · , |q| < 1.

With f(−q) defined by (2.4), two of the most important properties of u(q)
are given by [1, p. 267, eqs. (11.5), (11.6)]

(2.12)
1

u(q)
− 1− u(q) =

f(−q1/5)
q1/5f(−q5)

and

(2.13)
1

u5(q)
− 11− u5(q) =

f6(−q)
qf6(−q5)

.

A common generalization of (2.12) and (2.13) was recorded by Ramanujan
in his lost notebook and proved by S. H. Son [18]. Lastly, it can be shown
that, with the use of the Rogers–Ramanujan identities [1, p. 79],

(2.14) u(q) = q1/5 (q; q5)∞(q4; q5)∞
(q2; q5)∞(q3; q5)∞

.

3. Two Simpler Integrals

Theorem 3.1 (p. 51). Let P (q), Q(q), and R(q) be the Eisenstein series
defined by (2.8)–(2.10). Then

∫ q

e−2π

√
Q(t)

dt

t
= log

(
Q3/2(q)−R(q)
Q3/2(q) + R(q)

)
.
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Proof. Following Ramanujan’s suggestion, let z = R2(t)/Q3(t). Then

(3.1)
1
z

dz

dq
=

2
R

dR

dq
− 3

Q

dQ

dq
.

Using Ramanujan’s differential equations [14, eq. (30)], [17, p. 142], [1, p.
330]

q
dR

dq
=

PR−Q2

2
and q

dQ

dq
=

PQ−R

3
,

in (3.1), we find that

(3.2)
q

z

dz

dq
=

R2 −Q3

RQ
.

Hence, by (3.2),

q
d

dq
log

(
Q3/2 −R

Q3/2 + R

)
=q

d

dq
log

(
1−√z

1 +
√

z

)

=q
d

dz
log

(
1−√z

1 +
√

z

)
dz

dq

=
1√

z(z − 1)
q
dz

dq

=
√

Q.

It follows that
∫ q

e−2π

√
Q(t)

dt

t
=

∫ q

e−2π

d

dt
log

(
Q3/2 −R

Q3/2 + R

)
dt

= log

(
Q3/2(q)−R(q)
Q3/2(q) + R(q)

)
− log

(
Q3/2(e−2π)−R(e−2π)
Q3/2(e−2π) + R(e−2π)

)
.

But it is well-known that R(e−2π) = 0 [8, p. 88], and so Theorem 3.1 follows.
¤

Theorem 3.2 (p. 53). Let u(q) denote the Rogers–Ramanujan continued
fraction, defined by (2.11), and set v = u(q2). Recall that ψ(q) is defined by
(2.3). Then

(3.3)
8
5

∫
ψ5(q)
ψ(q5)

dq

q
= log(u2v3) +

√
5 log

(
1 + (

√
5− 2)uv2

1− (
√

5 + 2)uv2

)
.

Proof. Let k := k(q) := uv2. Then from page 53 of Ramanujan’s lost note-
book [17], or from page 326 of his second notebook [3, pp. 12–13],

(3.4) u5 = k

(
1− k

1 + k

)2

and v5 = k2

(
1 + k

1− k

)
.
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(See also S.–Y. Kang’s paper [11].) It follows that

(3.5) log(u2v3) =
1
5

log
(

k8 1− k

1 + k

)
.

If we set ε = (
√

5+1)/2, we readily find that ε3 =
√

5+2 and ε−3 =
√

5−2.
Then, with the use of (3.5), we see that (3.3) is equivalent to the equality

(3.6)
8
5

∫
ψ5(q)
ψ(q5)

dq

q
=

1
5

log
(

k8 1− k

1 + k

)
+
√

5 log
(

1 + ε−3k

1− ε3k

)
.

Now from Entry 9(vi) in Chapter 19 of Ramanujan’s second notebook [1,
p. 258],

(3.7)
ψ5(q)
ψ(q5)

= 25q2ψ(q)ψ3(q5) + 1− 5q
d

dq
log

f(q2, q3)
f(q, q4)

.

By the Jacobi triple product identity (2.1),

f(q2, q3)
f(q, q4)

=
(−q2; q5)∞(−q3; q5)∞
(−q; q5)∞(−q4; q5)∞

=
(q; q5)∞(q4; q5)∞(q4; q10)∞(q6; q10)∞
(q2; q5)∞(q3; q5)∞(q2; q10)∞(q8; q10)∞

=q1/5 u(q)
v(q)

,(3.8)

by (2.14). Using (3.8) in (3.7), we find that

8
5

∫
ψ5(q)
ψ(q5)

dq

q
=40

∫
qψ(q)ψ3(q5)dq +

∫
8
5q

dq − 8
∫

d

dq
log

(
q1/5u/v

)
dq

=40
∫

qψ(q)ψ3(q5)dq − 8 log(u/v)

=40
∫

qψ(q)ψ3(q5)dq +
8
5

log k − 24
5

log
1− k

1 + k
,(3.9)

where (3.4) has been employed. Comparing (3.9) with (3.6), we now see
that it suffices to prove that

(3.10) 8
∫

qψ(q)ψ3(q5)dq = log
1− k

1 + k
+

1√
5

log
(

1 + ε−3k

1− ε3k

)
.

Upon differentiation of both sides of (3.10) and simplification, we find that
(3.10) is equivalent to

(3.11) qψ(q)ψ3(q5) =
k(q)k′(q)

(1− k2(q))(1− 4k(q)− k2(q))
.

We now prove (3.11). By (3.4) again,

(3.12)
v

u2
=

1 + k

1− k
.



INCOMPLETE ELLIPTIC INTEGRALS IN RAMANUJAN’S LOST NOTEBOOK 7

Taking the logarithmic derivative of both sides of (3.12), we find that

(3.13)
k′(q)

1− k2(q)
=

1
2

v′(q)
v(q)

− u′(q)
u(q)

.

By the logarithmic differentiation of (2.14),

u′(q)
u(q)

=
1
5q
−

∞∑

n=1

(n

5

) nqn−1

1− qn

and

v′(q)
v(q)

= 2

(
1
5q
−

∞∑

n=1

(n

5

) nq2n−1

1− q2n

)
,

where
(

n
5

)
denotes the Legendre symbol. Using these derivatives in (3.13),

we see that

(3.14)
k′(q)

1− k2(q)
=

∞∑

n=1

(n

5

) nqn−1

1− q2n
.

However, from Entry 8(i) in Chapter 19 of Ramanujan’s second notebook
[1, p. 249],

∞∑

n=1

(n

5

) nqn

1− q2n
= qψ3(q)ψ(q5)− 5q2ψ(q)ψ3(q5),

so that, by (3.14),

(3.15)
k′(q)

1− k2(q)
= ψ3(q)ψ(q5)− 5qψ(q)ψ3(q5).

From page 56 in Ramanujan’s lost notebook [17],

(3.16)
ψ2(q)

qψ2(q5)
=

1− k2(q)
k(q)

+ 1,

which has been proved by Kang [11, Thm. 4.2]. Putting (3.16) in (3.15), we
deduce that

(3.17)
k′(q)

1− k2(q)
=

(
1− k2(q)

k(q)
− 4

)
qψ(q)ψ3(q5).

It is easily seen that (3.17) is equivalent to (3.11), and so the proof of (3.3)
is complete. ¤



8 BRUCE C. BERNDT, HENG HUAT CHAN, AND SEN–SHAN HUANG

4. Elliptic Integrals of Order 5 (I)

Theorem 4.1 (p. 52). With f(−q), ψ(q), and u(q) defined by (2.4), (2.3),
and (2.11), respectively, and with ε = (

√
5 + 1)/2,

53/4

∫ q

0

f2(−t)f2(−t5)√
t

dt =2
∫ π/2

cos−1((εu)5/2)

dϕ√
1− ε−55−3/2 sin2 ϕ

(4.1)

=
∫ 2 tan−1(53/4√qf3(−q5)/f3(−q))

0

dϕ√
1− ε−55−3/2 sin2 ϕ

(4.2)

=
√

5
∫ 2 tan−1(51/4√qψ(q5)/ψ(q))

0

dϕ√
1− ε5−1/2 sin2 ϕ

.(4.3)

To prove (4.1), we need the following lemma.

Lemma 4.2. Let u(q) be defined by (2.11). Then

u′(q) =
u(q)
5q

f5(−q)
f(−q5)

.

Proof. By (2.14) and the Jacobi triple product identity (2.1),

u(q) = q1/5 (q; q5)∞(q4; q5)∞
(q2; q5)∞(q3; q5)∞

= q1/5 f(−q,−q4)
f(−q2,−q3)

.

By logarithmic differentiation and the use of Entry 9(v) in Chapter 19 of
Ramanujan’s second notebook [1, p. 258],

u′(q)
u(q)

=
1
5q

+
d

dq
log

f(−q,−q4)
f(−q2,−q3)

=
1
5q

+
1
5q

(
−1 +

f5(−q)
f(−q5)

)
=

1
5q

f5(−q)
f(−q5)

,

which completes the proof. ¤

Proof of (4.1). Let

(4.4) cos2 ϕ = ε5u5(t).

If t = 0, then ϕ = π/2; if t = q, then ϕ = cos−1
(
(εu)5/2

)
. Upon differentia-

tion and the use of Lemma 4.2,

2 cos ϕ(− sinϕ)
dϕ

dt
=5ε5u4(t)u′(t)

=ε5
u5(t)

t

f5(−t)
f(−t5)

= cos2 ϕ
f5(−t)
tf(−t5)

.(4.5)
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Hence, by (4.5), (2.13), and (4.4),

53/4

∫ q

0

f2(−t)f2(−t5)√
t

dt

=53/4

∫ cos−1((εu)5/2)

π/2

f2(−t)f2(−t5)√
t

−2tf(−t5)
f5(−t)

sinϕ

cosϕ
dϕ

=2 · 53/4

∫ π/2

cos−1((εu)5/2)

√
t
f3(−t5)
f3(−t)

sinϕ

cosϕ
dϕ

=2 · 53/4

∫ π/2

cos−1((εu)5/2)

1√
1/u5(t)− 11− u5(t)

sinϕ

cosϕ
dϕ

=2 · 53/4

∫ π/2

cos−1((εu)5/2)

sinϕ√
ε5 − 11 cos2 ϕ− ε−5 cos4 ϕ

dϕ.(4.6)

Since ε±5 = (5
√

5± 11)/2,

ε5 − 11 cos2 ϕ− ε−5 cos4 ϕ =ε5 − 11(1− sin2 ϕ)− ε−5 cos4 ϕ

=ε−5 + 11 sin2 ϕ− ε−5 cos4 ϕ

=ε−5(1− cos2 ϕ)(1 + cos2 ϕ) + 11 sin2 ϕ

=ε−5 sin2 ϕ(2− sin2 ϕ) + 11 sin2 ϕ

=sin2 ϕ(2ε−5 + 11− ε−5 sin2 ϕ)

= sin2 ϕ(5
√

5− ε−5 sin2 ϕ)

=5
√

5 sin2 ϕ(1− ε−55−3/2 sin2 ϕ).

Thus, from (4.6),

53/4

∫ q

0

f2(−t)f2(−t5)√
t

dt = 2
∫ π/2

cos−1((εu)5/2)

dϕ√
1− ε−55−3/2 sin2 ϕ

,

which is (4.1). ¤

To prove (4.2), we need two transformations for incomplete elliptic inte-
grals found in Chapter 17 of Ramanujan’s second notebook [1, pp. 105–106,
Entries 7(ii), (vi)].

Lemma 4.3. If tan γ =
√

1− x tanα, then

(4.7)
∫ α

0

dϕ√
1− x sin2 ϕ

=
∫ γ

0

dϕ√
1− x cos2 ϕ

.

If cotα tan(β/2) =
√

1− x sin2 α, then

(4.8) 2
∫ α

0

dϕ√
1− x sin2 ϕ

=
∫ β

0

dϕ√
1− x sin2 ϕ

.
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Proof of (4.2). In (4.7), replace ϕ by π/2 − ϕ and combine the result with
(4.8) to deduce that

(4.9)
∫ β

0

dϕ√
1− x sin2 ϕ

= 2
∫ π/2

π/2−γ

dϕ√
1− x sin2 ϕ

,

provided that
(i) cotα tan(β/2) =

√
1− x sin2 α,

(ii) tan γ =
√

1− x tanα.

Examining (4.1) and (4.2), we see that we want to set x = ε−55−3/2 and
γ = π

2 − cos−1
(
(εu)5/2

)
. We also see that, to prove (4.2), we will need to

show that (i) and (ii) imply that

(4.10) β = 2 tan−1
(
53/4√qf3(−q5)/f3(−q)

)
.

Since ε±5 = (5
√

5± 11)/2, a short calculation gives

1− ε−55−3/2 = ε55−3/2.

Thus, from (ii) and elementary trigonometry,

tanα =
1√

1− ε−55−3/2
cot

(
cos−1(εu)5/2

)

=ε−5/253/4 (εu)5/2

√
1− (εu)5

=
53/4u5/2

√
1− (εu)5

.(4.11)

Thus, by (i),

(4.12) tan(β/2) =
√

1− ε−55−3/2 sin2 α
53/4u5/2

√
1− (εu)5

.

From (4.11) and elementary trigonometry,

x sin2 α =
ε−5u5

1 + ε−5u5
.

Using this in (4.12), we deduce that

tan(β/2) =

√
1− ε−5u5

1 + ε−5u5

53/4u5/2

√
1− (εu)5

=
53/4u5/2

√
(1 + ε−5u5)(1− ε5u5)

=
53/4u5/2

√
1− 11u5 − u10

=
53/4

√
1/u5 − 11− u5

=53/4√qf3(−q5)/f3(−q),
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by (2.13). Clearly, the last equality is equivalent to (4.10), and so the proof
of (4.2) is complete. ¤

For the proof of (4.3), we need another transformation for incomplete
elliptic integrals.

Lemma 4.4. If 0 < p < 1 and

(4.13) tan
(

1
2

(A−B)
)

=
1− p

1 + 2p
tanB,

then

(1 + 2p)
∫ A

0

dϕ√
1− p3

(
2+p
1+2p

)
sin2 ϕ

= 3
∫ B

0

dϕ√
1− p

(
2+p
1+2p

)3
sin2 ϕ

.

This lemma is Entry 6(iv) in Chapter 19 in Ramanujan’s second notebook
and is a consequence of a Theorem of Jacobi; see [1, pp. 238–241] for a proof.

Proof of (4.3). We apply Lemma 4.4 with

p =
1

ε2
√

5
,

where ε = (
√

5 + 1)/2. Then

(4.14) 1 + 2p =
3√
5

and 2 + p =
3ε√
5
,

and so

p3

(
2 + p

1 + 2p

)
= ε−55−3/2 and p

(
2 + p

1 + 2p

)3

=
ε√
5
.

If we substitute these quantities in Lemma 4.4, and if we set

(4.15) A = 2 tan−1
(
53/4√qf3(−q5)/f3(−q)

)

and

(4.16) B = 2 tan−1
(
51/4√qψ(q5)/ψ(q)

)
,

we shall be finished with the proof of (4.3) if we can prove (4.13).
Using the subtraction formula for the tangent function, (4.15), and (4.16),

we deduce that

(4.17) tan
(

1
2

(A−B)
)

=
53/4√qf3(−q5)/f3(−q)− 51/4√qψ(q5)/ψ(q)

1 + 5q
f3(−q5)ψ(q5)
f3(−q)ψ(q)

.

It will be convenient to use some results from the lost notebook proved by
Kang [10]. Set

(4.18) t = q1/6 (−q5; q5)∞
(−q; q)∞

and s =
ϕ(−q)
ϕ(−q5)

,
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where ϕ(q) is defined by (2.2). Then

(4.19)
f(−q)

q1/6f(−q5)
=

s

t
and

ψ(q)√
qψ(q5)

=
s

t3
.

Employing (4.19) in (4.17), we readily deduce that

(4.20) 5−1/4 tan
(

1
2

(A−B)
)

=
√

5t3s− t3s3

s4 + 5t6
.

Next, a simple calculation shows that

(4.21) 1− p =
3

ε
√

5
.

Hence, by (4.14), (4.21), (4.16), and the double angle formula,

5−1/4 1− p

1 + 2p
tanB =5−1/4ε−1 tanB

=5−1/4ε−1 tan
(
2 tan−1

(
51/4√qψ(q5)/ψ(q)

))

=
2ε−1√qψ(q5)/ψ(q)

1−√5 qψ2(q5)/ψ2(q)

=
2ε−1t3s

s2 −√5 t6
.(4.22)

Comparing (4.20) and (4.22), in view of (4.13), we must prove that

2ε−1t3s

s2 −√5 t6
=
√

5 t3s− t3s3

s4 + 5t6
.

After considerable simplification, the last equality is seen to be equivalent
to

(4.23) s4 + 5t6 = s2 + s2t6.

Now, from (4.18) and (2.3), we find that

t = t(q) =
q1/6ψ(q5)f(−q2)

ψ(q)f(−q10)
.

Replacing q by −q and employing (2.6) and (2.7), we find that

t6(−q) = −q

(
ψ(−q5)f(−q2)
ψ(−q)f(−q10)

)6

= −
(

β(1− β)
α(1− α)

)1/4

,

where β has degree 5 over α. On the other hand, from (4.18),

s(−q) =
ϕ(q)
ϕ(q5)

=:
√

m,

where m is the multiplier of degree 5. Hence, replacing q by −q in (4.23),
we see that this equality is equivalent to

(4.24) m2 − 5
(

β(1− β)
α(1− α)

)1/4

= m−m

(
β(1− β)
α(1− α)

)1/4

.



INCOMPLETE ELLIPTIC INTEGRALS IN RAMANUJAN’S LOST NOTEBOOK 13

Using formulas for m and 5/m given in Entry 13(xii) of Chapter 19 in
Ramanujan’s second notebook [1, pp. 281–282], namely,

m =
(

β

α

)1/4

+
(

1− β

1− α

)1/4

−
(

β(1− β)
α(1− α)

)1/4

and

5
m

=
(

α

β

)1/4

+
(

1− α

1− β

)1/4

−
(

α(1− α)
β(1− β)

)1/4

,

we may easily verify that (4.24) does hold to complete the proof. ¤

5. Elliptic Integrals of Order 5 (II)

Theorem 5.1 (p. 52). As before, let ε = (
√

5+1)/2, and let u(q) and f(−q)
be defined by (2.11) and (2.4), respectively. Then

5−3/4

∫ q

0

f5(−t)√
f(−t1/5)f(−t5)

dt

t9/10
= 2

∫ π/2

cos−1(√εu)

dϕ√
1− ε−15−1/2 sin2 ϕ

(5.1)

=
∫ 2 tan−1

�
51/4q1/10

√
f(−q5)/f(−q1/5)

�
0

dϕ√
1− ε−15−1/2 sin2 ϕ

(5.2)

(5.3)

=
1√
5

∫ 2 tan−1

�
53/4q1/10

�
f(−q1/5)+q1/5f(−q5)

f(−q1/5)+5q1/5f(−q5)

�r
f(−q5)

f(−q1/5)

�
0

dϕ√
1− ε55−3/2 sin2 ϕ

.

Proof of (5.1). Let

(5.4) cos2 ϕ = εu(t).

Thus, if t = 0, then ϕ = π/2; if t = q, then ϕ = cos−1 (
√

εu) . Upon
differentiation and the use of Lemma 4.2,

(5.5) 2 cosϕ(− sinϕ)
dϕ

dt
= εu′(t) = ε

u(t)
5t

f5(−t)
f(−t5)

.
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Therefore, by (5.5), (2.12), and (5.4),

5−3/4

∫ q

0

f5(−t)√
f(−t1/5)f(−t5)

dt

t9/10

=2 · 51/4

∫ π/2

cos−1(√εu)

√
t1/5f(−t5)
f(−t1/5)

sinϕ cosϕ

εu(t)
dϕ

=2 · 51/4

∫ π/2

cos−1(√εu)

1√
1/u(t)− 1− u(t)

sinϕ

cosϕ
dϕ

=2 · 51/4

∫ π/2

cos−1(√εu)

sinϕ√
ε− cos2 ϕ− ε−1 cos4 ϕ

dϕ.(5.6)

Now,

ε− cos2 ϕ− ε−1 cos4 ϕ =ε− (1− sin2 ϕ)− ε−1 cos4 ϕ

=ε−1 + sin2 ϕ− ε−1 cos4 ϕ

=ε−1(1− cos2 ϕ)(1 + cos2 ϕ) + sin2 ϕ

=ε−1 sin2 ϕ(2− sin2 ϕ) + sin2 ϕ

= sin2 ϕ(2ε−1 − ε−1 sin2 ϕ + 1)

= sin2 ϕ(
√

5− ε−1 sin2 ϕ).

Using this calculation in (5.6), we find that

5−3/4

∫ q

0

f5(−t)√
f(−t1/5)f(−t5)

dt

t9/10
= 2 · 51/4

∫ π/2

cos−1(√εu)

dϕ√√
5− ε−1 sin2 ϕ

,

from which (5.1) is immediate. ¤
Proof of (5.2). The proof is similar to that of (4.2). We begin with (4.9),
set x = ε−15−1/2, and put γ = π

2 − cos−1 (
√

εu) . Thus,

(5.7) tan γ = cot
(
cos−1

(√
εu

))
=

√
εu

1− εu
.

As with the proof of (4.2), we want to show that conditions (i) and (ii) imply
that

(5.8) β = 2 tan−1

(
51/4q1/10

√
f(−q5)/f(−q1/5)

)
.

From condition (ii) and (5.7),

(5.9) tanα =
tan γ√

1− ε−15−1/2
=

√ √
5 u

1− εu

and

(5.10) sin2 α =
tan2 α

1 + tan2 α
=

√
5 u

1 + ε−1u
.
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Using (5.9) and (5.10) in conjunction with condition (ii), we arrive at

tan(β/2) =(tanα)
√

1− x sin2 α =

√ √
5 u

1− εu

√
1− ε−1u

1 + ε−1u

=51/4

√
1

1/u− 1− u
= 51/4q1/10

√
f(−q5)

f(−q1/5)
.

Hence, (5.8) follows, and so the proof of (5.2) is finished. ¤

To prove (5.3), we need another transformation for incomplete elliptic
integrals from Chapter 19 in Ramanujan’s second notebook [1, p. 238, Entry
6(iii)].

Lemma 5.2. If

tan
(

1
2
(α + β)

)
= (1 + p) tanα,

where 0 < p < 1, then

(1 + 2p)
∫ α

0

dϕ√
1− p3

(
2+p
1+2p

)
sin2 ϕ

=
∫ β

0

dϕ√
1− p

(
2+p
1+2p

)3
sin2 ϕ

.

Proof of (5.3). We apply Lemma 5.2 with p = 1/ε. Thus, 1 + 2p =
√

5 and
2 + p = ε2. Hence,

p3 2 + p

1 + 2p
=

1
ε
√

5
and p

(
2 + p

1 + 2p

)3

=
ε5

5
√

5
.

We abbreviate notation by setting

A = f(−q1/5), B = f(−q5), and C = q1/5.

Put

α = 2 tan−1

(
51/4

√
CB

A

)

and

β = 2 tan−1

(
53/4 A + CB

A + 5CB

√
CB

A

)
.

Examining (5.2) and (5.3) in relation to Lemma 5.2, we see that we will be
finished with the proof if we can show that

(5.11) tan
(

1
2
(α + β)

)
= ε tanα.
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First, by the addition formula for the tangent function,

tan
(

1
2
(α + β)

)

=tan

(
tan−1

(
51/4

√
CB

A

)
+ tan−1

(
53/4 A + CB

A + 5CB

√
CB

A

))

=
51/4

√
CB

A
+ 53/4 A + CB

A + 5CB

√
CB

A

1− 5
CB

A

A + CB

A + 5CB

=
51/4

(
A + 5CB +

√
5(A + CB)

)√
ABC

A2 − 5B2C2
.(5.12)

On the other hand, by the double angle formula for the tangent function,

(5.13) ε tanα = ε tan

(
2 tan−1

(
51/4

√
BC

A

))
=

2ε51/4
√

ABC

A−√5 CB
.

Comparing (5.12) and (5.13), we are required to prove that

2ε

A−√5 CB
=

A + 5CB +
√

5(A + CB)
A2 − 5B2C2

.

This can be established by elementary algebra, and so the proof is complete.
¤

6. Elliptic Integrals of Order 5 (III)

Theorem 6.1 (p. 52). Recall that Ramanujan’s continued fraction u(q) is
defined by (2.11). Then there exists a constant C such that
(6.1)

u5 + u−5 =
1

2
√

q

f3(−q)
f3(−q5)

(
C +

∫ 1

q

f8(−t)
f4(−t5)

dt

t3/2
+ 125

∫ q

0

f8(−t5)
f4(−t)

√
tdt

)
.

To prove Theorem 6.1, we need to establish a differential equation for a
certain quotient of eta-functions.

Lemma 6.2. Let

(6.2) λ := λ(q) := q
f6(−q5)
f6(−q)

.

Then

(6.3) q
d

dq
(λ(q)) =

√
qf2(−q)f2(−q5)

√
125λ3 + 22λ2 + λ.
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Proof. By logarithmic differentiation,

1
λ

dλ

dq
=

1
q
− 30

∞∑

n=1

nq5n−1

1− q5n
+ 6

∞∑

n=1

nqn−1

1− qn
.

We now apply Entry 4(i) in Chapter 21 of Ramanujan’s second notebook
[1, p. 463]. Accordingly,

q

λ

dλ

dq
=

√
f12(−q) + 22qf6(−q)f6(−q5) + 125q2f12(−q5)

f(−q)f(−q5)

=
√

qf2(−q)f2(−q5)

√
1
λ

+ 22 + 125λ,

or
q
dλ

dq
=
√

qf2(−q)f2(−q5)
√

λ + 22λ2 + 125λ3,

and the proof is complete. ¤
Proof of Theorem 6.1. From (2.13), in the notation (6.2),

(6.4)
1
u5
− 11− u5 =

1
λ

.

Considering (6.4) as a quadratic equation in x := u−5, we find upon solving
it that

2x = 2u−5 =
1
λ

(
11λ + 1 +

√
125λ2 + 22λ + 1

)
.

The other root of this quadratic equation is easily seen to be

−2u5 =
1
λ

(
11λ + 1−

√
125λ2 + 22λ + 1

)
.

Hence,

u5 + u−5 =
1
λ

√
125λ2 + 22λ + 1.

Thus,

(6.5) G(q) := 2
√

λ(u5 + u−5) = 2

√
125λ + 22 +

1
λ

.

Thus, by (6.5) and (6.3),

dG

dq
=

125− 1/λ2

√
125λ + 22 + 1/λ

dλ

dq

=
125− 1/λ2

√
125λ + 22 + 1/λ

f2(−q)f2(−q5)√
q

√
125λ3 + 22λ2 + λ

=
125λ− 1/λ√

q
f2(−q)f2(−q5)

= 125
√

q
f8(−q5)
f4(−q)

− f8(−q)
q3/2f4(−q5)

,

upon the use of (6.2) again.
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Thus, for any q0 such that 0 < q0 < 1,

G(q)−G(q0) =
∫ q

q0

dG

dt
dt = 125

∫ q

q0

f8(−t5)
f4(−t)

√
tdt−

∫ q

q0

f8(−t)
f4(−t5)

dt

t3/2
,

or, by (6.5) and (6.2),

u5 + u−5

=
f3(−q)

2
√

qf3(−q5)

(
G(q0) + 125

∫ q

q0

f8(−t5)
f4(−t)

√
tdt−

∫ q

q0

f8(−t)
f4(−t5)

dt

t3/2

)

=
f3(−q)

2
√

qf3(−q5)

(
G(q0) + 125

∫ q

0

f8(−t5)
f4(−t)

√
tdt− 125

∫ q0

0

f8(−t5)
f4(−t)

√
tdt

+
∫ 1

q

f8(−t)
f4(−t5)

dt

t3/2
−

∫ 1

q0

f8(−t)
f4(−t5)

dt

t3/2

)

=
f3(−q)

2
√

qf3(−q5)

(
C + 125

∫ q

0

f8(−t5)
f4(−t)

√
tdt +

∫ 1

q

f8(−t)
f4(−t5)

dt

t3/2

)
,

where

(6.6) C = G(q0)− 125
∫ q0

0

f8(−t5)
f4(−t)

√
tdt−

∫ 1

q0

f8(−t)
f4(−t5)

dt

t3/2
.

Thus, we have completed the proof of Theorem 6.1 and have furthermore
shown that the constant C is given by (6.6). ¤

Now set q0 = e−2π/θ. Ramanujan calculated G(e−2π/θ) for three values of
θ.

Theorem 6.3 (p. 52). We have

(i) G(e−2π/
√

5) = 4

(√
5 + 1
2

)5/2

,

(ii) G(e−2π) = G(e−2π/5) = 6 · 51/4(3 +
√

5).

Ramanujan erroneously claimed that

G(e−2π) = G(e−2π/5) = 16 · 5−1/4(2 +
√

5).

Raghavan and Rangachari [13] used a different method to prove Theorem
6.3.

Proof. To prove (i), we need to evaluate

(6.7) λ(e−2π/
√

5) = e−2π/
√

5 f6(−e−2π
√

5)

f6(−e−2π/
√

5)
=: L(

√
5).

To evaluate L(
√

5), we will use [5, Theorem 2.3(i)]. Let Gn denote the
Ramanujan–Weber class invariant. Set

(6.8) V ′ =
G25n

Gn
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and

(6.9) A′ = e2π
√

n/6 f(−e−2π
√

n)
f(−e−10π

√
n)

.

Then

(6.10)
A′2√
5V ′ −

√
5V ′

A′2
=

1√
5
(V ′3 − V ′ −3).

Let n = 1/5. It is well known that Gn = G1/n, and so, from (6.8), V ′ = 1.
Thus, from (6.10),

A′2√
5
−
√

5
A′2

= 0.

Hence, A′2 =
√

5, and since, from (6.7) and (6.10), L(
√

5) = A′ −6, we
conclude that L(

√
5) = 5−3/2. Thus, from (6.5),

G(e−2π/
√

5) = 2
√

125 · 5−3/2 + 22 + 53/2

= 2
√

2(53/2 + 11)1/2

= 4

(√
5 + 1
2

)5/2

.

We now prove (ii). First, by (6.2), (2.4), and (2.5),

125λ(e−2π/5) = 125
η6(i)

η6(i/5)
=

η6(i)
η6(5i)

=
1

λ(e−2π)
.

Hence, by (6.5),

G(e−2π/5) = 2
√

125λ(e−2π/5) + 22 + 1/λ(e−2π/5)

= 2
√

1/λ(e−2π) + 22 + 125λ(e−2π) = G(e−2π).

Thus, it suffices to evaluate G(e−2π/5), and so we need to determine

(6.11) λ(e−2π/5) = e−2π/5 f6(−e−2π)
f6(−e−2π/5)

=: L(5).

Again, we shall employ (6.10).
Set n = 1/25. Then, by (6.8) and the relation Gn = G1/n,

(6.12) V ′ =
G1

G1/25
=

1
G25

=
√

5− 1
2

.

(See, e.g. [3, p. 190] for the value of G25). Set ε = (
√

5 + 1)/2. Then from
(6.10) and (6.12),

εA′2√
5
−
√

5
εA′2

= − 4√
5
,
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from which we easily find that A′2 = ε−1. Hence, from (6.9) and (6.11),
L(5) = A′−6 = ε3. Lastly, we then conclude from (6.5) that

G(e−2π/5) = 2
√

125ε3 + 22 + ε−3

= 2
√

270 + 126
√

5

= 6 · 51/4

√
14 + 6

√
5

= 6 · 51/4(3 +
√

5),

which completes the proof of (ii).
¤

Ramanujan claimed that

C =53/4

(
−π + 4

∫ π/2

0

√
1− ε−55−3/2 sin2 ϕdϕ

−2
∫ π/2

0

dϕ√
1− ε−55−3/2 sin2 ϕ

)
,(6.13)

which is quite different from (6.6). Now in Theorem 4.1, let q tend to 1.
Then u tends to ε−1, and so cos−1((εu)5/2) tends to cos−1 1 = 0. Thus, (4.1)
yields

53/4

∫ 1

0

f2(−t)f2(−t5)√
t

dt = 2
∫ π/2

0

dϕ√
1− ε−55−3/2 sin2 ϕ

.

Thus, one of the integrals in (6.13) can be identified as an integral of eta-
functions. But this is the only progress we have made in identifying (6.13)
with (6.6).

Numerically, (6.6) and (6.13) do not agree. First, by (6.13),

(6.14) C = 53/4(−π + 4 · 1.56762 · · · − 2 · 1.57398 . . . ) = −0.06377 . . . .

To calculate C via (6.6), we set q0 = e−2π and use Theorem 6.3. Accordingly,

(6.15) C = 6 · 51/4(3 +
√

5)− 250π

∫ ∞

1

η8(5ix)
η4(ix)

dx− 2π

∫ 1

0

η8(ix)
η4(5ix)

dx.

We used Mathematica to calculate the integrals in (6.15) and found that

C =46.978487 · · · − 250π · 8.60104 · · · × 10−6 − 2π · 5.81407 . . .

=10.44085 . . . .(6.16)

Thus, (6.14) and (6.16) show that Ramanujan’s claim (6.13) is erroneous.
Nonetheless, we are haunted by the possibility that a corrected version of
(6.13) exists, for Ramanujan very rarely made a serious error.
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7. Elliptic Integrals of Order 15

The entries in this and the following two sections depend upon remarkable
differential equations satisfied by certain quotients of eta-functions. For the
first series of results, that quotient is defined by

(7.1) v := v(q) := q

(
f(−q)f(−q15)
f(−q3)f(−q5)

)3

We need three ancillary lemmas. The first and third are found in Ra-
manujan’s notebooks [15].

Lemma 7.1. Let v be defined by (7.1), and let

R =
1
q

(
f (−q)f (−q5)

f (−q3)f (−q15)

)2

.

Then

R + 5 +
9
R

=
1
v
− v.

For a proof of Lemma 7.1, see Berndt’s book [2, p. 221, Entry 62].

Lemma 7.2. Let R be given above, and let

P =
1
q

(
f (−q)
f (−q5)

)6

and Q =
1
q3

(
f (−q3)
f (−q15)

)6

.

Then

P +
125
P

= R− 4 +
135
R

+
486
R2

+
729
R3

and

Q +
125
Q

= R3 + 6R2 + 15R− 4 +
9
R

.

Proof. From Berndt’s book [2, p. 223, Entry 63; p. 226, Entry 64], we have,
respectively,

(7.2)
√

PQ +
125√
PQ

=
√

K2 + 4(K − 9),

and

(7.3)
√

PQ− 125√
PQ

= (K − 4)
√

(K − 11)(K + 1),

where

(7.4) K =
1
v
− v,

where v is given by (7.1). (The forms of Entries 63 and 64 in [2] are slightly
different from those in (7.2) and (7.3), respectively, but their equivalences
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are easily demonstrated by elementary algebra.) Multiplying (7.2) by (1
v +v)

and (7.3) by K in (7.4), we deduce that

(7.5) P +
125
P

+ Q +
125
Q

= (K2 + 4)(K − 9)

and

(7.6) −P − 125
P

+ Q +
125
Q

= K(K − 4)
√

(K − 11)(K + 1).

From Lemma 7.1, we know that

(7.7) K = R + 5 +
9
R

.

Hence, from (7.5), (7.6), and (7.7), we deduce that

(7.8) P +
125
P

+ Q +
125
Q

= R3 + 6R2 + 16R− 8 +
144
R

+
486
R2

+
729
R3

and

(7.9) −P − 125
P

+ Q +
125
Q

= R3 + 6R2 + 14R− 126
R

− 486
R2

− 729
R3

.

Solving (7.8) and (7.9) yields Lemma 7.2. ¤

Lemma 7.3. We have

1 + 6
∞∑

k=1

kqk

1− qk
− 30

∞∑

k=1

kq5k

1− q5k

=

√
f12(−q) + 22qf6(−q)f6(−q5) + 125q2f12(−q5)

f2(−q)f2(−q5)
.

For a proof of Lemma 7.3, see Berndt’s book [1, p. 463, Entry 4].

Lemma 7.4. Let v be defined by (7.1). Then

dv

dq
= f(−q)f(−q3)f(−q5)f(−q15)

√
1− 10v − 13v2 + 10v3 + v4.
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Proof. From the definition (7.1) of v, we find that

1
v

dv

dq
=

d log v

dq
=

d log{q3/2 f3(−q15)
f3(−q3)

}
dq

+
d log{q−1/2 f3(−q)

f3(−q5)
}

dq
(7.10)

=
3
2q

+ 9
∞∑

n=1

nq3n−1

1− q3n
− 45

∞∑

n=1

nq15n−1

1− q15n

− 1
2q

+ 15
∞∑

n=1

nq5n−1

1− q5n
− 3

∞∑

n=1

nqn−1

1− qn

=
3
2q

√
f12(−q3) + 22q3f6(−q3)f6(−q15) + 125q6f12(−q15)

f2(−q3)f2(−q15)

− 1
2q

√
f12(−q) + 22qf6(−q)f6(−q5) + 125q2f12(−q5)

f2(−q)f2(−q5)
,

by Lemma 7.3. Simplifying (7.10) by using the definitions of P, Q, and R
from Lemmas 7.1 and 7.2, as well as Lemmas 7.2, and 7.1 themselves, we
find that

dv

dq
= vf (−q)f (−q3)f (−q5)f (−q15)

(
3
2
q1/2 f (−q3)f (−q15)

f (−q)f (−q5)

×
√

Q + 22 +
125
Q

− 1
2
q−1/2 f (−q)f (−q5)

f (−q15)f (−q3)

√
P + 22 +

125
P

)

=vf (−q)f (−q3)f (−q5)f (−q15)
(

3
2

1√
R

√
Q + 22 +

125
Q

−1
2

√
R

√
P + 22 +

125
P

)

=vf (−q)f (−q3)f (−q5)f (−q15)

(
3
2

1√
R

√
R3 + 6R2 + 15R + 18 +

9
R

−1
2

√
R

√
R + 18 +

135
R

+
486
R2

+
729
R3

)

=vf (−q)f (−q3)f (−q5)f (−q15)


3

2

√(
R + 3 +

3
R

)2

−1
2

√(
R + 9 +

27
R

)2
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=vf (−q)f (−q3)f (−q5)f (−q15)
(√

R− 3√
R

)(√
R +

3√
R

)

=vf (−q)f (−q3)f (−q5)f (−q15)

√
1
v
− v − 11

√
1
v
− v + 1

=f(−q)f(−q3)f(−q5)f(−q15)
√

1− 10v − 13v2 + 10v3 + v4.

This completes the proof. ¤

Theorem 7.5 (p. 51). Let v be defined by (7.1), and let ε = (
√

5 + 1)/2.
Then

∫ q

0
f(−t)f(−t3)f(−t5)f(−t15)dt =

1
5

∫ 2 tan−1(1/
√

5)

2 tan−1

�
1√
5

r
1−11v−v2

1+v−v2

� dϕ√
1− 9

25 sin2 ϕ

(7.11)

=
1
9

∫ π/2

2 tan−1

�
1−vε−3

1+vε3

r
(1+vε)(1−vε5)

(1−vε−1)(1+vε−5)

� dϕ√
1− 1

81 sin2 ϕ
(7.12)

=
1
4

∫ tan−1(3−√5)

tan−1

�
(3−√5)

r
(1−vε−1)(1−vε5)

(1+vε)(1+vε−5)

� dϕ√
1− 15

16 sin2 ϕ
.(7.13)

Proof of (1). Let

(7.14) tan(ϕ/2) =

√
1− 11v(t)− v2(t)
5(1 + v(t)− v2(t))

.

Clearly,
(7.15)

ϕ(0) = 2 tan−1

(
1√
5

)
and ϕ(q) = 2 tan−1

√
1− 11v(q)− v2(q)
5(1 + v(q)− v2(q))

.

Differentiating both sides of (7.14) with respect to t, we find, after a modest
calculation, that

(7.16) tan(ϕ/2) sec2(ϕ/2)
dϕ

dt
= − 12(1 + v2(t))

5(1 + v(t)− v2(t))2
dv

dt
.

From (7.14) and elementary trigonometry, with the argument t deleted for
brevity,

(7.17) tan(ϕ/2) sec2(ϕ/2) =
6(1− v − v2)

√
1− 11v − v2

(5(1 + v − v2))3/2
.
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From (7.16) and (7.17), it follows that

dϕ/dt

dv/dt
=− 2

√
5(1 + v2)

(1− v − v2)
√

(1− 11v − v2)(1 + v − v2)

=− 2
√

5(1 + v2)
(1− v − v2)

√
1− 10v − 13v2 + 10v3 + v4

.(7.18)

From further elementary trigonometry,

sin2 ϕ = 4 sin2(ϕ/2) cos2(ϕ/2) =
5(1− 11v − v2)(1 + v − v2)

9(1− v − v2)2
,

and so

(7.19) 1− 9
25

sin2 ϕ =
4(1 + v2)2

5(1− v − v2)2
.

From (7.18) and (7.19), we deduce that

(7.20)
dϕ/dt

dv/dt
= −

5
√

1− 9
25 sin2 ϕ

√
1− 10v − 13v2 + 10v3 + v4

.

Using (7.15) and (7.20), we find that, with v = v(q),∫ q

0
f(−t)f(−t3)f(−t5)f(−t15)dt

=
1
5

∫ 2 tan−1(1/
√

5)

2 tan−1

�
1√
5

r
1−11v−v2

1+v−v2

� f(−t)f(−t3)f(−t5)f(−t15)

×
√

1− 10v − 13v2 + 10v3 + v4

dv

dt

√
1− 9

25 sin2 ϕ

dϕ.

Invoking Lemma 7.4, we complete the proof of (7.11). ¤
Lemma 7.6 (First version of Landen’s transformation). If 0 ≤ α, β ≤ π/2,
0 < x < 1, and sin(2β − α) = x sinα, then

∫ α

0

dϕ√
1− x2 sin2 ϕ

=
2

1 + x

∫ β

0

dϕ√
1− 4x

(1+x)2
sin2 ϕ

.

Lemma 7.6 can be found as Entry 7(xiii) in Chapter 17 in Ramanujan’s
second notebook [1, p. 113]. If we replace x by (1−√1− x2)/(1+

√
1− x2)

in Lemma 7.6 and interchange the roles of α and β, we obtain the following
second version of Landen’s transformation.

Lemma 7.7 (Second version of Landen’s transformation). If 0 ≤ α, β ≤
π/2, 0 < x < 1, and tan(β − α) =

√
1− x2 tanα, then

∫ α

0

dϕ√
1− x2 sin2 ϕ

=
1

1 +
√

1− x2

∫ β

0

dϕ√
1−

(
1−√1−x2

1+
√

1−x2

)2
sin2 ϕ

.
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Proof of (7.12). We apply Lemma 7.7 with x = 3
5 . Then tan(β − α) =

4
5 tanα. Suppose that

(7.21) α = 2 tan−1

√
1− 11v(q)− v2(q)
5(1 + v(q)− v2(q))

.

If q = 0, then α = 2 tan−1(1/
√

5). In comparing (7.11) and (7.12), we must
prove that, with the agrument q deleted for brevity,

(7.22) tan(β/2) =
(1− vε−3)
(1 + vε3)

√
(1 + vε)(1− vε5)

(1− vε−1)(1 + vε−5)
,

for if q = 0, then β = π/2.
Set t1 = tan(α/2) and t2 = tan ((β − α)/2) . Then

2t2
1− t22

= tan(β − α) = 4
5 tanα =

8t1
5(1− t21)

.

If we consider the extremal equality as a quadratic equation in t2, a routine
calculation gives

(7.23) t2 = −5(1− t21)
8t1

+
1
2

√
25(1− t21)

2

16t21
+ 4,

since t2 > 0. Using (7.21) and the definition of t1, we find that

(7.24) 1− t21 =
4(1 + 4v − v2)
5(1 + v − v2)

and

(7.25)
25(1− t21)

2

16t21
+ 4 =

9(1 + v2)2

(1 + v − v2)(1− 11v − v2)
,

after a lengthy calculation. Employing (7.21), (7.24), and (7.25) in (7.23),
we conclude that

t2 =−
√

5(1 + 4v − v2) + 3(1 + v2)
2
√

(1 + v − v2)(1− 11v − v2)

=
ε2(ε− v)(ε−5 − v)√

(1− vε−1)(1 + vε)(1− vε5)(1 + vε−5)

=ε−2

√
(1− vε−1)(1− vε5)
(1 + vε)(1 + vε−5)

.(7.26)
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Hence, by (7.21) and (7.26),

tan(β/2) = tan (α/2 + (β − α)/2) =
t1 + t2
1− t1t2

=

√
(1− vε5)(1 + vε−5)
5(1− vε−1)(1 + vε)

+ ε−2

√
(1− vε−1)(1− vε5)
(1 + vε)(1 + vε−5)

1− ε−2(1− vε5)√
5(1 + vε)

=

√
(1− vε5)(1 + vε)

(1− vε−1)(1 + vε−5)

(
(1 + vε−5) + ε−2

√
5(1− vε−1)√

5(1 + vε)− ε−2(1− vε5)

)

=

√
(1− vε5)(1 + vε)

(1− vε−1)(1 + vε−5)
(3
2

√
5− 3

2)(1− vε−3)

(3
2

√
5− 3

2)(1 + vε3)
.

Thus, (7.22) has been established, and the proof of (7.12) is complete. ¤

Proof of (7.13). We apply Lemma 7.6 with x = 3
5 , and let α be given by

(7.21). Comparing (7.11) and (7.13), we see that it suffices to prove that,
with the argument q deleted for brevity,

(7.27) t := tanβ = 2ε−2

√
(1− vε−1)(1− vε5)
(1 + vε)(1 + vε−5)

,

for if q = 0, then t = 2ε−2 = 3−√5.
Now the hypothesis sin(2β − α) = 3

5 sinα in Lemma 7.6, by the addition
formula for the sine function and the double angle formulas for both the sine
and cosine functions, easily translates to the condition

(7.28) tanα =
sin(2β)

3
5 + cos(2β)

=
5 tanβ

4− tan2 β
.

Using (7.28), (7.27), and (7.21), we have

5t

4− t2
= tanα =

2 tan(α/2)
1− tan2(α/2)

=

√
5(1− 11v − v2)(1 + v − v2)

2(1 + 4v − v2)
.(7.29)

Considering (7.29) as a quadratic equation in t, we solve it to deduce that

t =
1
2

(
− 2

√
5(1 + 4v − v2)√

(1− 11v − v2)(1 + v − v2)

+

√
20(1 + 4v − v2)2

(1− 11v − v2)(1 + v − v2)
+ 16


 ,
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since t > 0. Simplifying, we find that

t =−
√

5(1 + 4v − v2)√
(1− 11v − v2)(1 + v − v2)

+
3(1 + v2)√

(1− 11v − v2)(1 + v − v2)

=2ε−2

√
(1− vε−1)(1− vε5)
(1 + vε)(1− vε−5)

,

by identically the same calculation that we used in (7.26). Thus, (7.27) has
been proved, and the proof of (7.13) is complete. ¤

For the remainder of this section, set

(7.30) v = q

(
f(−q3)f(−q15)
f(−q)f(−q5)

)2

.

Theorem 7.8 (p. 53). If v is defined by (7.30), then
(7.31)∫ q

0
f(−t)f(−t3)f(−t5)f(−t15)dt =

1
5

∫ 2 tan−1(1/
√

5)

2 tan−1
�

1−3v√
5(1+3v)

� dϕ√
1− 9

25 sin2 ϕ
.

Proof. Because of the conflict in notation between (7.1) and (7.30), for this
proof only, we set

(7.32) u := q

(
f(−q)f(−q15)
f(−q3)f(−q5)

)3

.

In the notation (7.30) and (7.32), Lemma 7.1 takes the form

1
v

+ 5 + 9v =
1
u
− u.

By using the previous equality, we can easily verify that

1− 3v

1 + 3v
=

√
1− 11u− u2

1 + u− u2
.

Thus, (7.31) follows immediately from (7.1). ¤

8. Elliptic Integrals of Order 14

As in the previous section, the primary theorem in the present section
depends upon a first order differential equation satisfied by a certain quotient
of eta-functions and established through a series of lemmas. Let

(8.1) v := v(q) := q

(
f(−q)f(−q14)
f(−q2)f(−q7)

)4

.
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Lemma 8.1. If v is defined by (8.1) and

(8.2) R =
1
q

(
f(−q)f(−q7)

f(−q2)f(−q14)

)3

,

then

(8.3) R + 7 +
8
R

= v +
1
v
.

Lemma 8.1 is a reformulation of Entry 19(ix) in Chapter 19 of Ramanu-
jan’s second notebook [1, p. 315]. To see this, replace q by −q in the defi-
nitions of (8.1) and (8.2). Then use Entries 12(i), (iii) in Chapter 17 of the
second notebook [1, p. 124] to convert (8.3) into a modular equation, which
is readily seen to be the same as Entry 19(ix).

Lemma 8.2. Let

(8.4) P =
1
q

(
f (−q)
f (−q7)

)4

and Q =
1
q2

(
f (−q2)
f (−q14)

)4

.

Then

(8.5) P +
49
P

= R− 1 +
48
R

+
64
R2

and

(8.6) Q +
49
Q

= R2 + 6R− 1 +
8
R

.

Proof. In the notation (8.4), Ramanujan discovered the eta-function identity
[2, p. 209, Entry 55]

√
PQ +

49√
PQ

=v3/2 − 8v1/2 − 8v−1/2 + v−3/2

=
(

1√
v

+
√

v

)3

− 11
(

1√
v

+
√

v

)

=K(K2 − 11),(8.7)

where

(8.8) K =
1√
v

+
√

v.

Letting c = K(K2 − 11) and solving (8.7) for
√

PQ, we find that

√
PQ =

c +
√

c2 − 196
2

,
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where the correct root was found by an examination of
√

PQ in a neighbor-
hood of q = 0. A brief calculation now gives

√
PQ− 49√

PQ
=

√
c2 − 196

=
√

K6 − 22K4 + 121K2 − 196

=
√

(K2 − 4)(K4 − 18K2 + 49).(8.9)

Multiplying (8.7) by K (given by (8.8)) and (8.9) by 1√
v
−√v =

√
K2 − 4,

and using (8.3), we deduce that, respectively,

P +
49
P

+ Q +
49
Q

=K2(K2 − 11)

=
(

R +
8
R

+ 9
)(

R +
8
R
− 2

)

=
(R + 8)(R + 1)(R2 − 2R + 8)

R2
(8.10)

and

− P − 49
P

+ Q +
49
Q

=(K2 − 4)
√

K4 − 18K2 + 49

=
(

R +
8
R

+ 5
)√(

R +
8
R

+ 9
)2

− 18
(

R +
8
R

+ 9
)

+ 49

=
(R2 + 5R + 8)(R2 − 8)

R2
.(8.11)

Solving (8.10) and (8.11), we deduce (8.5) and (8.6). ¤

Lemma 8.3. We have

1 + 4
∞∑

k=1

kqk

1− qk
− 28

∞∑

k=1

kq7k

1− q7k

=
{

f8(−q) + 13qf4(−q)f4(−q7) + 49q2f8(−q7)
f (−q)f (−q7)

}2/3

.

Lemma 8.3 is part of Entry 5(i) in Chapter 21 of Ramanujan’s second
notebook [1, p. 467].

Lemma 8.4. If v is defined by (8.1), then

dv

dq
= f(−q)f(−q2)f(−q7)f(−q14)

√
1− 14v + 19v2 − 14v3 + v4.
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Proof. From the definition (8.1) of v, Lemma 8.3, (8.4), (8.2), and Lemma
8.2,

q

v

dv

dq
=q

d log v

dq
= q

d log{q2 f4(−q14)
f4(−q2)

}
dq

+ q
d log{q−1 f4(−q)

f4(−q7)
}

dq

(8.12)

=q

{
2
q

+ 8
∞∑

n=1

nq2n−1

1− q2n
− 56

∞∑

n=1

nq14n−1

1− q14n

}

+ q

{
−1

q
+ 28

∞∑

n=1

nq7n−1

1− q7n
− 4

∞∑

n=1

nqn−1

1− qn

}

=2
(

f8(−q2) + 13q2f4(−q2)f4(−q14) + 49q4f8(−q14)
f(−q2)f(−q14)

)2/3

−
(

f8(−q) + 13qf4(−q)f4(−q7) + 49q2f8(−q7)
f(−q)f(−q7)

)2/3

=qf (−q)f (−q2)f (−q7)f (−q14)
{

2q1/3 f (−q2)f (−q14)
f (−q)f (−q7)

×
(

Q +
49
Q

+ 13
)2/3

−q−1/3 f(−q)f(−q7)
f(−q2)f(−q14)

(
P +

49
P

+ 13
)2/3

}

=qf (−q)f (−q2)f (−q7)f (−q14)

{
2

R1/3

(
R2 + 6R + 12 +

8
R

)2/3

−R1/3

(
R + 12 +

48
R

+
64
R2

)2/3
}

=qf (−q)f (−q2)f (−q7)f (−q14)

{
2

R1/3

(
(R + 2)6

R2

)1/3

−R1/3

(
(R + 4)6

R4

)1/3
}

=qf (−q)f (−q2)f (−q7)f (−q14)
(

R− 8
R

)
.

Now, by using Lemma 8.1, we can easily verify that

(
R− 8

R

)2

=
(

R +
8
R

)2

+ 14
(

R +
8
R

)
+ 49− 14

(
R + 7 +

8
R

)
+ 17

=
(

R + 7 +
8
R

)2

− 14
(

R + 7 +
8
R

)
+ 17
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=
(

v +
1
v

)2

− 14
(

v +
1
v

)
+ 17

=
1− 14v + 19v2 − 14v3 + v4

v2
.(8.13)

Taking the square roots of both sides of (8.13) and substituting in (8.12),
we complete the proof. ¤

Theorem 8.5 (p. 51). If v is defined by (8.1) and if

c =

√
13 + 16

√
2

7
,

then
(8.14)∫ q

0
f(−t)f(−t2)f(−t7)f(−t14)dt =

1√
8
√

2

∫ cos−1 c

cos−1(c 1+v
1−v )

dϕ√
1− 16

√
2−13

32
√

2
sin2 ϕ

.

Proof. Let

(8.15) cosϕ = c
1 + v(t)
1− v(t)

,

so that at t = 0, q we obtain the upper and lower limits, respectively, in the
integral on the right side of (8.14). Differentiating (8.15), we find that

(8.16) − sinϕ
dϕ

dt
=

2c

(1− v(t))2
dv

dt
.

By elementary trigonometry,

(8.17) sinϕ =

√
(1− v)2 − c2(1 + v)2

1− v
.

Putting (8.17) in (8.16), we arrive at

(8.18)
dϕ/dt

dv/dt
= − 2c

(1− v)
√

(1− v)2 − c2(1 + v)2
.

Next, by (8.17),

1− 16
√

2− 13
32
√

2
sin2 ϕ =

32
√

2(1− v)2 − (16
√

2− 13)
{
(1− v)2 − c2(1 + v)2

}

32
√

2(1− v)2

=
(16
√

2 + 13)(1− v)2 + 7(1 + v)2

32
√

2(1− v)2
.(8.19)
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Thus, by (8.18) and (8.19),

dv/dt

dϕ/dt

√
1− 16

√
2− 13

32
√

2
sin2 ϕ

=−
√

(1− v)2 − c2(1 + v)2

2c

√
(16
√

2 + 13)(1− v)2 + 7(1 + v)2

2
√

8
√

2

=−

√
49(1− v)2 − (16

√
2 + 13)(1 + v)2

√
(16
√

2 + 13)(1− v)2 + 7(1 + v)2

4
√

16
√

2 + 13
√

8
√

2

=−
√

1− 14v + 19v2 − 14v3 + v4

√
8
√

2
,

after a calculation via Mathematica. Thus,∫ q

0
f(−t)f(−t2)f(−t7)f(−t14)dt

=
1√
8
√

2

∫ cos−1 c

cos−1(c 1+v
1−v )

f(−t)f(−t2)f(−t7)f(−t14)

×
√

1− 14v + 19v2 − 14v3 + v4

dv
dt

√
1− 16

√
2−13

32
√

2
sin2 ϕ

dϕ

=
1√
8
√

2

∫ cos−1 c

cos−1(c 1+v
1−v )

dϕ√
1− 16

√
2−13

32
√

2
sin2 ϕ

,

upon the use of Lemma 8.4 ¤

9. An Elliptic Integral of Order 35

To avoid square roots, we have modestly reformulated Ramanujan’s inte-
gral equality (Theorem 9.5 below). Throughout this section, set

(9.1) v := v(q) := q
f(−q)f(−q35)
f(−q5)f(−q7)

.

(Ramanujan defined v by the square of the right side of (9.1).) Ramanujan’s
theorem depends upon a differential equation for v which we prove through
a series of lemmas.

Lemma 9.1. Let

R =
f (−q)f (−q5)

q3/2f (−q7)f (−q35)
.

Then
R2 − 5 +

49
R2

=
1
v3
− 5

1
v2
− 5v2 − v3.
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Lemma 9.1 can be found on page 303 of Ramanujan’s second notebook
[15]; a proof is given in [2, pp. 236–242].

Lemma 9.2. Let

P =
f (−q)

q1/6f (−q5)
and Q =

f (−q7)
q7/6f (−q35)

.

Then

(PQ)3 +
125

(PQ)3
=

(
1
v4
− v4

)
− 7

(
1
v3

+ v3

)
+7

(
1
v2
− v2

)
+14

(
1
v

+ v

)
.

This eta-function identity is not found in Ramanujan’s ordinary note-
books [15], but it is recorded in his lost notebook [17, p. 55]. Berndt’s paper
[4] contains a proof.

Lemma 9.3. We have

1 + 6
∞∑

k=1

kqk

1− qk
− 30

∞∑

k=1

kq5k

1− q5k

=

√
f12(−q) + 22qf6(−q)f6(−q5) + 125q2f12(−q5)

f2(−q)f2(−q5)
.

For a proof of this result from Chapter 21 of Ramanujan’s second note-
book, see Berndt’s book [1, p. 463, Entry 4(i)].

Lemma 9.4. If v is defined by (9.1), then

v
dv

dq
= qf(−q)f(−q5)f(−q7)f(−q35)

√
(1 + v − v2)(1− 5v − 9v3 − 5v5 − v6).

Proof. Set

(9.2) K =
1
v
− v.

Then Lemma 9.2 can be reformulated as

(9.3) (PQ)3 +
125

(PQ)3
= (K3 − 7K2 + 9K + 7)

√
K2 + 4.

Considering (9.3) as a quadratic equation in (PQ)3, we solve it. Then after
a tedious, but elementary, calculation, we find that

(9.4) (PQ)3 − 125
(PQ)3

= (K − 1)(K − 4)
√

(K + 1)(K3 − 5K2 + 3K − 19).

Now multiply both sides of (9.3) by
1
v3

+ v3 = (K2 + 1)
√

K2 + 4

and both sides of (9.4) by
1
v3
− v3 = K(K2 + 3),
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and use the observation v = P/Q to deduce that, respectively,

(9.5) P 6 +
125
P 6

+ Q6 +
125
Q6

= U1

and

(9.6) −P 6 − 125
P 6

+ Q6 +
125
Q6

= U2,

where

(9.7) U1 := (K2 + 4)(K2 + 1)(K3 − 7K2 + 9K + 7)

and

(9.8) U2 := K(K − 1)(K − 4)(K2 + 3)
√

(K + 1)(K3 − 5K2 + 3K − 19).

Solving (9.5) and (9.6), we deduce that

(9.9) P 6 +
125
P 6

=
1
2

(U1 − U2)

and

(9.10) Q6 +
125
Q6

=
1
2

(U1 + U2) .

Using the definition of K in (9.2), we can rewrite Lemma 9.1 in the form

(9.11) R2 +
49
R2

= K3 − 5K2 + 3K − 5.

Considering (9.11) as a quadratic equation in R2, we solve it and find that

(9.12) R2 =
1
2

(V1 + V2) and
49
R2

=
1
2

(V1 − V2) ,

where

(9.13) V1 := K3 − 5K2 + 3K − 5

and

(9.14) V2 := (K − 3)
√

(K + 1)(K3 − 5K2 + 3K − 19).
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Now, by Lemma 9.3, we find that

1
v

dv

dq
=

d log v

dq
=

d log{q7/6 f (−q35)
f (−q7)

}
dq

+
d log{q−1/6 f (−q)

f (−q5)
}

dq
(9.15)

=
7
6q

+ 7
∞∑

n=1

nq7n−1

1− q7n
− 35

∞∑

n=1

nq35n−1

1− q35n

− 1
6q

+ 5
∞∑

n=1

nq5n−1

1− q5n
−

∞∑

n=1

nqn−1

1− qn

=
7
6q

√
f12(−q7) + 22q7f6(−q7)f6(−q35) + 125q14f12(−q35)

f2(−q7)f2(−q35)

− 1
6q

√
f12(−q) + 22qf6(−q)f6(−q5) + 125q2f12(−q5)

f2(−q)f2(−q5)

=qf (−q)f (−q5)f (−q7)f (−q35)

×
(
− 7

6R

√
Q6 +

125
Q6

+ 22 +
R

6

√
P 6 +

125
P 6

+ 22

)
.

where we have used the definitions of P,Q, and R in Lemmas 9.2 and 9.1.
Squaring both sides of (9.15) and simplifying with the use of (9.12), (9.9),

(9.10), (9.7), (9.8), (9.13), and (9.14), we find that
(

1
qf (−q)f (−q5)f (−q7)f (−q35)

dv

dq

)2

(9.16)

=
v2

36

{
49
R2

(
Q6 +

125
Q6

+ 22
)

+ R2

(
P 6 +

125
P 6

+ 22
)

− 14

√(
Q6 +

125
Q6

+ 22
)(

P 6 +
125
P 6

+ 22
)}

=
v2

36

{
(V1 − V2)

2

(
U1 + U2

2
+ 22

)
+

(V1 + V2)
2

(
U1 − U2

2
+ 22

)

− 14

√(
U1

2
+ 22

)2

− U2
2

4

}

=
v2

36





1
2

(U1V1 − U2V2) + 22V1 − 14

√(
U1

2
+ 22

)2

− U2
2

4





= v2(K4 − 4K3 − 2K2 − 16K − 19),

where the last step involves a considerable amount of algebra. Lastly, by
(9.2), we substitute K = 1

v−v into (9.16). Upon simplification, factorization,
and taking the square roots of both sides, we complete the proof. ¤



INCOMPLETE ELLIPTIC INTEGRALS IN RAMANUJAN’S LOST NOTEBOOK 37

Theorem 9.5 (p. 53). If v is defined by (9.1), then∫ q

0
t f(−t)f(−t5)f(−t7)f(−t35)dt

=
∫ v

0

t dt√
(1 + t− t2)(1− 5t− 9t3 − 5t5 − t6)

.

Proof. Let v(t) be defined by (9.1). Then the limits t = 0, q are transformed
into 0, v = v(q), respectively. Thus,∫ q

0
t f(−t)f(−t5)f(−t7)f(−t35)dt

=
∫ v(q)

0

t f(−t)f(−t5)f(−t7)f(−t35)
dv/dt

dv

=
∫ v(q)

0

v dv√
(1 + v − v2)(1− 5v − 9v3 − 5v5 − v6)

,

upon the employment of Lemma 9.4. Thus, the proof is complete. ¤

10. Constructions of new incomplete elliptic integral identities

It is clear from the previous sections that Ramanujan’s incomplete ellip-
tic integrals arise from differential equations satisfied by quotients of eta-
functions. In this section, we first list three differential equations and derive
their corresponding elliptic integrals of order 6. We will then briefly describe
why such differential equations exist and construct several new examples, as
well as their corresponding incomplete elliptic integrals.

Theorem 10.1. Let

v := q
f4(−q3)f4(−q6)
f4(−q)f4(−q2)

.

Then
dv

dq
= q−1/2f(−q)f(−q2)f(−q3)f(−q6)

√
81v3 + 14v2 + v.

To prove Theorem 10.1, we need the following lemmas:

Lemma 10.2. Let

P := q−1/6 f2(−q)
f2(−q3)

, Q := q−1/3 f2(−q2)
f2(−q6)

,

R := Q/P, and S := q−1/6 f(−q)f(−q3)
f(−q2)f(−q6)

.

Then [2, p. 204, Entry 51]

(10.1) PQ +
9

PQ
= R3 +

1
R3
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and [2, p. 205, Entry 52]

(10.2) PQ− 9
PQ

= S3 − 8
S3

.

Lemma 10.3.
(

Q3 +
27
Q3

)2

=
(

S6 + 4
S2

)3

,(10.3)

(
P 3 +

27
P 3

)2

=
(

S6 + 16
S4

)3

.(10.4)

Lemma 10.3 appears to be new. We will present the proof of this lemma
using ideas illustrated in Sections 7–9 and Lemma 10.2.

Proof. By cubing both sides of (10.1), we deduce that

(PQ)3 +
93

(PQ)3
+ 27

(
PQ +

9
PQ

)
=

(
R3 +

1
R3

)3

.

This implies that

(10.5) (PQ)3 +
93

(PQ)3
=

(
R3 +

1
R3

)3

− 27
(

R3 +
1

R3

)
,

by (10.1). Similarly, by cubing (10.2) and simplifying, we deduce that

(10.6) (PQ)3 − 93

(PQ)3
=

(
S3 − 8

S3

)3

+ 27
(

S3 − 8
S3

)
.

Multiplying (10.5) by
(
R3 + 1/R3

)
and (10.6) by

(
R3 − 1/R3

)
, we find that

Q6 +
93

Q6
+ P 6 +

93

P 6
=

(
R3 +

1
R3

)4

− 27
(

R3 +
1

R3

)2

(10.7)

and

Q6 +
93

Q6
− P 6 − 93

P 6
=

(
R3 − 1

R3

){(
S3 − 8

S3

)3

+ 27
(

S3 − 8
S3

)}
.

(10.8)

Next, from (10.1) and (10.2), we have

R3 +
1

R3
= PQ +

9
PQ

=

√(
S3 − 8

S3

)2

+ 36.

Therefore,

(10.9)
(

R3 +
1

R3

)2

= S6 +
64
S6

+ 20.
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From (10.9), we also obtain

(10.10) R3 − 1
R3

= S3 +
8
S3

.

Substituting (10.9) and (10.10) into (10.7) and (10.8), we find that

Q6 +
93

Q6
+ P 6 +

93

P 6
=

(
S6 +

64
S6

+ 20
)2

− 27
(

S6 +
64
S6

+ 20
)(10.11)

and

Q6 +
93

Q6
− P 6 − 93

P 6
=

(
S3 +

8
S3

){(
S3 − 8

S3

)3

+ 27
(

S3 − 8
S3

)}
.

(10.12)

Adding (10.11) and (10.12), we have

Q6 +
93

Q6
= S12 + 12S6 − 6 +

64
S6

,

which implies (10.3). Similarly, by subtracting (10.12) from (10.11), we have

P 6 +
93

P 6
= S6 − 6 +

768
S6

+
4096
S12

,

which implies (10.4). This completes the proof of Lemma 10.3 ¤

Lemma 10.4. [1, p. 460, Entry 3(i)]

1 + 12
∞∑

n=1

nqn

1− qn
− 36

∞∑

n=1

nq3n

1− q3n
=

(
f12(−q) + 27qf12(−q3)

f3(−q)f3(−q3)

)2/3

.

Proof of Theorem 10.1. By logarithmically differentiating v, we deduce that

1
v

dv

dq
=

1
3q

(
1 + 12

∞∑

n=1

nqn

1− qn
− 36

∞∑

n=1

nq3n

1− q3n
+ 2

+24
∞∑

n=1

nq2n

1− q2n
− 72

∞∑

n=1

nq6n

1− q6n

)
.

By Lemmas 10.2, 10.3, and 10.4, we may rewrite the last equality in the
form

1
v

dv

dq
=

1
3q1/2

f(−q)f(−q2)f(−q3)f(−q6)

×
{

S

(
P 3 +

27
P 3

)2/3

+
2
S

(
Q3 +

27
Q3

)2/3
}

(10.13)

=
1

q1/2
f(−q)f(−q2)f(−q3)f(−q6)

(
S3 +

8
S3

)
.
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Now, it is clear that
√

v = 1/(PQ) and hence, by (10.2), we deduce that
dv

dq
=

1
q1/2

f(−q)f(−q2)f(−q3)f(−q6)
√

81v3 + 14v2 + v.

¤
Now, from (10.1), we observe that if v1 = R−6 then

(10.14)
1√
v

+ 9
√

v =
1√
v1

+
√

v1.

This implies that
1
v

(
1√
v
− 9

√
v

)
dv

dq
=

1
v1

(
1√
v1
−√v1

)
dv1

dq
.

From (10.14), we find that

1√
v
− 9

√
v =

√(
1√
v1

+
√

v1

)2

− 36 =
√

1
v1

+ v1 − 34.

The last two equalities imply that

1
v1

dv1

dq
=

√
1
v1

+ v1 − 34
(

1√
v1
−√v1

)−1 1
v

dv

dq

=
1

q1/2
f(−q)f(−q2)f(−q3)f(−q6)

√
1
v1

+ v1 − 34,

by (10.10) and (10.13). Hence, we deduce the following differential equation.

Theorem 10.5. Let

v1 := q
f12(−q)f12(−q6)
f12(−q2)f12(−q3)

.

Then
dv1

dq
= q−1/2f(−q)f(−q2)f(−q3)f(−q6)

√
v3
1 − 34v2

1 + v1.

Recall that
√

v = 1/(PQ), and define v2 = 1/S6. Then (10.2) takes the
form

1√
v
− 9

√
v =

1√
v2
− 8

√
v2,

which implies that(
1√
v

+ 9
√

v

)
1
v

dv

dq
=

(
1√
v2

+ 8
√

v2

)
1
v2

dv2

dq
.

By the previous two equalities, (10.2), and (10.13), we find that

1
v2

dv

dq
=

1
v

dv

dq

(
1√
v

+ 9
√

v

)(
1√
v2

+ 8
√

v2

)−1

= q−1/2f(−q)f(−q2)f(−q3)f(−q6)
√

1
v2

+ 64v2 + 20.
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Hence we obtain the following differential equation.

Theorem 10.6. Recall that

(10.15) v2 := q
f6(−q2)f6(−q6)
f6(−q)f6(−q3)

.

Then
dv2

dq
= q−1/2f(−q)f(−q2)f(−q3)f(−q6)

√
v2(4v2 + 1)(16v2 + 1).

Using Theorem 10.6, we now derive an identity associated with an incom-
plete elliptic integral of order 6.

Theorem 10.7. If v2 is defined by (10.15), then
∫ q

0

1√
t
f(−t)f(−t2)f(−t3)f(−t6) dt =

1
2

∫ π
2

sin−1
q

1
4v2+1

dϕ√
1− 3

4 sin2 ϕ

=
1
2

∫ cot−1 1
4
√

v2

0

dϕ√
1− 3

4 sin2 ϕ
.(10.16)

We remark here that the upper limit of the second integral may be ex-
pressed in terms of v or v1 by using (10.1) and (10.10), namely,

1√
v2

=
1
2

(√
1
v

+ 81v + 18 +

√
1
v

+ 81v + 14

)

=
1
2

(√
1
v1

+ 64v1 + 20 +
√

1
v1

+ 64v1 + 16
)

.

This yields incomplete elliptic integrals associated with v or v1. Of course,
these integrals are by no means unique representations of the left hand side
of Theorem 10.7 in terms of v and v1.

Proof of Theorem 10.7. By Theorem 10.6, we find that
(10.17)∫ q

0

1√
t
f(−t)f(−t2)f(−t3)f(−t6) dt =

∫ v2(q)

0

dv2√
v2(4v2 + 1)(16v2 + 1)

.

Set

(10.18) sin2 ϕ =
1

4v2 + 1
.

Then a routine calculation gives

dϕ = − 1√
v2(4v2 + 1)

and √
1− 3

4
sin2 ϕ =

√
16v2 + 1

4(4v2 + 1)
,
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which yield

(10.19)
∫ v2(q)

0

dv2√
v2(4v2 + 1)(16v2 + 1)

=
1
2

∫ π
2

sin−1
q

1
4v2+1

dϕ√
1− 3

4 sin2 ϕ
.

Combining (10.17) and (10.19), we deduce the first equality in (10.16).
The second integral follows from the transformation formula [1, p. 106]

∫ α

0

dϕ√
1− x sin2 ϕ

=
∫ π

2

β

dϕ√
1− x sin2 ϕ

,

where
cotα cotβ =

√
1− x.

¤

The key to the proof of Theorem 10.7 is the substitution (10.18). We
briefly describe here how we arrive at this substitution. Consider the equa-
tion

y2 = x(4x + 1)(16x + 1)

for an elliptic curve E. By substituting x1 = 4x + 1, we may rewrite the
equation in the form

y2 = x1(x1 − 1)(x1 − 3
4).

Next, by setting y2 = yx3
2 and x2

2 = 1/x1 [12, pp. 42–43], we obtain the
Legendre form of the elliptic curve E, namely,

y2
1 = (1− x2

2)(1− 3
4x2

2).

Our substitution (10.18) is obtained by letting

sin2 ϕ = x2
2 =

1
x1

=
1

4x + 1
.

We now describe how one can construct differential equations analogous
to that of Theorem 10.1. The quotients of eta-products which appear in
Ramanujan’s integrals happen to be Hauptmoduls associated with discrete
groups of genus zero of the form Γ0(N) + Wp, where p|N and Wp is an
Atkin-Lehner involution of Γ0(N) (see [7] for more details). Suppose v is
the Hauptmodul associated with a discrete group of genus zero Γ. Then the
derivative of v with respect to q is a modular form of weight 2 under Γ. To
construct a differential equation associated with v, we search for another
modular form of weight 2 under Γ for which the quotient w−1 dv

dq is invariant
under Γ. Since every modular function invariant under Γ can be expressed
as a rational function of v, we can easily determine the relation between the
two modular forms. Using this method, we derive the following differential
equations.
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Theorem 10.8. Let

v = q
f4(−q2)f4(−q10)
f4(−q)f4(−q5)

.

Then
dv

dq
= q−1/2f2(−q)f2(−q5)

√
v(4v + 1)(16v2 + 12v + 1).

Theorem 10.9. Let

v = q
f3(−q2)f3(−q14)
f3(−q)f3(−q7)

.

Then
dv

dq
= f(−q)f(−q2)f(−q7)f(−q14)

√
(8v + 1)(v + 1)(8v2 + 5v + 1).

Theorem 10.10. Let

v = q
f2(−q2)f2(−q22)
f2(−q)f2(−q11)

.

Then

v2 dv

dq
= qf2(−q2)f2(−q22)

√
(4v3 + 8v2 + 4v + 1)(16v3 + 16v2 + 8v + 1).

Theorem 10.11. Let

v = q
f(−q3)f(−q33)
f(−q)f(−q11)

.

Then

v2 dv

dq
=q4f2(−q3)f2(−q33)

×
√

(3v2 + v + 1)(27v6 + 63v5 + 84v4 + 59v3 + 28v2 + 7v + 1).

We now use two of these differential equations to derive two new identities
for incomplete elliptic integrals.

Theorem 10.12. If

v = q
f4(−q2)f4(−q10)
f4(−q)f4(−q5)

,

then
(10.20)

∫ q

0

1√
t
f2(−t)f2(−t5) dt = 5−1/4

∫ sin−1

r
4
√

5v
(6+2

√
5)v+1

0

dϕ√
1− 1+

√
5

2
√

5
sin2 ϕ

.

Proof. We first transform the differential equation in Theorem 10.8 to a
differential equation involving σ := 1/v, namely,

dσ

dq
= −q−1/2f2(−q)f2(−q5)

√
(σ + 4)(σ2 + 12σ + 16).
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Using the method described after the proof of Theorem 10.7, we then derive
the substitution

(10.21) sin2 ϕ =
4
√

5
σ + (6 + 2

√
5)

=
4
√

5v

(6 + 2
√

5)v + 1
.

It follows that

dϕ

dσ
= − 51/4

(σ + 6 + 2
√

5)
√

σ + 6− 2
√

5
.

Hence,
∫ q

0

1√
t
f2(−t)f2(−t5) dt =−

∫ 1/q

∞

dσ√
(σ + 4)(σ2 + 12σ + 16)

=5−1/4

∫ sin−1

r
4
√

5v
(6+2

√
5)v+1

0

√
σ + 6 + 2

√
5

σ + 4
dϕ.

Upon simplification with the use of (10.21), we obtain (10.20). ¤

We next describe how we derive an integral identity from Theorem 10.9.
First, we derive a substitution similar to that of Ramanujan. Our aim is to
convert the differential expression

dx√
(8x + 1)(x + 1)(8x2 + 5x + 1)

to
Rdt√

(1− t2)(1− k2t2)
.

Using the method outlined in [6, pp. 311–312], we use the substitution

x =
1

2
√

2
1 + s

1− s

and obtain
dx√

(8x + 1)(x + 1)(8x2 + 5x + 1)

=
2
√

2√
(8 + 9

√
2)(8 + 5

√
2)

ds√
(1− ns2)(1 + ms2)

,(10.22)

where

n =
9
√

2− 8
9
√

2 + 8
and m =

8− 5
√

2
8 + 5

√
2
.

Next, we use the substitution [6, p. 316]

t2 = 1− ns2,

and simplifying, we find that
(10.23)

2
√

2√
(8 + 9

√
2)(8 + 5

√
2)

ds√
(1− ns2)(1 + ms2)

= −2−7/4 dt√
(1− t2)(1− k2t2)

,
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where k2 = 32−13
√

2
64 . Hence, we should use the substitution

(10.24) sin2 ϕ = t2 = 1− ns2 = 1− n

(
2
√

2x− 1
2
√

2x + 1

)2

,

or

(10.25) cosϕ =
√

n
1− 2

√
2x

1 + 2
√

2x
.

Using (10.22), (10.23), and (10.24), we deduce that

(10.26)
dx√

(8x + 1)(x + 1)(8x2 + 5x + 1)
= −2−7/4 dϕ√

1− k2 sin2 ϕ
.

Using Theorem 10.9, (10.25), and (10.26), we can deduce the following the-
orem with no difficulty.

Theorem 10.13. Let

v = q
f3(−q2)f3(−q14)
f3(−q)f3(−q7)

and c =
9− 4

√
2

7
.

Then ∫ q

0
f(−t)f(−t2)f(−t7)f(−t14) dt

=2−7/4

∫ cos−1 c

cos−1{c 1−2
√

2x
1+2

√
2x+1

}

dϕ√
1− 32−13

√
2

64 sin2 ϕ
.

The integral above is clearly an analogue of (8.14). It is not clear how
one can obtain this integral from (8.14) and vice versa using the modular
equation found in [1, p. Entry 19(ix)] or [7, Entry 3.6].
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