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Abstract.

1 Introduction

2 Canonical Propositional Systems

Let V be a set of n propositional variables. A nontrivial monomial over V is the
product of some variables in V . We say that both 1 and 0 are the trivial mono-
mials and take the convention that 1 is the product of zero variables. A binomial
equation is an equality of monomials. Let E be a set of binomial equations over
V . If, say, V = {x, y}, we would have

E ⊆ {xy = x, xy = y, xy = 1, xy = 0, x = y, x = 1, x = 0, y = 1, y = 1, 1 = 0}.

We can apply the Gröbner basis construction to E ∪ {xx = x}x∈V and a given
ordering on monomials, and eventually we will get a unique canonical system for
E and the particular choice of ordering. How many distinct canonical systems
are there over n variables? At first glance, it seems that this question is very
difficult. There are 2n(2n + 1)/2 E ’s, and some may have the same canonical
system. We have to retain those that are in canonical form and rule out those
that are not.

So that this will not be the proverbial search for a needle in a haystack, we
take the following approach: The key point is, this enumeration problem is in fact
equivalent to counting the number of distinct Horn functions of n variables. A
SAT solver (or more precisely, a SAT enumerator) can help to count this number.



The following lemma reveals the fact that E indeed defines an equivalent set of
Horn clauses.

Lemma 1. Given any set of binomial equations, there is a set of Horn clauses
that defines the same constraint.

Proof. Given any monomial m, we use x ∈ m to denote that variable x appears
in m. We let true ∈ 1 and false ∈ 0. Let c(m) be the conjunction of elements
in m. Now for any binomial equation m1 = m2, the corresponding Horn clauses
are c(m1)⇒ x for all x ∈ m2 and c(m2)⇒ y for all y ∈ m1. ut

Conversely, given any set of Horn clauses, the corresponding set of binomial
equations can be found by the following transformation: Given x1∧· · ·∧xj ⇒ y,
produce x1 · · ·xj = yx1 · · ·xj .

Lemma 1 says that each set of binomial equations corresponds to a presen-
tation of Horn clauses. Furthermore, there is a one-one correspondence between
the canonical systems of binomial equations and the Boolean functions that sat-
isfy the system. Lemma 1 implies that these functions are in fact constrained by
Horn clauses. Let us call a Boolean function Horn, if it can be expressed as a
conjunction of Horn clauses. As there are many equivalent sets of binomial equa-
tions but only one is canonical, there are many equivalent presentations made of
Horn clauses but only one Horn function. We are interested in counting canoni-
cal sets of binomial equations, or canonical Horn presentations. Either way, the
canonical set or canonical presentation is the canonical representation of a Horn
function. Therefore, our enumeration problem is identical to count the number
of distinct Horn functions over V .

Given a Horn function f , we collect the vectors that f maps to 1 and call
that collection the Horn set associated with f . Let t1, t2, and t3 be vectors in
{0, 1}n. We say that t3 is the meet of t1 and t2 if t3 is obtained by performing the
logical-and operation on each individual coordinate of t1 and t2. A well-known
theorem (cf. [1]) characterizes the Horn sets as follows:

Lemma 2. A set of vectors is a Horn set iff it is closed under the meet operation.

Hence, whether or not a set of vectors is Horn can be tested by the meet criterion
in Lemma 2. As there is a one-one correspondence between Horn functions and
Horn sets, our problem is further reduced to the problem of counting Horn sets.

Now we state how to encode our counting problem in SAT. For each vector
µ in {0, 1}n, we associate with it a predicate Pµ which means µ is included in
the current Horn set. For any t1 and t2, we generate a clause ¬Pt1 ∨¬Pt2 ∨Pt3
where t3 is the meet of t1 and t2. This set of clauses asserts the closure property
of the meet operation. And then we could feed the set of clauses into a #SAT
solver that counts the number of satisfying models. Note that some clauses may
be redundant, since t3 may be identical to t1 or t2. Therefore we generate fewer
than 4n clauses.

Observe that the generated clauses are indeed Horn clauses. Therefore, a
reasonable DPLL-based #SAT solver cannot fail to find a model for any branch
of the search, and as one can see the number of models accumulates quickly.



There are four variations for counting the number of canonical systems over
n variables:

1. f(n) without constants 1 and 0 in the systems (i.e., no m = 1 and m′ = 0,
where m and m′ are monomials);

2. F (n) without constant 1 (i.e., no m = 1, but may or may not have m′ = 0);
3. g(n) without constant 0 (i.e., no m′ = 0, but may or may not have m = 1);
4. G(n) with both 1 and 0 (i.e., may or may not have m = 1 and m′ = 0).

Counting semi-lattices (idempotent commutative semigroups) with n genera-
tors is Case 1; Case 3 is idempotent commutative monoids; counting the number
of Horn theories is Case 4.

There are some relations between these algebras:

G(n) = 2g(n)
F (n) = 2f(n),

since m = 0 is dual to m = V in the canonical systems, where m is any monomial
and V is the product of all variables. This fact can also be seen from their SAT
encodings as described above. The monomial m′ = 0 forbids to select the vector
1 (a vector with all 1s) in a Horn set, and selecting the vector 1 in a Horn
set forbids the existence of m′ = 0 in the canonical system. And in our SAT
encoding, the predicate for 1 (i.e., P1) does not appear since it only occurs in
the tautology clause which are removed. Therefore P1 is a free variable that can
be set to either true or false, and this is just the case for F and G.

Case 3 can also be reduced to Case 1, and Case 4 can be reduced to Case 2,
since an equation m = 1 can also be resolved. They have the following relation-
ships:

g(n) =
∑

0≤k≤n

Cnk f(n− k),

G(n) =
∑

0≤k≤n

CnkF (n− k),

where Cnk is the binomial coefficient. Observe that m = 1 forces all variables
appearing in m to be 1. Suppose k variables are forced to be 1. Those variables
can be removed; hence we get a Case (2) system with n − k variables. There
are Cnk ways to select k out of n variables to set 1. Therefore we only have one
system to tackle.

We have written a small program that generates clauses that guarantee clo-
sure, which are then sent to a CNF SAT solver to count the total number of
satisfiable truth assignments. Here are some of the computed numbers:

n 0 1 2 3 4 5
g(n) 1 2 7 61 2480 1,385,552
f(n) 1 1 4 45 2271 1,373,701



3 Discussion
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