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This paper looks at an algebraic formulation of one dimensional cellular
automata. Using the formulation, certain properties become apparent
and connections to combinatorial structures and graph theory become
clear. Strong results about uniqueness and isomorphism allows us to
outline effective algorithms for the generation of exhaustive lists of
reversible one dimensional cellular automata, and to count the number
of distinct examples that exist.

| 1. Introduction

This paper looks at closely related algebraic, combinatoric, graph theo-
retical and matrix theoretical interpretations of one dimensional cellu-
lar automata and describes an algorithm for the efficient enumeration
of examples. The technique of using the various equivalent models of
the structures leads to some interesting insights. The strength of con-
nections also allows us to move theorem proving to the model where
the proofs are most clear. One of the problematic aspects of cellular
automata research is the unwieldy language. The approach used here,
where we quickly move away from traditional cellular automata lan-
guage allows us to use tools that exist in the algebraic, combinatorial
and graph theoretic contexts to obtain clearer results.

Several connections between computational theory and algebraic
theory exist. One of the aims of looking at reversible computation,
that is, computations where the question can be derived from the an-
swer, or better said, where no information is lost, is that there is (sig-
nificant) extra structure involved. This structure is comparable to the
differences between semigroups of transformations and groups where
the transformations are invertible. This added structure allows the re-
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searcher to say more about the structures than would be possible in
the non reversible case. That reversibility is no restriction on compu-
tational power has been amply demonstrated by such papers as [1].

The paper begins by looking at an algebraic structure, semicentral
bigroupoids, related to the central groupoids investigated in the late
1960s and early 1970s. We show that semicentral bigroupoids can
be represented as a permutation and an idempotent semicentral bi-
groupoid. We then describe a coordinatisation of this algebraic struc-
ture, and then derive an interesting combinatorial object. The follow-
ing sections show that the combinatorial object is directly equivalent
to an idempotent semicentral bigroupoid.

We break to show that semicentral bigroupoids are equivalent to re-
versible one dimensional cellular automata using the technique of Ped-
ersen [25]. This section forms the bridge to cellular automata theory,
and emphasises that the algebraic tools that become available through
this connection are of value.

A further model of the algebraic and combinatorial structure as a
pair of matrices or graphs is introduced and shown to be equivalent.
We then look at isomorphism between semicentral bigroupoids, de-
termining exactly when two semicentral bigroupoids are isomorphic
and develop techniques for counting the number of distinct semicen-
tral bigroupoids that can be lifted from a given idempotent semicentral
bigroupoid. Then we look at a technique of building semicentral bi-
groupoids piece by piece, showing that we can generate all examples
using this technique. More importantly, using the uniqueness results,
and borrowing the ideas of orderly algorithms from e.g. [29], we look at
an algorithm for the exhaustive generation of rectangular structures.
Using the results on isomorphism we can then calculate the number of
distinct semicentral bigroupoids and thus cellular automata rules that
can be derived from that structure.

We finish off by looking at some further questions that remain unan-
swered, looking to possible future developments.

This paper summarises the work that formed the body of my thesis

2].

I 2. Central Groupoids

The structures have been first seen in a more refined form in the late
sixties, as the central groupoids of Evans and Knuth [6, 12].

Let’s follow the development. Evan’s work started with [6] where
he investigated the various products that could be defined on the set
S = Ax A for some set A. A well-known example of such a construction
is the rectangular semigroup [20], where one takes a pair of sets A, B,
forms the product S = A x B and the product (a, b) * (¢,d) = (a,d). It
is quite easy to show that this is an idempotent semigroup satisfying
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Exhaustive Enumeration of one dimensional cellular automata 3

the axiom a xb*a = a for all a,b € S, and every semigroup satisfying
this equation is of this form.

Evans looked at all the possible products on S = A x A, and found
that other than the rectangular semigroups, the only other interesting
examples were defined by

(a,b) o (c,d) = (b,c). (1)

This operation satisfies an interesting equation (a e b) @ (bec) = b.

Definition 1. A Central Groupoid is a (2)-algebra (S, e) satisfying the
axiom:

(awb)e(boc)=b (2)

The examples used by Evans are referred to as the natural central
groupoids, as they were the first to be noted. All natural central group-
oids have, by construction, order equal to a square. Surprisingly, this
carries across to the general case.

If we take A to be {a,b}, then look at the multiplication table,
writing ab for the ordered pair (a,b) we note some interesting things.

e |aa ab ba bb
aa | aa aa ab ab
ab | ba ba bb bb (3)
ba | aa aa ab ab
bb | ba ba bb bb

We see that two elements are idempotent. In general, in a natural
central groupoid, we will see that (a,b) e (a,b) = (a,b) iff a = b, thus
we have |A| idempotents in a natural central groupoid of order |A?.
This is also a general result for central groupoids.

Theorem 1 (Evans, Knuth) If (S,0) is a finite central groupoid,
then |S| = n? for some integer n. For every positive integer n there
exists a central groupoid of order n®. In any finite central groupoid of
order n?, the number of idempotents is n.

Note that the first result appears as Corollary 17, the second follows
from the example above. The third result is very difficult to show in an
algebraic setting, we need to move over to a matrix theoretic setting
in order to prove it, see [12].

Later, in [12], Knuth investigated various aspects of central group-
oids. He showed, for instance, that the natural central groupoids can
be defined by a single axiom ([12, Theorem 5]):

(@ae((bec)ed))e(ced) =c (4)
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so we know that any groupoid satisfying this axiom is a natural central
groupoid.

Most importantly, Knuth’s work found two models for central group-
oids, one being a digraph model, the other being a model based upon
the {0, 1}-matrices that are the incidence matrices of these digraphs.
The incidence matrices made an interesting contribution to a question
posed by Hoffman in [10]: which {0, 1}-matrices A have the property
that A2 = J, where J is the matrix consisting entirely of ones?

In [31] Shader demonstrates that non—natural central groupoids ex-
ists for all orders n?, n > 3. The question of an exhaustive list of
central groupoids, or equivalently an exhaustive list of matrices A with
A% = J, is still open.

The result about idempotents fails in the infinite case, Evans has
shown (presented in [12]) that the free central groupoid on any number
of generators contains no idempotents.

Later we will see that many results about central groupoids can be
shown as corollaries of our work, also we will see that central groupoids
form a useful class of examples, counter examples and special cases for
consideration.

| 3. A Generalisation

In this section I introduce the algebraic structure that we will be con-
cerned with for this paper. First we will look at some basic results,
and build up some machinery. In particular the lifting operation intro-
duced in this section plays an important role in later developments, as
do the partitions introduced in Section 3.4.

Historically, these structures evolved from looking at reversible cel-
lular automata. Here we look at them purely as algebraic objects,
therefore we cannot give some nice starting point as we had in the
central groupoids, rather we view them simply as generalisations of
central groupoids. This is, incidentally, the reason for the name.

I 3.1 Definition and Simple Results

Definition 2. A Semicentral Bigroupoid is a (2,2)-algebra (S, e, o) sat-
isfying the following axioms:

(aeb)o(bec) =10 (5)
(aob)e(boc) =10 (6)

If (S,e) is a central groupoid, then (S,e e) is a semicentral bi-
groupoid, so this is a proper generalisation.

Note also that the definition is completely symmetric in ® and o, i.e.
(S, 0,) is a semicentral bigroupoid iff (S, e,0) is. The dual of a semi-
central bigroupoid (5, e,0) is (S,0,). Thus it is often not necessary
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to prove results for both operations, as they carry across by duality.
Any set S can be seen as a semicentral groupoid by taking

aeb=a,aob=h. (7)

This is a trivial semicentral bigroupoid, the e—left—constant semicentral
bigroupoid on a set S.

Example 2. Let A,B be two sets, and let Q = A x B. Define
(a1,b1) @ (az,b2) = (a1,b2) (8)
(a1,b1) o (az,b2) = (az,b1) 9)
Then (@, e,0) is a semicentral bigroupoid.

In the above, (@), ®) defines a rectangular semigroup. In some sense
this is the case that corresponds to the natural central groupoids, in
that it can be constructed as a “product of points”. This is correlated
by the lifting operation, see Lemma 7. In Section 3.3 we will see that
it is the only associative semicentral bigroupoid.

Some interesting properties of rectangular semigroups carry across
to semicentral bigroupoids. For instance, rectangular semigroups are
anti-commutative, i.e. ab = ba & a = b, which can be shown by
calculation.

Lemma 3. If (S,e, 0)is a semicentral bigroupoid then both the oper-
ations are anti-commutative, that is, ceb = bea = a = b and similarly
for o.

Now to look at some other “usual” abstract algebraic properties, in
this case the existence of identities.

Lemma 4. There exists some 1 € S such that 1 ez = x for all z, iff
zey =y for all y and z oy = z for all z.

This follows by calculation. This result restricts our choice of op-
erations for our algebra. For instance, now we cannot use groups or
monoid structures, not even loops for either of the operations.

Other standard algebraic properties such as idempotence can apply,
but have certain properties.

Lemma 5. Let (S,e,0) be a semicentral bigroupoid. Then a ea = a
iff a o a = a. Thus (S, e) is idempotent iff (S, 0) is idempotent.

This result also follows by direct calculation. In the following, we
will often omit e and represent the operation by juxtaposition.
1 3.2 Liftings

We can take any semicentral bigroupoid and “bend” it a little to get
another semicentral bigroupoid. This method can be used to find new
examples of semicentral bigroupoids.
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Proposition 6. If (S,e,0) is a semicentral bigroupoid, and ¢ : S — S
is a permutation of S, then the algebra (S, *, +) with

axb=¢""(a) e ¢~ (b) (10)
and

a+b=¢(aob) (11)
is also a semicentral bigroupoid.

The calculation behind this result is mechanical. Note that the new
semicentral bigroupoid will in general not be isomorphic to the old one.
This can be made rigorous; see Section 7 on uniqueness, in particular
Lemma 29.

Definition 3. The lifting of (S, e,0) by ¢ is the algebra (S, %, +) defined
above. The square map ¢q of (S,0,0) 1S g : x> T O T

The square map, ¢, : a — aa is a permutation:

Pe(a) = pu(b) (12)
=>aea=>beb (13)

= (aea)o(aea)=(beb)o(beb) (14)
=>a=0 (15)

Note that if we lift by the square map then the derived operation *
is idempotent:

axa=a¢, (aea)=¢; ¢e(a) = a. (16)
This will be referred to as the idempotent lifting of a semicentral bi-
groupoid.

Let’s apply this to a central groupoid. As mentioned beforehand, if
(S,e) is a central groupoid, then (S, e,e) is a semicentral bigroupoid.
Take the example of the natural central groupoid of order 4 defined
in (3). The square map is the permutation ¢ = (ab ba). This is the
permutation that reverses the entries in the product, i.e. o : zy — yz.
If we construct the multiplication tables for the lifting by o, then we
obtain the following;:

* |aa ab ba bb + | aa ab ba bb
aa | aa ab aa ab aa | aa aa ba ba
ab | aa ab aa ab ab | ab ab bb bb (17)
ba | ba bb ba bb ba | aa aa ba ba
bb | ba bb ba bb bb | ab ab bb bb

We see that this lifting is an idempotent semicentral bigroupoid, in fact
an associative one.
In general one can make the following statement.
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Lemma 7. The idempotent lifting of a natural central groupoid is an
associative semicentral bigroupoid.

Proof: This result follows as a result of some simple calculations. Let
(S, ®) be the natural central groupoid on the set A. Considering S as
a semicentral bigroupoid (5, e, ), we have the square map o : (a,b) —
(a,b) o (a,b) = (b,a). Then

((a,0) * (¢, d)) * (e, ) =

So the associativity identity holds in (5,*) a similar argument shows
that it holds in (S, +).
O

We will look more at associative semicentral bigroupoids in the next
section, in a very strong sense they play the equivalent role to the
natural central groupoids.

Since the lifting map is a permutation, we can take its inverse ¢ =
¢3! and find that the lifting via ¢ of the idempotent lifting of (S, e, o)
is isomorphic to (S, e, 0).

Let (S, *,4) be the idempotent lifting of (S,e,0), and let (S, -, x)
be the lifting of (S, *,+) by ¢. Then

a-b=¢ '(a)xp ' (b) (26)
= ¢l () e 9g o7 (D) (27)
=aeb (28)

and similarly a x b =a o b.

Thus we see that the lifting operation is invertible (a similar argu-
ment shows this for any lifting and its inverse), and we see that every
semicentral bigroupoid is the lifting of an idempotent semicentral bi-
groupoid by a permutation that becomes the inverse of the square map
in the lifting.

That we can have any permutation as the square map in a semicen-
tral bigroupoid, and thus any number of idempotents, is a contrast to
the case for a central groupoid, where there are exactly /|S| idempo-
tents for S finite.

We see the following.
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Proposition 8. Every semicentral bigroupoid (S, e,0) can be uniquley
represented as an idempotent semicentral bigroupoid and a permu-
tation in Symm/(S). Conversely, every such pair gives a semicentral
bigroupoid that is idempotent iff the permutation is trivial.

In Proposition 28 we will see exactly when two semicentral bi-
groupoids are isomorphic, based upon the isomorphism of their idem-
potent representatives and relations between their square maps.

There is a dual lifting. Given a semicentral bigroupoid(S, e, o) and
a permutation ¢, define (S, %, +) with

axb=¢ "(aeb) (29)
a+b=d¢a o ¢b (30)

All the statements about liftings carry across for the dual lifting. On
occasion this version is better to discuss details. Note that the dual
lifting of a semicentral bigroupoid S by ¢ is the dual of the lifting by
¢~ ! of the dual of S.

But we find that, in another sense, all the liftings are equivalent.
In the study of quasigroupoid and other general algebraic structures,
a more general idea of equivalence is found to be relevant. This is the
concept of isotropism [26].

Definition 4. Two groupoids (A, x) and (B, o) are called isotropic if
there are three bijections f,g,h : A — B such that

f(a) o g(b) = h(a *b) (31)
for all a,b € A.

Isomorphism is a special case of isotropism. The lifting operation
is also an isotropism. We know that there are two nonisomorphic
idempotent semicentral bigroupoids that are isotropic of order 6, so
isotropism classes are larger than lifting classes.

We will focus upon idempotent semicentral bigroupoids for now.

I 3.3 Associative Semicentral Bigroupoids

Before we go too much further, it would be useful to look at the most
accessible class of semicentral bigroupoids, namely those that are as-
sociative. I say these are accessible since most abstract algebra deals
with operations that are associative.

In Lemma 3 above, we saw that the operations in a semicentral
bigroupoid are anticommutative. In [20], McLean shows that the only
anticommutative semigroups are the rectangular semigroups.

Thus if we start out with one of the semicentral bigroupoid opera-
tions, say e, associative, we know that (S, e) is a rectangular semigroup.
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Exhaustive Enumeration of one dimensional cellular automata 9

Thus there are two sets A, B and an operation * on A X B,

(al,b1) ) (ag,bg) = (al,bg) (32)

such that (S, e) is isomorphic to (A x B, *). Thus the o operation can
be extended to A x B, and we can say

(a1,b1) o (az,b2) = ((a1,b3) * (az,b1)) o ((az,b1) * (as,b2)) (33)
= (az,b1) (34)

giving us a description of all associative semicentral bigroupoids:

Lemma 9. All associative semicentral bigroupoids (S, e, o) are defined
by two sets A, B with

S=AxB (35)
(a1,b1) e (az,b2) = (ay,bs) (36)
(a1,b1) o (az,b2) = (a2, b1) (37)

1 3.4 Partitioning

In this section, we show that we can “coordinatise” our algebra using
some term function voodoo.

Definition 5. For any x € S define

po : S% = S? (38)
(a,b) — (ax, xb) (39)
then
p:S— P(S? (40)
@ = 1(S?) (41)

Where P(X) denotes the power set of X.
Lemma 10. p(S) = {p(s)|s € S} is a partition of S?.

Proof: First note that for (az,zb) € p(z), (ax) o (¢b) = z, so p(z) N
p(y) = 0 unless © = y. So the {p(s)|s € S} form a set of non—
intersecting subsets of S2. Then, for some (a,b) € S?, let z = aob.
Then

pz(boa,boa) = ((boa)e(aocbd),(ach)e(boa)) (42)
= (a,b) (43)

so (a,b) € p(x), thus the {p(s)|s € S} cover S? and form a partition.
O

Lemma 11. For every x € S there exists A, B C S such that
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= p(z) =AxB.
" |[ANB|=1
u BOA:S

Proof: A=Sex, B==xeS5,s0

p(z) = {(ax,xzb)|a,b € S} (44)
= {(az)|a € S} x {(xb)|b € S} (45)
— Ax B. (46)

Suppose y € AN B. Then y = ax = zb for some a,b € S. Thus
yoy = (ax) o (xb) = x. Since & — x o x is a permutation, y must be
unique. Thus |[ANB|=1.

Obviously Bo A C S. But S = {(za) o (az)la € S} C Bo A, so
BoA=S.

O

So the p map breaks S down into a collection of cartesian products,
rectangles, that form a partition. The last result shows that every one
of these rectangles, in some sense, holds all of S inside it.

In this way we find a coordinatisation of S in terms of a pair of
trivially intersecting sets, taking some p(z) = A x B, every element z
of S can be uniquely represented as a pair (b,a) with a o b = x.

Corollary 12. Let (S, e,0) be a semicentral bigroupoid. If aob = cod =
x, then a od = co b = z, and similarly for e.

Proof: By Lemma 11 above, p(z) = A x B, A= Sz, B=xS. Then
a=(aoca)e(aob)=(aoca)ex e St (47)
similarly ¢ € Sz, b,d € S. Then Ao B = Sz ozS = {z}, so

aod€ AoB=aod==x (48)
cobe AoB=cob=x (49)
O

I 3.5 Rectangles

In the above we saw a “breakdown” of an algebraic structure into
various sets. We investigate the structure of this collection of sets.
Let R° = {(Sz,zS)|z € S} be a set of ordered pairs of sets. It is
the set of “rectangles” in the table of o, i.e. R® = {R2 = {(a,b)|aob =
z}x € S}
What is the structure of this R°? First, it is a partition, so

For all (a,b) € S* IR = (R1, Rs) € R° s.t. a € Ry,b € Ry. (50)
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This follows from Lemma 10 above. Then,
For any pair of rectangles @, R € R°,|Q1 N Ry| = 1. (51)

To see this, note that there are some z,y € S such that (); = Sezx, Ry =
yeS. If a € Q1N Ry, then a = bex = yec for some b,c € S. Then by
Corollary 12 above, a = y e x, that is, Q1 N Ry = {y e z}.

So we see that an idempotent semicentral bigroupoid (S, e, o) has
the structure of a set of rectangles satisfying a pair of identities (50),
(51). The next section demonstrates that this process is, in some sense
“reversible,” i.e. given a set of such rectangles (and some permuta-
tion on the state alphabet), one obtains an idempotent semicentral
bigroupoid.

I 4. Rectangular Structures

In this section we show that a rectangular structure as derived at the
end of the last section is equivalent to an idempotent semicentral bi-
groupoid (Proposition 14). This helps us express and see some results
about the internal structure of the multiplication table of a semicentral
bigroupoid (Proposition 13), the interdependence of the two operations
of a semicentral bigroupoid (Corollary 15) and shows that the first the-
orem of Evan’s paper reduces to a simple calculation (Corollary 17).

The definition here is based directly upon the two statements (50)
and (51) above.

Definition 6. A Rectangular Structure on a set S, called the base set, is
a collection R of ordered pairs of subsets, called rectangles, of S, such
that

V(s,t) € S 3 R € R such that (s,t) € R (52)
VR,Q € R,|RiNQs| =1 (53)

where we identify R = (R;, R2) = R1 X Ra.
We say two rectangular structures are isomorphic if there is an in-
vertible map between the base sets that preserves rectangles.

A simple example is to take some set A, and to define the rectangles
as {a} x A for each a € A. Taking any pair (s,t) € S?, (s,t) is
uniquely in the rectangle {s} x A. For any pair of rectangles R, @, the
intersection Ry N Q) is a singleton. Such a rectangular structure will
be called a Dagwood, owing to the layered, or sandwich-like structure
of it.

A somewhat more general example is the following. Take two sets
A, B. Define S = A x B, and for all (a,b) € S define R, ; = ({a} x
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B, A x {b}). Then
R = {R(a,b)|a € A,be B} (54)

is a rectangular structure on S. For any ((a,b),(c,d)) € S%, we see
that ((a,b),(c,d)) € R(qq), and this is obviously unique. Let R =
R.p), @ = R(.q) be two rectangles in R. Then R; = {a} x B and
Q2 = A x {d}, so |[Ri N Q2| = [{{a} x {d}}| = 1. This is a slight
generalisation of the Dagwood. Since this is a very simple construction,
we will refer to it as the vanilla rectangular structure on A, B.

Of course, every semicentral bigroupoid gives us a rectangular struc-
ture, as demonstrated in the previous section.

The two axioms are not redundant. Consider the following simple
examples. Take II to be some partition of a set S, |S| > 2. Then the
set T = {(P,Q)|P,Q € II} satisfies (52) since for every s,t € S there
are unique P, € II such that s € P and t € @, so (s,t) € (P,Q)
uniquely. Equation (53) is however not satisfied. Take P # @ € II.
Then R = (P,Q) € T but R N Ry = 0. In the case that II has a single
element P, that take R = (P, P) and note that PN P = P = S and
|S| > 2 contradicts (53).

Alternatively, for some base set S with |S| > 2 and some element
a € S, the set T = {{a},{a}} satisfies (53) trivially, but does not
satisfy (52) for (s,t) # (a,a).

1 4.1 A General Structural Result

In this section I want to present a result that demonstrates that these
combinatoric objects, although easily defined, have strong symmetrical
structure buried within them. Though it is rather technical, the result
shows that rectangular structures are very well-behaved combinatorial
structures, open to considerable analysis.

The “format” of a rectangle (A, B) is the ordered pair (JA],|B]).

Proposition 13. If R is a rectangular structure with base set S, and
R = (Ry,R;) € R is some rectangle, then |Ri||R:| = |S| = |R].
Moreover, for any other rectangle @ = (Q1,®@2) € R, |R1| = |@Q1], i-e.
all rectangles have the same format.

Proof. Define the map:

d:R =S (55)

R+ r where {r} = Ry N R (56)

This map is well defined since for every R € R, |R; N Rz2| =1 by (53)
above, so Ry N Ry = {r} for some unique r.

By (52) above, (r,r) is in a unique rectangle, so this map is bijective
and [R| = |S|.
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For some fixed rectangle R € R define:
rR:R — Ry x Ry (57)
Q+— (Q1N Ry, Q2N Ry) (58)
where ({a},{b}) and (a,b) are equated to simplify notation. Suppose
rr(Q) = rr(P) = (a,b) for some P,Q) € R. Then a € P;,Q; and
b€ P, Qs,ie (a,b) € P,Q, so by the uniqueness in (52) P = @) and
rg is injective. (52) also forces surjectivity since for every (s,t) € R,
there is some ) € R with (t,s) € Q. Thus rg is a bijection and
|R| = [Ru||Ry| = R].
Fix s € S and define
Q={QeR[s e} (59)
Take a rectangle R € R, for all Q@ € Q, |@2 N Ry| = 1. Thus the
mapping

Q — q where {¢} = Q2N R, (61)
is well-defined. For any Q,T € Q,
te@NTyZ0= (s,t) €Q,(s,t) eT=>Q=T (62)

Thus the mapping is injective. Since for every t € Ry, there is some
@ € R such that (s,t) € @, the mapping is surjective, thus bijective,
giving |R;| = |Q|. Since Q is independent of R, |R;| is thus fixed, as
is | Ry, for all rectangles R€ R. =

This leads to some simplifications. Suppose |S| is prime. Then the
only rectangular structures definable on S are the Dagwoods.
1 4.2 An Abstract Algebra

From a rectangular structure R, using the bijection d from equation
(55) above and denoting by R(s,t) the unique rectangle on the pair
(s,t) guaranteed by (52), define

e:SxS—>S (63)
(s,t) = u where {u} = (d7'(s))2 N (d™(t)):
0:SxS—=S (64)

(s,t) = u where {u} = d(R(s, 1))

as binary operations on S.
As an example consider the vanilla rectangular structure on A, B.
In this case

d(R(a,b)) = (a7 b) (65)
R((aa b): (C, d)) = R(a,d) (66)
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thus
a,b) e (c,d) = (b,c) (67)
(a,b) o (c,d) = (a,d) (68)
In general

Proposition 14. The algebra (S,e,0), with operations defined as in
(63),(64) above, is an idempotent semicentral bigroupoid.

Proof. This is pure calculation.
(aeb)o(bec)=(d" (@) Nd™ (b)1) o (7} (b)2Nd™ (c)1) (69)
=kol for some k,l € S (7
= d(R(k,1)) (71)
But k € d *(b); and [ € d"1(b)2. Let B = d *(b). Then (k,I) € B,

thus R(k,l) = B, thus kol =d(B) =b.
Now for the dual.

(=]
=

(aob)e(boc)=d(R(a,b)) e d(R(b,c)) (72)
= d~*(d(R(a,b)))2 N d"* (d(R(b,0)))s (73)
= R(a, b)g N R(b, C)l (74)

Since b € R(a,b)2, b € R(b,¢); and their intersection is unique,
R(a,b)2 N R(b,c); = {b}. (75)

Thus the two axioms of a semicentral bigroupoid are satisfied. Since
aoa = d(R(a,a)) = a for all a € S we see that the o operation is
idempotent, thus by Lemma 5 above, both operations are idempotent.
]

In the example from a vanilla rectangular structure above, we can
see that the algebra (.5, o) is a rectangular semigroup, as is (S, o). It has
been shown in Section 3.3 that all associative semicentral bigroupoids
are of this form. In some sense this is the “simplest” semicentral bi-
groupoid that is not trivial. The trivial semicentral bigroupoid defined
by equation (7) can be seen to be derived from the Dagwood rectan-
gular structure by the same process as above. It also belongs to the
class of examples described here, as it is associative. To see this, take
one of the sets A, B above as trivial, i.e. |[A|=1or |B| = 1.

That the whole structure of the associative semicentral bigroupoids
is forced from the associativity of just one operation is not an isolated
case. In general, one operation follows from the other uniquely.

Corollary 15. Given the table for (S, ), one obtains the table for (S, o)
uniquely.
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Exhaustive Enumeration of one dimensional cellular automata 15

Proof. From the table of (S,e), one can find the rectangular struc-
ture associated with the algebra, thus the idempotent semicentral bi-
groupoid that corresponds to it. The permutation of the elements
defined by the square map a — a e a is also apparent in (S, e). These
are all that are necessary to define the o operation. m

If we call the format of an operation table the format of the derived
rectangular structure, we get the following.

Corollary 16. If (S,e,0) is a semicentral bigroupoid with format (a, b)
for the e operation table, then the format of the o operation table is

(b, a).

Proof. Let (¢, d) be the format of the o operation table. For any z € S,
p(z) = S ex xxeS is the rectangle filled with z in the o operation
table. Thus d = |z e S|, so there are d rectangles in the = row of
the e operation table, all of which have the same format (a,b). Thus
db =|S|. But |S| = ab so a = d. Similarly b = ¢, i.e. the format of the
o operation table is (b,a). m

This result gives a corollary that comes from the early work on
central groupoids.

Corollary 17 ([6] Theorem 1) A finite central groupoid (S,e) has
square order.

Proof. If (S, e) is a central groupoid, then (5, e, ) is a bicentral group-
oid. Thus the formats of the operations are (a,b) and (b, a), but these
are identical, so a = b and [S| =ab=1d®. m

I 5. Reversibility of cellular automata

I presume that the reader knows the basic ideas of cellular automata.
We will use alphabet A, f to represent the cellular automata rule or
local map, F' to represent the global map. A cellular automaton with
a global map F is called reversible if the map F has an inverse F—!
such that F o F~! = F~! o F' is the identity map on A%. We call this
a reversible cellular automata (RCA). A rather thorough review of the
state of reversible cellular automata is given in [33], which covers the
theory and some applications of reversible cellular automata.

The following result is quite important, as it removes the possibility
of the inverse of a reversible cellular automata not being a cellular
automata.

Lemma 18 (Richardson [28]) If a cellular automata is reversible,
then its inverse is a cellular automata.

In 1993 J. Kari showed that for cellular automata of higher dimen-
sion, the reversibility question is undecidable [11], in contrast to the
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situation for one dimensional cellular automata. Happily, this need not
concern us, as there are enough interesting aspects of one dimensional
reversible cellular automata to be investigated. For instance, Morita
and others have demonstrated that reversible universal computable cel-
lular automata exist [23].

John Pedersen’s work in [25] shows that we can treat all one di-
mensional cellular automata local functions as binary by using a shift
and chunking. In the literature these are often referred to as radius
one—half rules.

The construction is as follows. If we have a local map f of radius
r, thus arity 2r + 1 (assuming symmetry for simplicity) on a state
set A. The global state is then taken from A? and the global map
is (F(a))i = f(@4i—r,@i—y41,--- ,Gi+r). We see that the dynamics of
the cellular automaton is not changed by multiplying by ¢” where o
is the shift operation. The rule ¢” f is then one sided, with (F(a)); =
flai,aivy, ... aiyo,).

We can then define an equivalent cellular automaton with state set
S = A% and local rule

h:Sx8—8 (76)
(aab) = (f(a17a27"' 7027"7[)1)7
f(027a37"' 7a2r7b17b2)7

"

f(aQTJblabZJ"- 7b27")) (77)

As a result we get a cellular automaton with a binary operation as
the local map, which can be treated as a groupoid operation. That is,
(S, h) is a groupoid, a (2)-algebra. Such operations are more intuitive
and enable us to apply the tools of algebra in a clearer fashion. Such
operations are also known in general algebra, see e.g. [15].

Now taking a reversible cellular automata, we can apply this treat-
ment in both forward and reverse time. It is easy to see that if f is a
local map on a state set A and g is the reverse map, then by suitably
shifting the maps (in opposite directions) and taking the state set S
to be a product of A, we can derive an algebra (S, f,g) where f and
g are binary operations. As the cellular automaton is reversible, there
will be certain equalities.

In forward time, the global function is (F'(a)); = f(ai,ait+1). In re-
verse time, the global function is (G(a)); = g(ai—1,a;). By reversibility,
we mean that FG(a) = a and GF(a) = a, or locally,

a; = f(g(ai—1,a:),9(ai,ai41)) (78)
a; = g(f(ai-1,a:), f(ai, ait1))
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Exhaustive Enumeration of one dimensional cellular automata 17

which we can rewrite in general as

a= f(g(b7 a)ag(aa C)) (80)
a=g(f(b,a), f(a,c)) (81)
which, by rewriting using infix notation with e for f and o for g,
a=(boa)e(aoc) (82)
a=(bea)o(aec) (83)

which we can recognise as the axioms for a semicentral bigroupoid.
Thus we see that semicentral bigroupoids are an appropriate tool
for investigating reversible one dimensional cellular automata.
Cellular automata with a binary local map are also known as radius
one—half cellular automata, see for example [9] where similar results to
those obtained in this paper are obtained, but with much more work.
It is surprising to see the amount of effort he had to go through to
derive these results using pure cellular automata theoretic techniques,
compared to the simplicity with which the results follow using this gen-
eralisation of Pedersen’s technique. Some other papers have appeared
using the ideas of Pedersen, see for instance [3, 4, 21, 22], but I am sure
that there will be many more, as this algebraic approach offers much
in the way of rigour and more tools for cellular automata theoreticians.
For instance, additive cellular automata can be analysed simply using
these techniques, see [2] for details, comparing with e.g. [16] or [34].

I 6. Graph and Matrix Models

In this section we will look at some models of semicentral bigroupoids
using more traditional mathematical constructs. Matrix theory and
graph theory are very universal fields of study, encroaching nearly ev-
erywhere. Here we will see that we can equate semicentral bigroupoids
with a class of matrix pairs and with a class of graph pairs. Similar
connections are to be found in the theory of central groupoids, see [12].
Note that in this section, we will treat eneral semicentral bigroupoids,
not just idempotent ones.

1 6.1 Matrices

Let M, N be a pair of 0—1 matrices under normal integer addition and
multiplication, such that

MN = J, (84)
NM = J, (85)

where J; is the matrix consisting of 1 in every place, of appropriate
sizes.
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Every pair of such matrices can be converted to a rectangular struc-
ture and vice versa. First note that if M is a k x [ matrix, and N is
m X n, then by equation (84), | = m, and by equation (85), k = n, so
we know they are m x n and n x m matrices respectively. Define sets
M;,N; fori=1...n by

jEM & M =1 (86)
JEN; & N;; =1 (87)

Then define
R=A{(M;,N)li=1,...,n} (88)
Proposition 19. R is a rectangular structure on S = {1,... ,m}. Con-

versely every rectangular structure on S defines a matrix pair satisfying
(84) and (85).

Proof. For axiom (52) take the first set in one rectangle, M; for some
i, and the second set of some other rectangle, IV; for some j. Note that
k € M; N N; if and only if M;; = N ; = 1. Since

(MN)i; =1=>" MN, (89)
1
we know that there is some unique ! for which M;;N;; = 1, and this is

the (unique) element in the intersection A; N N;.
Now for (53). Take any pair (a,b) € S. Then

(NM)b,a =1= 3k Nb,k = Mk,a =1 (90)
=a€ M, be N (91)
= (a,b) € Ry, = (Mj, Ny) (92)

Thus there is a rectangle containing (a,b). It is unique since if it were
not, then (NM),, would be greater than 1.
Thus every such matrix pair leads to a rectangular structure.

For the converse, start with a rectangular structure R = {Ry, ..., Ry}
on {1,...,m} and construct matrices M, N by

1 ifje(R;

M, :{ if j € (R (93)
0 o/w
1 ifie(R;

N, = { if i € (R)) o)
0 o/w

It is then simple to show that this pair of matrices satisfies the equa-
tions (84) and (85) above.

(MN)i,]' = Z Mi,ka,j (95)
k
Now M; Np; =1 M;;, = N ; =1
& ke (R, ke (R)), (96)
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By axiom (53) there is a unique such &, so we find that (M N);; = 1.

(NM)ij = NipMy; (97)
k
Now Ni,kMk,j =1 Ni,k = M/f,]' =1
& (j,i) € Ry, = (M, Ny) (98)

By axiom (52) there is a unique such k, so we find that (NM);; =1,
and we are done. m

Note that rectangular structure results then show that n = m, so
every such pair of matrices is square. We also find that the rows and
columns are evenly weighted. Note that several matrices could be
defined dependinh upon th eordering of the rectangles in the set R.

These are generalisations of the matrices introduced by Hoffman in
[10] and later investigated by Knuth in [12], where 0-1 matrices A such
that A% = J are investigated. There has been some interesting work
done on these, with some generating algorithms developed by Leslie
Shader [31].

Examples of such matrix pairs can be combined to create new pairs.
For instance, forming the Kronecker product.

Proposition 20. If M, N and M’',N' are pairs of matrices satisfying
(84) and (85), then the Kronecker products M ® M', N @ N' are also
such a matrix pair.

We omit a proof by calculation as it is overly technical. A more di-
rect proof of this will be possible later as we build up more connections
and realise that forming the Kronecker product of two such matrices
is equivalent to the conjunction of the graphs with these incidence ma-
trices which is in turn equivalent to forming the direct product of the
two semicentral bigroupoids associated with the graphs.

Other results of interest, such as the relationship of the lifting op-
eration to the matrices, can be found in [2].

| 6.2 Digraphs

In this section, we see that the matrix pairs defined above are the
incidence matrices for some nicely structured graph pairs.

Take a fixed set of vertices, and look at two directed graphs on this
set, Gr and Gp. Call these as the red and blue graphs respectively. The
problem is to arrange these graphs such that, when we superimpose
them, there is a unique directed path of length 2 coloured blue-red
between any two nodes, and a unique directed path coloured red-blue.

As an example consider the pair of graphs in Figure 1, with loop
arcs of both colours on every node not drawn in.

Take the left graph to be red, the right one to be blue. One notices a
few things about these graphs. The symmetry apparent in the graphs
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Figure 1. An example of a red and blue graph pair, omitting loop arcs.

is quite striking. Both graphs are regular, the red graph has valency
three (including the unseen loop arcs) while the blue has valency two.
We will see that these observations are, in fact, general to this class of
graph—pairs.

A general class of such examples can be simply constructed as grids.
Take any rectangle in the plane Z x Z as the node set, and join all nodes
in a horizontal line with red arcs, and all nodes in a vertical line with
blue arcs. Then to get from one node to another along a red—blue path,
one first travels horizontally along a red arc to the correct vertical line,
then travels along a blue arc to the correct node, somewhat like the
Manhattan street map. One finds the blue-red path from one node to
another similarly by moving first vertically then horizontally.

This relates to the inter—processor communication graphs in [8], with
added notions of symmetry. There, the author is interested in digraphs
that can be coloured so that between every pair of vertices (a, b) there
is a unique directed path from a to b coloured red—blue, but not the
dual (a unique path coloured blue-red). The graph pairs he advocates
are of the grid form, since they are simple to implement, one could use
a single broadcast medium such as ethernet as the connections along
horizontal or vertical lines. We see here that other options would be
possible.

1 6.3 Connections

In this section we see that the digraph (with loop nodes), matrix (with
full diagonal), combinatorial and (idempotent) algebraic structures are
all equivalent. We also se that the unrestricted digraph, matrix and
algebraic structures are also equivalent.

From graph pairs, one constructs the incidence matrix R for the
red graph and B for the blue graph. That is R;; = 1 iff there is a
directed red edge from vertex ¢ to vertex j, and is 0 otherwise. B is
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constructed similarly from the blue edges. Then R and B form a pair
of 0-1 matrices as described above. This follows since (RB);; counts
the number of directed red—blue paths from ¢ to j. By construction,
we have a unique path between every pair of nodes, thus this value is
always one. Similarly (BR);; counts the number of directed blue-red
paths from ¢ to j, which is also one.

This argument not only shows that each such pair of graphs defines
a pair of matrices as above, but also that the graphs defined by taking
the matrices as incidence matrices are all of the appropriate form. In
a strong sense the graph pairs and the matrix pairs are equivalent.

For instance, the matrices derived from the above graph pair are:

111000 100 010
111000 010100
001110 0 01 0 01
000111 1001 00 (100)
000111 01 001F0
1100 01 0 01 0 01

Another connection is that these digraphs appear for all semicentral
bigroupoids. In some sense we can equate semicentral bigroupoids and
these graph pairs. Secondly, the relation between direct products of
semicentral bigroupoids and direct products of graphs is a very direct
one, allows us to draw an isomorphism between the category of these
graphs and the category of semicentral bigroupoids.

Example 21 (Construction) When one takes any semicentral bi-
groupoid, one finds that the relations a —pyue b and a —,¢q b are defined
as

a —reg b aec=>0bdc (101)

a —pue bS aoc=>03c (102)
Thus we can define a graph pair from any semicentral bigroupoid.

Conversely, given a graph pair we can define a semicentral bigroupoid

from it. Let S be the vertex set of the graphs. For any a,b € S, let
cr, ¢y be the vertices on the path between a and b:

a —red Cr —?blue b (103)

@ —plue Cb —Fred b (104)

These are uniquely defined by the graph property. Then define

aeb=c, (105)
aob=c (106)

and we have a semicentral bigroupoid (S, e, o).
These constructions are the inverses of one another.
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Thus from a semicentral bigroupoid we can define a graph pair quite
simply, by defining the arcs as above on the node set that are the
elements of S. Note that if some element a is idempotent, then aea = a
so there is a red loop arc on the node a, similarly a blue loop arc. Thus
if S were idempotent, every node would be a loop node, as seen in the
case above.

If Vi, Ry),(Vi,B1) and (Va, R2), (Va, B2) are two pairs of graphs
as described above, then the conjunction of these is the graph pair
(Vi x Vo, R), (V4 x Vi, B) with ((a,b), (c,d)) € R iff (a,c) € R; and
(b,d) € Ry and ((a,b), (¢,d)) € B iff (a,c) € By and (b,d) € Bs.

Lemma 22 ([7], 2.2) The class of graphs defined above is closed un-
der the conjunction operation.

Proof. Given two points (a,b) and (¢,d) in Vi x Va2, we get the pair
(e, f) with a —pue € —>7eq ¢ for the graph on Vi, and b —pue f —rea d
for the graph on V5. Thus this path exists, and a similar argument
shows a red-blue path exists between (a,b) and (c, d).

The uniqueness follows by considering that if a different “way—point”
(¢, f') existed for a blue-red path, then that would imply that there
was a different blue-red path in graph Vj, which there is not, by the
definition. Similarly there cannot be another red—blue path. =

Let’s look more closely at the connection between semicentral bi-
groupoids and these graph pairs. We see that that the two classes are
completely identical, in a categoric sense.

Consider two categories, S of semicentral bigroupoids, and G of
graph pairs satisfying the constraint above. Consider the functor from
S to G as described in Example 21 above, and take an exact sequence
A —¢ B —,CinS. Since the mappings f, g operate on elements of the
semicentral bigroupoids, they then operate on vertices of the graphs
under the functor, carrying arcs across with them. Thus range(f) =
ker(g) in G, so the functor is exact. Thus we get the result:

Lemma 23. Isomorphic semicentral bigroupoids give isomorphic graph
pairs by the construction in Example 21 above.

Thus the correspondence between graph pairs and semicentral bi-
groupoids is an equivalence. Moreover the conjunction of graphs equates
to the Kronecker product of their incidence matrices, as mentioned
above. In the next section we look at the equivalence amongst the
graphs, matrices and semicentral bigroupoids a little more closely.

The following shows that the automorphism group of a semicen-
tral bigroupoid can be obtained using the automorphism groups of the
associated graphs, a well-studied problem in combinatorics.
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Lemma 24. If G, G, are the graphs defined by a semicentral bigroupoid
S, then

Aut(S) = Aut(Gp) N Aut(G,) (107)

Proof. Note that automorphisms are already bijections. Thus we can
concentrate upon structural coherence.

(C): Take ¢ € Aut(S). Take any red edge a —req b, so there is some
¢ such that a e c =b.

paedc=dlaec) = db (108)
So pa —req ¢b, so ¢ € Aut(G,). Similarly ¢ € Aut(G)) and we are
done.
(D): Take some ¢ € Aut(Gy) N Aut(G,), a,b € S and ¢ = a e b so
@ —>red € —pwe b. Then

¢ € Aut(G,) = da —eq Gc (109)

¢ € Aut(Gp) = dc —pue O (110)
Then by uniqueness of the path

Da —>req (Pa ® ¢b) —>pue Ob (111)

Pa —>req (Pa) o () —piue b (112)

we know that ¢c = ¢(a e b) = ¢a @ ¢pb and similarly ¢(a o b) = ¢a o b
so ¢ € Aut(S). m

It is thus possible to use the algorithms developed for determining
the automorphisms of graphs to easily determine the automorphism
groups of semicentral bigroupoids. This is a particular problem in re-
lation to the results later regarding the uniqueness of liftings of semi-
central bigroupoids and moreover it is also of considerable worth in the
construction of examples of rectangular structures that we will look at
in section 9.

I 7. Uniqueness of Semicentral Bigroupoids

In this section we can now investigate the notion of isomorphism, and
a clear method of determining isomorphism between semicentral bi-
groupoids is arrived at. This can even be extended to a counting
method so that given exhaustive lists of idempotent semicentral bi-
groupoids of a given size we can then count exactly how many semi-
central bigroupoids of that order exist. In the following section we will
look at this problem of exhaustive generation, and the determination
of isomorphism is fundamental there.

In this section I wish to look at some general results dealing with
the uniqueness of semicentral bigroupoids up to isomorphism. For ease
of notation I will use the dual lifting formulation.

Once again duality and symmetry make our work easier.
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Lemma 25. If(S,e,0)isasemicentral bigroupoid and ¢ is a e—isomorphism,
then it is a o—isomorphism.

Proof. As usual, we use a coordinatisation argument. Note first that
{aob} = {zlyzr = a} N {z|zy = b} (113)

Then compute for a e—isomorphism ¢:

{¢laob)} = {gzlyr = a} N {pz|vy = b} (114)
= {¢zlpydz = ¢a} N {px|pzdy = b} (115)

= {zlyx = ga} N {zfry = ¢b} (116)

(117)

= {¢a o ¢b}
SO ¢ is a o-morphism, and we are done. m

Thus in order to show that a mapping ¢ on semicentral bigroupoid
S is an isomorphism we need only show it for one operation, the other
follows automatically. Note that the above argument does not work
for general morphisms.

We have seen that every semicentral bigroupoid is a lifting of an
idempotent one. We also have:

Lemma 26. Every semicentral bigroupoid (S,e,o) has an associated
rectangular structure that is constant across liftings.

Proof. Suppose (S, *, +) is a lifting of (S,e,0) by ¢. Define the rect-
angular structures as follows:
R* ={R?={(a,b)|aeb=2z}|z € S} (118)
R* = {R; = {(a.b)|axb=a}a € S} (119)

These are rectangular structures as they are derived from semicen-
tral bigroupoids.

Take (a,b),(c,d) € R € R®, two pairs in some rectangle. Thus
aeb = ced = x for some # € S. But axb = ¢~ (aeb) = ¢~ (ced) = cxd
so (a,b) and (¢, d) are in the same rectangle in R*. Thus the rectangular
structures are the same for both semicentral bigroupoids. m

Proposition 27. Two idempotent semicentral bigroupoids are isomor-
phic iff the associated rectangular structures are isomorphic.

Proof. (=) Let the semicentral bigroupoids be (S, e,0) and (T, *,+),
with isomorphism 3 : S — T'. Take R®, R* as above, and take R € R°.
Then

Ba,Bb)|a e b=z} for some z € S
Ba, Bb)|Ba * Bb = B(a e b) = B(x)}
a,b)|laxb = pzx}
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which is a rectangle in R*. Similarly one shows that 37! : T — S
respects rectangles, so [ is a rectangular structure isomorphism.

(«) Take two idempotent semicentral bigroupoids (S, e, o) and (T, *, +),
and suppose 3 : S — T preserves the rectangles of the associated rect-
angular structures R®, R*. Take some a,b € S. Thenaeb=z =xezx
for some z. Thus (a,b) and (z,z) are in the same rectangle in R®, and
thus (Ba, 8b) and (Bz, Bx) are in the same rectangle in R*. Thus

Bla) * B(b) = B(z) * B(z) = B(x) = Bla e b) (124)
so (3 is an isomorphism of the algebras. m

The construction of a rectangular structure from a semicentral bi-
groupoid above and the reverse construction in Proposition 14 are
complementary in that given an idempotent semicentral bigroupoid
(S, *,+), the semicentral bigroupoid (S, e, o) derived from the associ-
ated rectangular structure is the same, i.e. axb=aeb, a+b=aob.

We now know that given a collection of non-isomorphic rectangu-
lar structures, we cannot get isomorphic idempotent semicentral bi-
groupoids out of them, and vice versa. Rectangular structures and
idempotent semicentral bigroupoids are essentially equivalent. This
contrasts with many generation procedures for algebraic objects where
non—isomorphic combinatorial structures lead to isomorphic algebraic
structures, or vice versa.

Note also that the forward implication in the proposition above does
not use the idempotence, so we know that isomorphic semicentral bi-
groupoids have isomorphic rectangular structures in all cases.

Now to look at a similar result for non-idempotent semicentral bi-
groupoids.

Proposition 28. Two semicentral bigroupoids (S, e,0) and (7T, %, +) are
isomorphic, with isomorphism g : S — T, iff their idempotent liftings
are isomorphic by 8, and S¢e = ¢.[ for the square maps ¢, and ¢..

Proof. In this proof, I will use the symbol e for the idempotent lifting
of the e operation, i.e. a®b = ¢, '(a e b).

(=) We know from the forward half of Proposition 27 above that the
rectangular structures are isomorphic, thus the idempotent semicentral
bigroupoids generated from the rectangular structures are isomorphic
by some bijection [3.

Complex Systems, 11 (1997) 1-1+



26 Tim Boykett

Now for all a,b € S:

Blast) = B(65 (a0 ) (125)
and ((aedb) = B(a)*B(b) (126)
= ¢ (B(a) x B(b)) (127)
= ¢, (B(aeD)) (128)
thus ¢, 16 = fo,* (129)
= Bde = 0.3 (130)

(«=) The converse follows directly by computation.
Blaeb) = foed, (aeb) (131)
= ¢.3(a®b) (132)
= 6. (3(a)¥()) (133)
= ¢, (B(a) x B(D)) (134)
= Bla) * A1) (135)

So (3 is a semicentral bigroupoid isomorphism. m

For the following, Ss is the symmetric group on S, Symmpgs(S) is
the symmetry group of the rectangular structure of (S, e,0), and [a, b]
is the commutator of a and b.

Lemma 29. A lifting of a semicentral bigroupoid (S, e,0) by ¢ is an
isomorphism iff ¢ € [pe, Symmprs(S)]

Proof. The square map in the lifting (S, *, +) is
bu(0) =z ra =9 (wea) = 97 gu(2) (136)

We know that rectangular structures are preserved by lifting (Lemma
26), so we need only look at the second condition in the last proposition.

The lifting is isomorphic, with isomorphism «, if o is an automor-
phism of the rectangular structure associated with S and

e = Prx (137)

S ade = ¢ Lo (138)
& ¢ = deag,la! (139)

that is, ¢ € [¢s, Symmps(S)] (140)

Proposition  30. Two liftings of an idempotent semicentral bigroupoid
by ¢, ¢ are isomorphic iff the ¢, ¢ are conjugate by an element from
Symmps(S).
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Proof. Let (Si,1,0;1)(resp. (S, e2,03)) be the lifting by ¢ (resp. ¢),
that is
aerb=¢"(aeb) (141)
ae;b=0¢ '(aeb) (142)
Note that ¢e,(z) = z o1z = ¢z ez) = ¢ 1(x) so ge, = ¢,

similarly ¢,, = ¢7L. _
S, is a lifting of Sy by (¢~1¢),

aeyb=¢ *(aeb) (143)
=¢ 'plaeb) (144)
= (¢ '¢) (aeh) (145)
Thus a € Symmpgs(S) is an isomorphism S; — Sy
& ¢ = ge, a0, a! (146)
=¢ tapa! (147)
& ¢=apat (148)

i.e. iff ¢ and ¢ are conjugate by an element of Symmpzs(S). m

In order to catalogue (all) semicentral bigroupoids of some speci-
fied size, we need only determine (all) rectangular structures of that
size, find their symmetry groups, take representatives of the conjugacy
classes in Sg and Symmps(S), and we are done.

I 8. Counting semicentral bigroupoids

In this section we demonstrate how to count the number of nonisomor-
phic liftings of a given idempotent semicentral bigroupoid.

Given a rectangular structure R, we find its symmetry group G =
Symm(R) < Ss. This can be easily done by finding the automor-
phism group of the idempotent semicentral bigroupoid via the graph
model method of Lemma 24. These automorphisms act upon Sg by
conjugation. By the previous section, each orbit then corresponds to
an isomorphism class of the liftings of the idempotent semicentral bi-
groupoid on the rectangular structure R. The problem is to count the
number of orbits.

We formulate this problem in terms of permutation groups. Let
G := S, for some n, and take some subgroup K < G. How many orbits
does G have under the action of K by conjugation? Using Burnside’s
Lemma, we see that

tK| =) |Fo(k) (149)

kEK
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where ¢ is the number of orbits and Fg(k) is the set of elements of G
fixed by k. Now

Fa(k) = {g € Glkgk™" = g} = {g € Glkg = gk} = Ca(k) (150)
If we look at G acting upon itself by conjugation, we see
|Ca(R)|GE| = |G| (151)

where Gk is the orbit of k£ under G.

Note that Gk is the collection of all elements of G conjugate to k, and
this is the collection of all elements of G with the same cycle structure
as k. If k has a cycle structure of ¢; cycles of length a;, including cycles
of length 1, we find that

Lemma 31.

n!
IT;(t:"a;
Proof. We can lay out the cycles and fill in the n places in n! combi-
nations. The question is about equivalent ones.

First we have “external” symmetries, where we can arrange the ¢;
cycles of length a; in any order. There are t;! possibilities for each i,
thus [, ;! in all.

Then we have “internal” symmetries where each cycle can be “spun”
to any internal position. That is, the cycle (aq,... ,q,,) is equivalent
to the cycle (o, ... ,qq,1,...,a;_1) for any j. For a cycle of length
a; there are a; such possibilities. Since we have ¢; cycles of length a;,
we know there are [, a possibilities.

By dividing the number of raw possibilities n! by the product of
these symmetry counts, we get the expression above. m

Thus we find that

|Ca (k) ||(§k|| Ht laf (153)

Gk| = (152)

To find the number of orbits, we need only sum |Cg (k)| for each element
k € K, and calculate

ZkeK |CG(k)|
K|

Thus we have shown the following.

num. orbits =t = (154)

Proposition 32. If K is the symmetry group of a semicentral bigroupoid
S of order n, and G = S, is the symmetric group on n points, then the
number of non—-isomorphic liftings of S is

S (155)
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This concludes our investigation into the uniqueness with respect
to isomorphism. Given a rectangular structure, respectively an idem-
potent semicentral bigroupoid, we can easily compute the symmetry
group of the object and thus determine the number of pairwise non-
isomorphic liftings.

I 9. Generating Rectangular Structures

We look at a method of comprehensively constructing all examples with
a given format using an incremental process. These methods makes use
of internal symmetry and other structure to reduce the search space
significantly and to avoid or remove isomorphic examples. The first
method investigated is a two—phase method, generating then remov-
ing isomorphic copies. We then look at a more complex method that
generates no isomorphic copies by keeping track of possible branches
in the generation tree. We compare these two algorithms to see where
efficiencies lie. Both techniques use a branching generation tree to gen-
erate examples piece by piece. The trade—off lies between increasing
complexity in the generation tree algorithm and increasing effort in
removing isomorphic copies in the thus generated lists.

If we are not after exhaustive listings, there are many other sources
of examples. Special cases from affine planes and k-nets described in
[2], the matrices from Shader’s work [31], and various classes of matrices
considered by people constructing special solutions to Hoffman’s matrix
question, see for instance [30, 13, 14, 35, 36, 17, 24] for general results.

I 9.1 Partial Rectangular Structures

In this section I want to look at a method of exhaustively enumerating
all rectangular structures of a certain format. This method works by
building up examples from simpler incomplete ones, in a branching
process where each incomplete example can be built up in a number of
different ways. Methods are outlined to reduce unnecessary branching
by using only canonical extensions, the positive one-step extensions
and by removing isomorphic extensions. We then look at techniques
to sort the list, sieving out duplicates. The definitions here will be of
relevance for the second technique as well.

Definition 7. For positive integers n,m, an n X m rectangle is a pair of
sets (Ry, Ry) with |Ry| =n, |Ra] =m, R; C {1,...,(nm)}, |RiNR,| =
1

For instance ({1,4},{1,2,3,5}), ({1,2},{2,3,4,5}) are examples of
2 x 4 rectangles.

Define an order on same sized sets by ordering the elements of the
sets, then ordering the sets on the words defined by the sequence of
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elements, using the standard order on integers. For example, given the
sets A = {1,5,3,6} and B = {6,5,1,2}, we order them and write the
words w4 = 1356 and wg = 1256. Then because these words can be
lexicographically ordered, we say the sets are ordered B < A.

We can then order our rectangles

Definition 8. Two rectangles R = (R, R2) and @ = (Q1,Q2) are or-
dered by R< Q if Ry <@y or Ry =@ and Ry < Qs.

This is the lexicographical order.

Definition 9. A n X m Partial Rectangular Structure P is a collection
of n x m rectangles such that

=" Forall Q,R€ P,|QiNRz| =1

= For all a,b € {1,...,nm} there is at most one R € P such that
a € Rl,b € Rz.

One can easily see that a rectangular structure is a partial rectangu-
lar structure, that is, a partial rectangular structure is a generalisation
of a rectangular structure along the axis of the covering requirement
(equation (52)). A full partial rectangular structure is one with nm
rectangles. This is a rectangular structure.

A simple n x m partial rectangular structure is

{{1,2,...,n},{l,n+1,n+2,...n+m —1})} (156)

Note that this is also the minimal n X m rectangle by the ordering
above. By adding the rectangle

{L,2,...,;n},{l,n+mn+m+1,...n+2(m—1)}) (157)

we get a partial rectangular structure with two rectangles. This rect-
angle is also the smallest by the above ordering that one could add to
the previous rectangle.

We can order partial rectangular structures of the same size by or-
dering the rectangles, then constructing the word of those rectangles,
and ordering lexicographically on the words. This is particularly useful
when implementing algorithms in an algebraic computer language such
as GAP[5], where sets are defined as ordered lists without duplicates.
Algorithms presupposing structured sets are thus no extra burden upon
the system.

We let S, the symmetric group on {1,...,nm} act on partial
rectangular structures in the natural way.

Definition 10. A partial rectangular structure is representative if it is
minimal in its orbit under S,,,.
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There is precisely one representative for every partial rectangular
structure.

Definition 11. An extension of a partial rectangular structure P is a
partial rectangular structure P’ such that P C P'. A one—step exten-
sion has the additional requirement that |P’| = |P| + 1. A positive
one—step extension is one where the rectangle R € P' — P is greater
than all the rectangles in P.

1 9.2 Algorithms

From here we come to a naive algorithm. Assume a function pos_one_ext (P)
that, given a partial rectangular structure P, returns a set of all rect-
angles that could be added to P to form a positive one—step extension.
Assembling a comprehensive list of all extensions of the minimal par-

tial rectangular structure (156) using a depth—first branching tree, then
taking the orbits under S,,, and selecting the minimal full partial rect-
angular structure in each orbit, would form a simple but incredibly

slow algorithm.

A less stupid algorithm must check for aspects of isomorphism in the
partial rectangular structures it has, and only expand one representa-
tive, trying to avoid multiple paths to the same (up to isomorphism)
rectangular structure.

We can restrict ourselves to considering only some of the extensions
of a partial rectangular structure, since we only want representative
full partial rectangular structures, i.e. only representative rectangular
structures.

Proposition 33. Any representative partial rectangular structure is a
positive one—step extension of a representative partial rectangular struc-
ture.

Proof. Suppose the partial rectangular structure P = {Ry,... ,Rp+1}
is a representative partial rectangular structure, R; < R;y; for i =
1,...,k. Then P is a positive one—step extension of the partial rectan-
gular structure {Ry, ..., R;}. Suppose that this is not a representative.
Then there is some permutation ¢ of {1,...,nm} such that

d(Ry,...,Rp) ={S1,-..,Sc} <{Ri,...,Ri}. (158)
with S; < S;+1i=1,...,k — 1. Then either

u ¢(Rk+1) =S =>3diel... kst ¢(R1\‘+1) =5 = ¢(R,‘) = Riy1 = R;,
which is a contradiction.

= ¢(Ri4+1) < S1, in which case S1 < R; implies ¢(Ry+1) < Ry thus
¢(P) = ¢({Ry,... ,Rit1}) <A{Ry,... ,Rppr} =P (159)
So ¢(P) is the representative of P, and P was not a representative.
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= ¢(Rjy1) > Si. If ¢(Ri+1) > Sk, then
¢(P) = {Sl, - ,S];,¢Rk+1} < {Rl, Ce ,Rk+1} =P (160)

So P was not representative. There is some least [ such that ¢(Ry4+1) <
Sl. So

Sty ,Si—1,0Rr—1 < Ri,... , Ry (161)
é(P)= S1,...,S1-1,0Rk+1,S1,... , Sk < R1,... ,Rj41 = F162)

so P was not a representative.

Thus if P is not an extension of a representative, then it is not a
representative itself. m

Note that this does not say that a one step positive extension of a
representative is necessarily representative, or that the representative
of a one step positive extension of a partial rectangular structure P
is an extension of P at all. But it does allow us to cut down many
branches of our search tree, since we know that any partial rectangular
structure that is not representative is a hopeless case, and that it is
therefore pointless to continue to extend it since it will not give a
representative rectangular structure.

From this result we can construct a more efficient algorithm. This
algorithm was implemented as follows. Determine the automorphism
group of the partial rectangular structure, then find the orbits of the
positive one step extensions of that partial rectangular structure un-
der the action of the automorphism group. Take the minimal ele-
ment of each orbit, these are the candidate representative extensions.
Rather than perform extra testing on the incomplete partial rectangu-
lar structures, let all candidates through until they become rectangular
structures, then perform isomorph rejection by testing isomorphism be-
tween the examples using techniques outlined in the next section. In
order to determine the automorphism group of the partial rectangular
structures, I used Brendan McKay’s nauty package [18] via Leonard
Soicher’s GRAPE package [32] for GAP. The graphs involved corre-
spond exactly to the graphs defined earlier on rectangular structures,
suitably generalised for the partial rectangular structure case. Similar
proofs show that graph automorphism is (partial) algebra automor-
phism is partial rectangular structure automorphism.

find_allrs2(P)
if P is a rectangular structure

Print P

else
S := pos_one_ext(P)
G := Aut(P)

Orbs := Orbits of S under G
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for o in Orbs
rep = minimal (o)
if rep < maximal(P)
ignore, not a positive extension
else
find_all_rs2( Union( P, {repl}))

Definition 12. Given a partial rectangular structure P, a rectangle R
is compatible with P if P U {R} is a partial rectangular structure.

Lemma 34. Given a partial rectangular structure P and a compatible
rectangle R, for all ¢ € Aut(P), ¢R is compatible with P.

The proof is a simple calculation.

Theorem 35. The algorithm above finds all representative partial rect-
angular structures.

Proof. We use induction on the size of the partial rectangular structure.
For |P| = 1 the only example is the starting rectangle, and we are
done. Assume truth for size k. Take P of order k + 1, a representative
partial rectangular structure, P = {Ry,... ,Ry+1}, Ri < Ri11. By
Proposition 33, P' = {Ry,..., Ry} is representative, thu it will be
found by the algorithm. Since Ry is compatible with P’, so is ¢Ry11
for any ¢ € Aut(P). Since P is representative, there is no ¢ € Aut(P)
such that ¢Ryy+1 < Rgy1. Thus Ry is minimal in its orbit, and is
found by the algorithm. m

Thus the resulting list is complete. The following section delves into
the techniques for filtering out the isomorphic copies in the list.

I 9.3 Sieving the Full Partial Rectangular Structures

(This seems idiotic - needs a lot of polishing!!)

The last section showed that we can find large collections of rect-
angular structures. As indicated, although we have removed many
branches in the search / generation tree, we still do not know whether
these are all pairwise non—isomorphic, i.e. if they are all representative.
In general this will not be the case. A primitive method is to compute
the orbit of the full partial rectangular structure under the symmet-
ric group on nm points and to take the minimal, i.e. representative,
member of the orbit. Unfortunately, since we are dealing with sets
of pairs of sets of points, the memory requirements quickly inflate to
overwhelm any machine. Thus it is necessary to look at more efficient
methods.

We have shown that rectangular structures are equivalent to idem-
potent semicentral bigroupoids, which are equivalent to the graph pairs
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(with loops) introduced in section 6.2. The question of isomorphism
between two rectangular structures is equivalent to the question of iso-
morphism between two graph pairs. In the sequel, we assume that the
graphs have loop edges on every arc, thus we can ignore them for the
determination of isomorphism. Graph isomorphism is a rather stan-
dard problem in graph theory, the nauty package [18] is an efficient
implementation of graph isomorphism. This package is available from
GAP using the GRAPE package [32].

We are able to use these to filter the list of rectangular structures
and obtain a collection of pairwise nonisomorphic structures. The al-
gorithm runs as follows:

inlist := list of rectangular structures
outlist := empty list
graphlist := empty list
for RS in inlist do
graphpair := Graph pair from RS
if not graphpair in graphlist then
add RS to outlist
add graphpair to graphlist
fi
od

The most exhaustive part is testing the existence of the graph pair in
the list of graph pairs. Although nauty manages the automorphism
problem well, it is still the most complex part of the algorithm. Us-
ing combinatorial properties of the rectangular structure can remove
the necessity to check graph isomorphism. We can also combine the
two graphs into one graph, the isomorphism of two graph pairs being
equivalant to the isomorphism of two combined graphs. If the graph
pair is A, B on node set {1,...,n}, then using the labels a and b we
construct a graph with nodes

{(a,z), (b, )|z € {1,... ,n}} (163)

and edges
{((a,2), (a,9)(z,y) € Edges(A)} UL{((b, ), (b,y))|(2,y) € Edges(B)} U{((a,2),(b,z))|lz € {1,... ,n}}}U

where we ignore the loop edges in the graphs A and B. It is easy to see
that the graphs so constructed from two graph pairs are isomorphic iff
the graph pairs are isomorphic.

1 9.4 Orderly algorithms

An alterbative approach is to ensure that the branching generation
precess does not generate isomorphic examples, thus removing the fil-
tering step of the process described above. With careful bookkeeping,
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this can be done. Such generation processes have been called “orderly”
in [27]. McKay has developed a general structure for such algorithms
[19] and Royle has developed a simplified algorithm, [29] upon which
we base ours.

This section introduces Royle’s approach, then describes the func-
tions necessary for this algorithm. We then look at the use of combi-
natorial identities to speed up the algorithm.

Let V be come set, G = Aut(V). We write v¢ for the action of g € G
on v € V and extend naturally to actions on sets. We want to find all
subsets X C V such that P(X) is true for some hereditary property
P, but we want only one example from each isomorphism class, with
isomorphism defined by G.

We require a function © such that

0:2V 52V (165)
©(X) is an orbit of Gx on X (166)
O(X9) =0(X)Vg e G (167)

where Gx is the stabiliser of X, Gx = {g € G| XY = X}.

Let Sj be the set of sets of size k such that P(X) is true for all
X € S, with no isomorphs. The following algorithm generates a set
Sk-l,-l from Sk.

for X in S
for x representative in each orbit of Gx upon V - X
if P(X +z) and ¢ € O(X +z) then
add X +z to Sk

Theorem 36 (Royle[29], McKay [19]) Let Sy, contains exactly one
representative from each G-orbit on k—sets of V' that have property P.
Then the set Syy1 contains exactly one representative from each G-
orbit on k + 1-sets of V that have property P.

Starting with Sp = {0} we obtain an orderly algorithm for con-
structing one representative of each subset of V' with property P. The
problem is to define the function ©.

One property of the nauty package is that it constructs a canonical
labelling of a graph. A canonical labelling uniquely identifies each node
of a graph up to automorphisms.

Definition 13. A canonical mapping « takes a graph I' = (N, E) and
maps

a:NxI'—={1,...|N|} (168)
such that for any permutation ¢ of IV,
a(n?,T%) = a(m,T) & I € Aut(T),n¥ =m (169)
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This means that if we take the orbit of the minimal labelled point
in a graph under the automorphism group of the graph, that orbit will
be uniquely identified no matter how we relabel the graph. This forms
the simplest mechanism for creating a © function.

Our situation is as follows. The set V' is the set of n x m rectangles.
P is the property of being a partial rectangular structure. We want to
find the set Sy, of full partial rectangular structures, i.e. rectangular
structures.

We define © as follows. We label rectangles R by their middle, the
element in R; N R,. We take a partial rectangular structure over to a
graph, take the minimal canonically labelled point that is the middle
of a rectangle in the partial rectangular structure, and then take its
orbit under the automorphism group of the graph, respectively the
rectangular structure. If the middle of the new rectangle is in the
orbit, then we accept the new rectangle, otherwise not.

Note that we assemble only rectangles that will satisfy P.

Improvements can be made in the algorithm by using easily com-
puted combinatorial properties of the partial rectangular structures to
reduce the number of candidates. We define O to take the orbit of the
minimally labelled node from the set of middles with minimum values
of some combinatorial value. For instance, we look at the counts of
occurrence of the middle in the left and right sets of the rectangles,
obtaining a pair of integers, which we then order lexicographically. If
there is a unique minimum for the combinatorial vales, we need not use
the canonical labelling algorithm, thus saving computational effort.

1 9.5 Results

Timings and comparisms.

We have run the algorithms for examples up to order 10. The fol-
lowing table compares the times required for the partial rectangular
structure algorithm, an improved version (not described above) that
attempted to reduce branching with some bookkeeping, but still re-
quired filtering, and the orderly algorithm described above. We have
included timings for n x m and m x m in a few cases where we ran
both. There is no explanation for the differences in timings.

Size Number | PRS + filter Prohib + filter | Orderly
2 X2 3 844 8411 4

2x3 9 44 4 1:02 7+5 50

3 X2 8 + 14 29

2 x4 53 1:394-44:08 384-11:12 10:21

4 x4 3:11416:43 1:084-7:47 10:59

3 X3 184 72 hours (approx) 8:30+28:38:01 6:03:00

2 X5 813 104:37:00+55:56:00 10:34:00

Although the range of values is too low to make any decent estima-
tions of what is going on here, it seems to be apparent that the orderly
approach is the more efficient, though the prohibition technique (not
yet tested at 2 x 5) might also be effective. (DO THIS!)
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In Section 7 we saw results about the uniqueness of liftings up to
isomorphism. From the graph representation of a rectangular struc-
ture we obtain the automorphism group of the rectangular structure.
Given the automorphism group of a rectangular structure we are able
to determine representatives for the lifting actions and to determine
how many distinct liftings of one idempotent semicentral bigroupoid
there are. Thus we are able to generate comprehensive lists of distinct
semicentral bigroupoids and realise that there are several million ex-
amples up to order 10. This wealth of examples is an embarrassment
of riches, determining which examples are of interest is difficult, and
must be one aim of further work.

| 10. Conclusion and further work

This paper has summarised the work of my thesis investigating some
interesting and, it appears, productive connections between cellular
automata theory, abstract algebra, combinatorics and algebraic pro-
gramming. Moving from a computational model, through an algebraic
formulation to a combinatoric interpretation allows us to strip away
layers of structure and expose the elements that make up the structure
in a clear form. Using ideas for algorithms for listing combinatorial
objects that have been developed over recent years, we are able to
efficiently list one dimensional reversible cellular automata.

Many questions remain open. Some date from the work of Shader,
Knuth, et al in the 1970s, such as techniques to generate all central
groupoids, or equivalently, to determine all 0-1 matrices A such that
A? = J. It is possible that the techniques touched upon here might
offer some inroads into this problem.

Other questions are more related to the structures here.

I feel that the more important questions relate to the connections
between computational aspects of a given cellular automata and the al-
gebraic and/or combinatorial properties of the semicentral bigroupoid
that corresponds to it. What are the connections between computa-
tional power in a cellular automata and the algebraic structure on the
semicentral bigroupoid derived from it? Is universal computability re-
lated to any algebraic property? Are ergodicity or other properties of
interest to cellular automata theoretists related to any algebraic prop-
erties of semicentral bigroupoids? Is isotropism or some other form of
algebraic equivalence of more relevance for cellular automata theorists
than isomorphism? How much more structure is forced by requirements
such as additivity?

Are the graph pairs described here of any independent relevance?
Inasmuch as structure was a leading light in this research, it might
be hoped that the continuous structure in cellular automata (see [28])
might be analogous to the continuous structure in algebras, where for
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instance this structure allowed the classification of finite simple Lie
groups to be completed almost a century before the general case. Can
we say more about these algebraic structures using continuity argu-
ments?

Many questions, and many more lie just beneath the surface. Per-
haps we can see here that although bridges from computational ideas
to algebraic models are buildable, the techniques that are most appro-
priate for their analysis need to be selected more widely that simply
from the armoury of classical abstract algebra.
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