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Comments for the GELLMU Edition

Among the challenges that I have been facing with my GELLMU project are (1) convincing
mathematicians that it is possible to use comfortable LATEX-like markup in a fully rigorous way
to prepare our articles so that they can have formal inclusion in the markup category known
as XML1 and (2) then convincing them that high quality typesetting may be obtained from
the ensuing XML document instance. Toward this end I have revisited the LATEX markup for
the official notes on my October 1993 Albany seminar presentation and edited what was LATEX
source to convert it to LATEX-like source markup for the article document type that is part of
the GELLMU didactic markup production system. Information about this system and my
reasons for developing it may be found at http://www.albany.edu/~hammond/gellmu/.

After the time of the original talk and the subsequent preparation of my original write-up2,
there was a time — fortunately not long and also not to have been unexpected in the aftermath
of so large a new development — when Andrew Wiles’s argument underwent some revision in
collaboration with Richard Taylor. Questions about its soundness appeared to have ceased by
the fall of 1994, and the work announced by Wiles in June 1993, as revised, was published in
the May 1995 issue of the Annals of Mathematics.

There has also been discussion, at times appearing to approach controversy, about the name of
the conjecture arising from the 1955 meeting in Japan. What I termed the “Shimura-Taniyama-
Weil” conjecture became known as the “modular curve conjecture” and then, from the summer
of 1999, as the “modular curve theorem” after the work of Breuil, Conrad, Diamond, and Taylor
in the same vein as the work of Wiles and Taylor for the “semi-stable” case.

I list a few references on these matters for the period since my original talk:

A. Wiles, “Modular elliptic curves and Fermat’s Last Theorem”, Annals of Mathematics,
(second series) vol. 141 (1995), pp. 443–551.

R. Taylor & A. Wiles, “Ring-theoretic properties of certain Hecke algebras”, Annals of
Mathematics, (second series) vol. 141 (1995), pp. 553–572.

H. Darmon, F. Diamond, & R. Taylor, “Fermat’s Last Theorem”, Current Developments in
Mathematics, 1995, International Press, Cambridge, Massachusetts, 1995.

G. Cornell, J. H. Silverman, & G. Stevens, Modular Forms and Fermat’s Last Theorem,
Springer-Verlag, 1997. This volume is the record of an instructional conference on number
theory and arithmetic geometry held August 9-18, 1995 at Boston University.

J. Coates & S.T. Yau, Elliptic curves, modular forms, & Fermat’s last theorem, 2nd edition,
International Press, Cambridge, MA, 1997. Proceedings of the Conference on Elliptic
Curves and Modular Forms held at the Chinese University of Hong Kong, Dec. 1993.

B. Conrad, F. Diamond, & R. Taylor, “Modularity of certain potentially Barsotti-Tate
Galois representations”, J. Amer. Math. Soc. 12 (1999), no. 2, 521-567. In this article
the modular curve conjecture is proved for any elliptic curve defined over Q with conductor

1URI: http://www.w3.org/XML/
2URI: http://math.albany.edu:8000/math/pers/hammond/oct93.html
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not divisible by 27.

C. Breuil, B. Conrad, F. Diamond, & R. Taylor, “On the modularity of elliptic curves over
Q: wild 3-adic exercises”, J. Amer. Math. Soc., to appear.3

What follows has the same content as the original write-up except that the title of the Appendix
has been changed from “Current Status” to “Late 1993/Early 1994 Status”.

1 Introduction.

The purpose of this expository lecture is to explain the basic ideas underlying the final resolution
of “Fermat’s Last Theorem” after 356 years as a consequence of the reported establishment by
Andrew Wiles of a sufficient portion of the “Shimura-Taniyama-Weil” conjecture. As these
notes are being written, the work of Wiles is not available, and the sources of information
available to the author are (1) reports by electronic mail, (2) the AMS Notices article [16] of K.
Ribet, and (3) a preprint [18] by K. Rubin and A. Silverberg based on the June, 1993 lectures
of Wiles at the Newton Institute in Cambridge, England. It should be noted that the fact
that “Fermat’s Last Theorem” is a consequence of sufficient knowledge of the theory of “elliptic
curves” has been fully documented in the publications ([14], [15]) of K. Ribet.

“Fermat’s Last Theorem” is the statement, having origin with Pierre de Fermat in 1637, that
there are no positive integers x, y, z such that xn + yn = zn for any integer exponent n > 2.
Obviously, if there are no positive integer solutions x, y, z for a particular n, then there are
certainly none for exponents that are multiples of n. Since every integer n > 2 is divisible
either by 4 or by some odd prime p, it follows that “Fermat’s Last Theorem” is true if there are
no solutions in positive integers of the equation xn + yn = zn when n = 4 and when n = p
for each prime p > 2. The cases n = 3, 4 are standard fare for textbooks (e.g., see Hardy
& Wright [6]) in elementary number theory. Therefore, this discussion will focus on the case
n = p where p > 3 is prime.

Very briefly, the idea is that we now know enough about the classification of non-degenerate
plane cubic curves F (x, y) = 0 in two variables, also known as “elliptic curves”, with rational
coefficients to know how to enumerate them in a logical way so that we may conclude that if
there were positive integers a, b, c with ap + bp = cp , then the curve

y2 = x(x− ap)(x + bp),

which is an elliptic curve known as the “Frey curve”, would fall inside of the enumeration.
Because the classification is enumerative, when one is presented with a particular elliptic curve
with rational coefficients, one knows where to look for the curve in the classification. The curve
just written is not to be found within the classification. As a consequence there cannot be
positive integers a, b, c with ap + bp = cp.

The enumerative classification of non-degenerate plane cubic curves defined by polynomials with
rational coefficients has been entirely conjectural (variously known as the “Taniyama Conjec-
ture”, the “Weil Conjecture”, the “Taniyama-Shimura Conjecture”, . . . ) until June, 1993. This

3Based on a citation found at http://www.math.harvard.edu/~rtaylor/ on 21 April 2001.
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conjecture, even as a conjecture, has served as an important motivating example for the idea
of the “Langlands Program”, or perhaps of an extension of that program, that certain kinds of
objects in geometry should give rise to certain group representations.

What seems to be believed today4 is that the portion of the enumerative classification pertaining
to “semi-stable” elliptic curves has been proved by Andrew Wiles. That the existence of positive
integers a, b, c with ap + bp = cp would violate the enumerative classification of semi-stable
elliptic curves was established by 1987 through the work of G. Frey, J.-P. Serre, and K. Ribet.

The primary purpose of this lecture is to explain the enumerative classification of elliptic curves
and to give a brief indication of the mathematics involved in showing that the Frey curve violates
that classification.

2 Elliptic curves

A polynomial f(X, Y ) of degree d in two variables with coefficients in a field k gives rise to
what is called an affine plane curve of degree d: for each field K containing k (more generally,
for each commutative ring that is a k-algebra) one has the set

C0(K) = {(x, y) ∈ K2|f(x, y) = 0},

and for each k-linear homomorphism K −→ K ′ one has the induced map C0(K) → C0(K ′) .
From the polynomial f one obtains a homogeneous polynomial of degree d in three variables
with coefficients in k:

F (X, Y, Z) = Zdf(X/Z, Y/Z),

and the projective plane curve of degree d:

C(K) = {((x, y, z)) ∈ P2(K)|F (x, y, z) = 0},

where PN (K) denotes N -dimensional projective space, which is the quotient set of KN+1−{0}
obtained by identifying points lying on the same line through the origin of KN+1. Since the
projective plane P2(K) is the disjoint union of the affine plane {((x, y, 1))|(x, y) ∈ K2} with
the “(projective) line at infinity”{

((x, y, 0))|((x, y)) ∈ P1(K)
}

,

it follows that C(K) is the disjoint union of C0(K) with the finite set of its points lying on the
projective line at infinity.

An elliptic curve defined over k is the (projective) plane curve E given by a homogeneous
polynomial F of degree 3 in three variables with coefficients in k such that (i) F is irreducible
over the algebraic closure k̄ of k, (ii) the gradient vector ∇F is a non-vanishing vector at points
of k̄3 − {0} where F vanishes, and (iii) the set E(k) is non-empty.

If k is any field, then after an isomorphism (see Silverman [27]) one may obtain a given elliptic
curve E with an affine equation of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 .(1)

4As of the time of this write-up Wiles has stated that a portion of what he announced in June needs further
justification and that he expects to be able to complete it. See the appendix.
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Then the homogeneous equation for the intersection of E(K) with the line at infinity is

x3 = 0 .(2)

Thus, in this case, E has a unique point on the line at infinity. If the characteristic of k is
different from 2 and 35 then one may obtain an equation in “Weierstrass normal form”:

y2 = 4x3 − g2x− g3 ,(3)

which is non-singular if and only if the cubic polynomial in the variable x has distinct roots in
k̄.

Elliptic curves are the “group objects” in the category of algebraic curves that reside in projec-
tive space: for each extension field K of k the set E(K) of “K-valued points” of E is an abelian
group. The group law on E(K) is characterized by two conditions:

1. The origin is a given point of E(k).

2. The points obtained by intersecting E(K) with any line in P2(K), counted with multi-
plicities, add up to zero.

When E is given by an equation in the form (1), the origin is usually taken to be the unique
point on the line at infinity. If two distinct points of E(K) are given, they determine a line in
P2(K); the intersection of that line with E(K) is given by a cubic polynomial in a parameter
for the line which has two roots in K corresponding to the two given points; hence, there is a
third root of that cubic polynomial in K; this root gives rise to a point of E(K), which is the
negative of the sum of the two given points. The negative of a given point of E(K) is obtained
as the third point in the intersection with E(K) of the line through the given point and the
origin.

For a given field k the set of homogeneous cubic polynomials in three variables is a vector space
over k having the set of “monomials” of degree three in three variables as basis. Thus, the
dimension of the space of homogeneous cubics is 10. The linear group GL3(k) acts on the space
of cubics, and two cubic curves in P2 that are related by this action are isomorphic. Since
GL3(k) is 9-dimensional, one is led to think of the family of isomorphism classes of elliptic
curves as 1-dimensional since “non-singularity” is an “open” condition.

3 Elliptic curves over C

When k is the field C of complex numbers, one knows (see, e.g., Ahlfors [1]) that for each lattice
Λ in C the set of Λ-periodic meromorphic functions on the complex line C is the field C(℘, ℘′),
which is a quadratic extension of the rational function field C(℘), where ℘ is the ℘-function of
Weierstrass. Moreover, ℘ satisfies the famous Weierstrass differential equation

℘′(z)2 = 4℘(z)3 − g2(Λ)℘(z)− g3(Λ) ;(4)

5Thus, one sees that the primes 2 and 3 play a special role in the theory of elliptic curves.
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thus, the formula z 7→ (℘(z), ℘′(z)) defines a holomorphic map from the punctured complex
torus C/Λ− {0} to the affine cubic curve

y2 = 4x3 − g2(Λ)x− g3(Λ) ;(5)

it should hardly be necessary to point out that this map extends to a holomorphic map from
the torus C/Λ to the corresponding (projective) elliptic curve by sending the origin of the torus
to the unique point of the elliptic curve on the line at infinity. The classical theory of theta
functions (see, e.g., Igusa [7] or Siegel [26]) leads to a direct demonstration that this map is a
homomorphism from the group law on the complex torus to the group law previously described
for an elliptic curve. It is not difficult to see that the analytic manifold given by any elliptic
curve defined over C arises from some complex torus. Indeed each non-singular cubic curve E
in P2(C) determines a compact connected complex-analytic group. Its universal cover is given
by a holomorphic homomorphism C → E which has some lattice as kernel.

Any two lattices in C are related by a change of real basis for C, i.e., by a matrix in GL2(R).
Consequently, there is only one real-analytic isomorphism class for the complex torus C/Λ as
Λ varies. The tori corresponding to two lattices are complex-analytically isomorphic if and
only if the corresponding real-linear isomorphism of R2 satisfies the Cauchy-Riemann partial
differential equations, i.e., if and only if the R-linear isomorphism is C-linear.

A lattice Λ may be represented concretely by an ordered basis {ω1, ω2} . If τ = ω2/ω1, then
τ is not real, and after permuting the basis members, if necessary, one may assume that τ is
in the “upper-half plane”6 H of C. Observing that Λ is the image under the C-linear map
z 7→ ω1z of the lattice with ordered basis {1, τ} , one may assume that Λ is this latter lattice.
Let E(τ) be the complex torus C/Λ. Allowing for change of basis subject to these assumptions
on the basis, one sees that there is an isomorphism of complex-analytic groups E(τ ′) ∼= E(τ)
if

τ ′ =
aτ + b

cτ + d
,(6)

for some matrix

γ =
(

a b
c d

)
∈ SL2(Z) .

Conversely, the monodromy principle may be used to show that every complex-analytic isomor-
phism among the complex tori E(τ) arises in this way.

The coefficients g2 and g3 in the Weierstrass normal form (5) have very explicit constructions
as infinite series (see, e.g., Ahlfors [1] or Serre [20]) determined by the given lattice; from this
it is straightforward to see that gw is a modular form of weight 2w: if τ and τ ′ are related by
(6), then

gw(τ ′) = (λ)2wgw(τ), λ = cτ + d .

Consequently, the map
(x, y) 7→ (λ2x, λ3y)

6The fact that the half-plane is a model of non-Euclidean geometry led a popular columnist in November,
1993 to question the validity of the work being discussed here.
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carries the curve given by (5) for τ isomorphically to the curve given by (5) for τ ′. The
discriminant of the cubic polynomial in the Weierstrass normal form (5) is a modular form of
weight 12, which up to a multiplicative constant, is:

∆(τ) = g3
2 − 27g2

3 .

∆ is a non-vanishing holomorphic function in H. The modular invariant () ([20],[24]) is defined
by:

(τ) =
(12g2)3

∆
;

it is a holomorphic function in the upper-half plane H with the property that

(τ) = (τ ′)

if and only if τ and τ ′ are related by (6). Furthermore,  assumes every value in C at some point
of H. Consequently, the complex-analytic isomorphism classes of complex tori or, equivalently,
the isomorphism classes of elliptic curves defined over C, are parameterized via  in a one-to-one
manner by the complex numbers.

Since this is an expository discourse, it is hoped that the reader will not feel patronized by
having noted the fact that the coincidence of (1) the category of elliptic curves over C and (2)
the category of complex tori is the “genus one” case of the coincidence (see Weyl [33]) of (i) the
category of “complete” non-singular algebraic curves over C and (ii) the category of compact
Riemann surfaces (one-dimensional connected complex-analytic manifolds).

Although the classification of elliptic curves over C via the -function is a result that is both
beautiful and useful, and although two elliptic curves defined over Q that are isomorphic as
curves defined over Q give rise to elliptic curves defined over C that have the same -invariant, it
is not true that any two elliptic curves defined over Q having the same -invariant are isomorphic
over Q. Thus, the classification of elliptic curves over C does not lead directly to the desired
enumerative classification of elliptic curves defined over Q, but it does bring to the fore the
notion of modular form, which is central in the study of elliptic curves defined over Q. What
can be said easily is that, according to the Shimura-Taniyama-Weil conjecture, the isogeny
classes of elliptic curves defined over Q are parameterized by certain modular forms.

4 Modular forms

The group SL2(Z) is an infinite group that is generated by the two elements(
0 1

− 1 0

)
,

(
0 −1
1 1

)
,

which have orders 4 and 6 respectively. The action of SL2(Z) on the upper-half plane H by
linear fractional transformations has kernel{

±
(

1 0
0 1

)}
,
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and the quotient of SL2(Z) by this kernel is the group PSL2(Z). It is not difficult to see that
the set

{τ ∈ H | − 1/2 ≤ <(τ) ≤ 1/2, |τ | ≥ 1}

is a “fundamental domain” for the action of PSL2(Z) on H. More precisely, this set meets
each orbit, and the only redundancies are the boundary identifications arising from the maps
τ 7→ τ + 1 and τ 7→ − 1/τ . The quotient H/PSL2(Z) is not compact since the fundamental
domain is “open at the top”. Beyond that the modular invariant j induces a bicontinuous
biholomorphic isomorphism of the quotient H/PSL2(Z) with the affine line over C. Since
(τ + 1) = (τ) , and since for q = e2πiτ one has |q| < 1 for τ ∈ H, there is a holomorphic
function ̃ in the punctured unit disk such that ̃(q) = (τ). Likewise ∆ may be regarded as
function of q, and one may use the calculus of residues to show that ∆ has a simple zero at
q = 0; hence, ̃ has a simple pole at q = 0, or, equivalently,  has a simple pole at ∞ (the
“missing top” of the fundamental domain). Thus,  gives rise to a bicontinuous biholomorphic
isomorphism

H/PSL2(Z) ∪ {∞} −→ P1(C) .

A non-trivial element of PSL2(Z) has a fixed point in H if and only if it has finite order, and one’s
explicit knowledge of the fundamental domain makes it possible to see that the only elements
of finite order are of order 2 or 37. A congruence subgroup of SL2(Z) is a subgroup Γ that
contains one of the principal congruence subgroups; the principal congruence subgroup Γ(N)
of level N is the set of all elements γ of SL2(Z) that are congruent (mod N) to the identity
matrix. The group Γ0(N) is the congruence subgroup of SL2(Z) consisting of all elements(

a b
c d

)
for which c ≡ 0 (mod N) . It is obvious that each congruence group Γ has finite index in
SL2(Z), and, consequently the quotient H/Γ is a non-compact Riemann surface. Observe that
for each level N the group Γ0(N) contains the parabolic element

T =
(

1 1
0 1

)
,

which gives rise to the holomorphic map τ 7→ τ + 1 that fixes the point ∞.

A modular form8 of weight w for Γ is a holomorphic function f in H that satisfies the functional
equation

f(γ · τ) = (cτ + d)wf(τ), γ ∈ Γ(7)

and that is holomorphic at each cusp of Γ. The role of cusps for Γ is to provide a slightly larger
set H∗ than H,

H∗ = H ∪ {cusps} ,

where Γ acts such that H∗/Γ is a compact Riemann surface containing H/Γ as the open com-
plement of a finite set of points arising from cusps. The cusps of Γ are the points of the closure

7Thus, one sees that the primes 2 and 3 play a special role in the study of the group SL2(Z).
8Details concerning the discussion in this section may be found in Shimura’s book [24].
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of the boundary of H in P1(C) = C∪{∞} that are fixed by some non-trivial parabolic element
of Γ. When Γ = SL2(Z), the set of cusps is Q ∪ {∞} . In view of (7) applied to the case
γ = T one sees that a modular form f of any weight for the group Γ0(N) satisfies

f(τ + 1) = f(τ) ,(8)

and, therefore, f defines a holomorphic function in the variable q = e2πiτ for 0 < q < 1. The
condition in the definition of modular form that f should be holomorphic at ∞ means that f
as a function of q is holomorphic at q = 0. Consequently, f admits an absolutely convergent
Fourier expansion

f(τ) =
∞∑

m=0

cme2πimτ ,(9)

which is a Taylor series in q.

For any cusp ρ of a congruence group Γ one may define the notion holomorphic at ρ for a
modular form f by an analogous procedure using an arbitrary parabolic element of Γ that fixes
ρ instead of T . For a given congruence group Γ two cusps ρ and σ are equivalent if there is
some element γ in Γ such that σ = γ ·ρ . A modular form f is holomorphic at any cusp that is
equivalent to another where it is holomorphic. The modular form f is a cuspform if, in addition
to being holomorphic at each cusp, f vanishes at each cusp. For a given congruence group Γ
a modular form vanishes at any cusp that is equivalent to another where it vanishes. The set
of modular forms of given weight w forms a finite-dimensional vector space over C in which
the set of cuspforms is a linear subspace of codimension bounded by the number of equivalence
classes of cusps. In fact, using “Eisenstein series” one may show that the codimension of the
space of cuspforms in the space of modular forms is often equal to the number of equivalence
classes of cusps. For example, with the group Γ(1) = SL2(Z) there are no modular forms
of odd weight, there is an Eisenstein series of every even weight greater than 2 that is not a
cuspform, and every cusp is equivalent to ∞. Furthermore, since ∞ is the only zero of the cusp
form ∆ (of the preceding section) in the quotient H∗/Γ(1) and since ∞ is a simple zero of ∆,
every cuspform for Γ(1) is divisible by ∆. Thus, in this case, there are no cuspforms of weight
less than 12.

It is not difficult to see that the cuspforms of weight 2 for a congruence group Γ correspond to
holomorphic differential 1-forms (differentials of the first kind) on the compact Riemann surface
X = H∗/Γ . Thus, the dimension of the space of cuspforms of weight 2 is the genus of X.
The fact that there are no cuspforms of weight 2 for the group Γ(1) matches the previously
mentioned fact that X is P1. It is certain of the cuspforms of weight two for the groups Γ0(N)
that, according to the Shimura-Taniyama-Weil conjecture, parameterize the isogeny classes of
elliptic curves defined over Q.

5 Euler products

It will be recalled that the infinite series
∞∑

n=1

1
ns
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converges for <(s) > 1 and gives rise by analytic continuation to a meromorphic function ζ(s)
in C. For <(s) > 1 ζ(s) admits the absolutely convergent infinite product expansion∏

p

1
1− p−s

,

taken over the set of primes. This “Euler product” may be regarded as an analtyic formulation
of the principle of unique factorization in the ring Z of integers. It is, as well, the product
taken over all the non-archimedean completions of the rational field Q (which completions Qp

are indexed by the set of primes) of the “Mellin transform”9 in Qp

ξp(s) =
1

1− p−s
,

of the canonical “Gaussian density”

Φp(x) =
{

1 if x ∈ closure of Z ∈ Qp .
0 otherwise . ,

which Gaussian density is equal to its own Fourier transform. For the archimedean completion
Q∞ = R of the rational field Q one forms the classical Mellin transform

ξ∞(s) = π−(s/2)Γ(s/2)

of the classical Gaussian density
Φ∞(x) = e−πx2

,

(which also is equal to its own Fourier transform). Then the function

ξ(s) = ξ∞(s)ζ(s) =
∏

p≤∞

ξp(s)

is meromorphic in C, and satisfies the functional equation

ξ(1− s) = ξ(s) .(10)

The connection of Riemann’s ζ-function with the subject of modular forms begins with the
observation that ζ(2s) is essentially the Mellin transform of θI(x) = θ(ix)− 1, where θ, which
is a modular form of weight 1/2 and level 8, is defined in the upper-half plane H by the formula

θ(τ) =
∑

m∈Z
exp(πiτm2) .

9The Mellin transform is, more or less, Fourier transform on the multiplicative group. Classically, the Mellin
transform ϕ of f is given formally by

ϕ(s) =

∫ ∞
0

f(x)xs(dx/x) .
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In fact, one of the classical proofs of the functional equation (10) is given by applying the Poisson
summation formula10 to the function x 7→ exp(πiτx2) , while observing that the substitution
s 7→ (1/2)− s for ζ(2s) corresponds in the upper-half plane to the substitution τ 7→ − 1/τ for
the theta series.

If f is a cuspform for a congruence group Γ containing

T =
(

1 1
0 1

)
,

and so, consequently, f(τ + 1) = f(τ) , then, as previously explained, one has the Fourier
expansion (9)

f(τ) =
∞∑

m=1

cme2πimτ .

The Mellin transform ϕ(s) of fI leads to the Dirichlet series

ϕ(s) =
∞∑

m=1

cmm−s ,(11)

which may be seen to have a positive abscissa of convergence. One is led to the questions:

1. For which cuspforms f does the associated Dirichlet series ϕ(s) admit an analytic contin-
uation with functional equation?

2. For which cuspforms f does the associated Dirichlet series ϕ(s) have an Euler product
expansion?

For the “modular group” Γ(1) the Dirichlet series associated to every cuspform of weight w
admits an analtyic continution with functional equation under the substitution s 7→ w − s .
Since Γ(1) is generated by the two matrices T and

W =
(

0 1
− 1 0

)
and since the functional equation of a modular form f relative to T is reflected in the formation
of the Fourier series (9), the condition that an absolutely convergent series (9) is a modular form
for Γ(1) is the functional equation for a modular form relative solely to W . This is equivalent
to the (properly formulated) functional equation for the associated Dirichlet series ϕ together
with a “growth condition”. For the group Γ0(N), with N > 1, the question of a functional
equation is more complicated since, although T is available, there is no reason for a cuspform
to satisfy a law of transformation relative to W . But note that for any Γ the set of cuspforms
of given weight for which the associated Dirichlet series have analytic continuations satisfying a
given finite set of functional equations is a vector space. On the other hand, there is no reason
to believe, even for level 1, that the cuspforms admitting an Euler product expansion form a
vector space.

10On the other hand, (10) may be regarded directly as a divergent model of the Poisson summation formula.
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In a nutshell the cuspforms admitting Euler products are those which arise as eigenforms for an
arithmetically defined commutative algebra of semi-simple operators on the space of cuspforms
of a given weight introduced by E. Hecke. The theory of Hecke operators is reasonably simple
for level 1 but somewhat more complicated in general (see, e.g., Shimura’s book [24]).

Observing that the formula

ds2 =
dx2 + dy2

y2
, for τ = x + iy ∈ H ,

gives a (the hyperbolic) SL2(R)-invariant metric in H with associated invariant measure

dµ =
dxdy

y2
,

one introduces the Petersson (Hermitian) inner product in the space of cuspforms of weight w
for Γ with the definition:

〈f, g〉 =
∫

H/Γ

f(τ) ḡ(τ)=(τ)w
dµ(τ) .(12)

(Integration over the quotient H/Γ makes sense since the integrand

f(τ) ḡ(τ) yw

is Γ-invariant.)

For the modular group Γ(1) the nth Hecke operator T (n) = Tw(n) is the linear endomorphism
of the space of cuspforms of weight w arising from the following considerations. Let Sn be the
set of 2× 2 matrices in Z with determinant n. For

M =
(

a b
c d

)
∈ Sn

and for a function f in H one defines

(M · wf)(τ) = det(M)w−1(cτ + d)−wf(τ) ,(13)

and then, observing that Γ(1) under ·w acts trivially on the modular forms of weight w, one
may define the Hecke operator Tw(n) by

Tw(n) =
∑

M∈Sn/Γ(1)

(M · wf)(τ) ,(14)

where the quotient Sn/Γ(1) refers to the action of Γ(1) by left multiplication on the set Sn.
One finds for m, n coprime that

T (mn) = T (m)T (n) ,

and furthermore one has

T (pe+1) = T (pe)T (p)− pw−1T (pe−1) .

12



Consequently, the operators T (n) commute with each other, and, therefore, generate a com-
mutative algebra of endomorphisms of the space of cusp forms of weight w for Γ(1). It is not
difficult to see that the Hecke operators are self-adjoint for the Petersson inner product on the
space of cuspforms. Consequently, the space of cuspforms of weight w admits a basis of simul-
taneous eigenforms for the Hecke algebra. A “Hecke eigencuspform” is said to be normalized
if its Fourier coefficient c1 = 1. If f is a normalized Hecke eigencuspform, then

• The Fourier coefficient cm of f is the eigenvalue of f for T (m).

• The Fourier coefficients c(m) = cm of f satisfy

c(mn) = c(m)c(n) for m,n coprime, and
c(pe+1) = c(pe)c(p)− pw−1c(pe−1) for p prime.

Consequently, the Dirichlet series associated with a simultaneous Hecke eigencuspform of level
1 and weight w admits an Euler product

ϕ(s) =
∏
p

1
1− cpp−s + pw−1−2s

.(15)

For example, when f is the unique normalized cuspform ∆ of level 1 and weight 12, one has

ϕ(s) =
∏
p

1
1− τ(p)p−s + p11−2s

,

where cp = τ(p) is the function τ of Ramanujan.

For the congruence group Γ0(N) a Hecke eigencuspform of weight w gives rise to a Dirichlet
series ϕ(s) that admits an Euler product expansion whose factors at primes p coprime to N
resemble those given by (15). In order for ϕ(s) to satisfy a functional equation under the
substitution s 7→ w − s , one needs to require that the eigencuspform f admits a functional
equation not only with respect to each element of the group Γ0(N) but also with respect to the
substitution in the upper-half plane H given by the matrix

WN =
(

0 −1
N 0

)
.

A. Weil ([31]) showed that the cuspforms of weight 2 for the group Γ0(N) satisfying the ap-
propriate functional equation under the mapping of H given by WN correspond precisely to
Dirichlet series with certain growth conditions that admit analytic continuations as meromor-
phic functions in C satisfying a finite number of “twisted” functional equations.

The reader will have noticed that it is not extremely easy to characterize the cuspforms of weight
2 that conjecturally (Shimura-Taniyama-Weil) parameterize the isogeny classes of elliptic curves
defined over the rational field Q. The Euler product is an extremely important part of the
characterization since the Dirichlet series given by such an elliptic curve, as will be made explicit
in the next section, is, by its very nature, an Euler product. Weil conjectures explicitly that
the Dirichlet series with Euler product given by each elliptic curve defined over Q satisfies these
conditions, i.e., is the Dirichlet series associated to some WN -compatible Hecke eigencuspform
for the group Γ0(N), where N is the “conductor” of E. This has led to efforts, related to
the “Langlands program” to understand the WN -compatible Hecke eigencuspforms in a more
intrinsic way as objects of representation theory over Q (see, e.g., the survey of Gelbart [4]).
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6 Elliptic curves over the rational field Q

Let E be an elliptic curve defined over Q. One may clear denominators from its cubic equation,
if necessary, in order to arrive at an equation with integer coefficients having no common factor.
While the Weierstrass normal form (3) is available to represent the isomorphism class of any
elliptic curve over a field of characteristic different from 2 and 3, one needs the generalized
Weierstrass form

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6(16)

over an arbitrary field, and, moreover, for each elliptic curve E defined over Q there is a “best
possible” equation (e.g., see Silverman [27]) of the form (16) with integer coefficients called the
Neron model of E. With an abuse of notation E will denote the Neron model, which may be
regarded as a “curve over Z”. (One would want to call it an “elliptic curve over Z” if it were
“smooth over Z”, i.e., if it had good reduction at each prime p; the fact that every Neron model
has bad reduction at least once corresponds under the “dictionary” to the fact that there are
no cuspforms of weight two and level 1.) It then may be observed that for each prime p the
Neron model gives rise to a cubic equation over the finite field Fp. For all but a finite number
of p the equation over Fp is non-singular over F̄p, i.e., determines an elliptic curve Ep defined
over Fp. One says in this case that E has “good reduction” mod p. Following Tate ([30]) one
introduces

b2 = a2
1 + 4a2 ,

b4 = a1a3 + 2a4 ,

b6 = a2
3 + 4a6 , and

b8 = b2a6 − a1a3a4 + a2a
2
3 − a2

4 .

Then one has
∆ = −b2

2b8 − 8b3
4 − 27b2

6 + 9b2b4b6 .

The non-vanishing of ∆ mod p is necessary and sufficient for E to have good reduction mod p.
It follows that a prime p divides ∆ if and only if E does not have good reduction mod p. If p is a
prime for which E has “bad reduction”, then there is a single singular point of the reduced curve
Ep, and either (a) Ep has distinct tangent lines at the singular point (semi-stable reduction)
or (b) Ep has a single tangent line occurring with multiplicity 2. E is called semi-stable if it
has either good or semi-stable reduction at each prime. The conductor of E is the integer N
defined by

N =
∏
p

pνp ,

where

νp =

 0 if E has good reduction at p .
1 if E has semi-stable reduction at p .
2 + λp ≥ 2 otherwise.

The non-negative integer λp cannot be positive unless p is 2 or 3. Tautologically, E is semi-
stable if and only if its conductor N is square-free.
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One defines the “L-series” of E by

L(E, s) =
∏
p|N

1
1− cpp−s

∏
p6 |N

1
1− cpp−s + p1−2s

,(17)

where cp is defined when E has good reduction mod p by the formula

cp = p + 1− |E(Fp)| ,

and cp is defined when E has bad reduction mod p by

cp =

 1 if νp = 1 and the tangents are defined over Fp .
− 1 if νp = 1 with “irrational” tangents .
0 if νp > 1 .

One observes readily that the L-function of E codifies information about the number of points
of E in the finite field Fp. Quite generally for an algebraic variety defined over Q the analogous
codification of information obtained by counting points in the various reductions mod p of the
variety yields the “Hasse-Weil zeta function”, which reflects “cohomological” information about
E. The L-series of E is the essential part, corresponding to cohomology in dimension 1, of the
Hasse-Weil zeta function of E. The Hasse-Weil zeta function is a special case of the general
notion (Serre [19]) of “zeta function” for a scheme of finite type over Z.

One observes that L(E, s) resembles, at least insofar as one considers its Euler factors for primes
p corresponding to good reductions of E, the Dirichlet series associated to a cuspform of weight
2 that admits an Euler product expansion. The observation of this resemblance is the beginning
of an appreciation of the Shimura-Taniyama-Weil conjecture. One is led to ask to what extent
the two classes of Dirichlet series with Euler products coincide. The conjecture states that
the L-function of an elliptic curve defined over Q with conductor N arises from a cuspform for
the group Γ0(N) that is compatible with the substitution in the upper-half plane H given by
WN . Isogenous elliptic curves have the same L-function, and, conversely (cf. Tate [29] and
Faltings [3]) two elliptic curves with the same L-function must be isogenous. Thus, the idea of
the conjecture is that the isogeny classes of elliptic curves defined over Q with conductor N are
in bijective correspondence with the set of Hecke eigencuspforms for the group Γ0(N) of level
N , compatible with the extension of that group by the substitution arising from WN , having
rational Fourier coefficients and not arising from levels dividing N .

7 The Shimura map

Shimura ([23], [24], [25]) showed for a given WN -compatible Hecke eigencuspform f of weight
2 for the group Γ0(N) with rational Fourier coefficients how to construct how to construct an
elliptic curve Ef defined over Q such that the Dirichlet series ϕ(s) associated with f is the
same as the L-function L(Ef , s). Thus, the Shimura-Taniyama-Weil conjecture becomes the
statement that Shimura’s map from the set of such cuspforms to the set of elliptic curves defined
over Q is surjective up to isogeny. A rough description of the Shimura map follows.

Let Γ be a congruence subgroup of SL2(Z), and let X(Γ) denote the compact Riemann surface
H∗/Γ. The inclusion of Γ in Γ(1) induces a “branched covering”

X(Γ) −→ X(1) ∼= P1 .
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One may use the elementary Riemann-Hurwitz formula from combinatorial topology to deter-
mine the Euler number, and consequently the genus, of X(Γ). The genus is the dimension of
the space of cuspforms of weight 2. Even when the genus is zero one obtains embeddings of
X(Γ) in projective spaces Pr through holomorphic maps

τ 7−→ (f0(τ), f1(τ), . . . , fr(τ)) ,

where f0, f1, . . . , fr is a basis of the space of modular forms of weight w with w sufficiently
large. For example, any w ≥ 12 will suffice for Γ(1). For Γ0(N) (but not for arbitrary Γ) one
may find a basis of the space of modular forms of weight w having rational Fourier coefficients.
Using the corresponding projective embedding one finds a model for X0(N) = X(Γ0(N)) over
Q, i.e., an algebraic curve defined over Q in projective space that is isomorphic as a compact
Riemann surface to X0(N).

Associated with any “complete non-singular” algebraic curve (i.e., after Weyl [33], any compact
Riemann surface) X of genus g is a complex torus, the “Jacobian” J(X) of X, that is the
quotient of g-dimensional complex vector space Cg by the lattice Ω generated by the “period
matrix”, which is the g × 2g matrix in C obtained by integrating each of the g members ωi of
a basis of the space of holomorphic differentials over each of the 2g loops in X representing the
members of a homology basis in dimension 1. Furthermore, if one picks a base point z0 in X,
then for any z in X, the path integral from z0 to z of each of the g holomorphic differentials is
well-defined modulo the periods of the differential. One obtains a holomorphic map X → J(X)
from the formula

z 7−→ (
∫ z

z0

ω1, . . . ,

∫ z

z0

ωg) mod Ω .

This map is, in fact, universal for pointed holomorphic maps from X to complex tori. Further-
more, the Jacobian J(X) is an algebraic variety that admits definition over any field of definition
for X and z0, and the universal map also admits definition over any such field. The complex
tori that admit embeddings in projective space are the abelian group objects in the category of
projective varieties. They are called abelian varieties. Every abelian variety is isogenous to the
product of “simple” abelian varieties: abelian varieties having no abelian subvarieties. Shimura
showed that one of the simple isogeny factors of J(X0(N)) is an elliptic curve Ef defined over Q
characterized by the fact that its one-dimensional space of holomorphic differentials induces on
X0(N), via the composition of the universal map with projection on Ef , the one-dimensional
space of differentials on X0(N) determined by the cuspform f . He showed further that L(Ef , s)
is the Dirichlet series ϕ(s) with Euler product given by f . An elliptic curve E defined over
Q is said to be modular if it is isogenous to Ef for some WN -compatible Hecke eigencuspform
of weight 2 for Γ0(N). Equivalently E is modular if and only if L(E, s) is the Dirichlet series
given by such a cuspform. The Shimura-Taniyama-Weil Conjecture states that every elliptic
curve defined over Q is modular. Shimura [23] showed that this conjecture is true in the special
case where the Z-module rank of the ring of endomorphisms of E is greater than one. In this
case the point τ (notation of section 3) of the upper-half plane corresponding to E(C) is a
quadratic imaginary number, and L(E, s) is a number-theoretic L-function associated with the
corresponding imaginary quadratic number field.
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8 The hypothetical Frey curve

Let p ≥ 5 be a prime. Based on the assumption, which presumably is false, that there are
non-zero integers a, b, c such that ap + bp + cp = 0 , G. Frey observed that the elliptic curve
given by the equation

y2 = x(x− ap)(x + bp) ,(18)

which is certainly defined over Q, would not be likely to be modular. Thus, if the Shimura-
Taniyama-Weil Conjecture were true, then “Fermat’s Last Theorem” would also be true. By
1987 it had been shown through the efforts of Frey, Ribet and Serre that the Frey curve (18)
is not modular. The proof involves the systematic study of what is known as the “`-adic
representation” of an elliptic curve defined over Q, which is described in the next section. This
same technique is what has been reported to be the basis of the proof of Wiles that every
semi-stable elliptic curve defined over Q is modular. The Frey curve (18) has discriminant
∆ = (abc)p. It is only slightly difficult to see that it is semi-stable, and, therefore, that
its conductor N is the square-free integer abc. If the Frey curve is modular, one is led to a
cuspform of weight 2 for Γ0(abc). The theory of `-adic representations leads one along a path
of reductions of the level N from the initial level abc that enables one to conclude that there
is a cuspform of weight 2 for Γ0(2); but the genus of X0(2) is 0, and, consequently, there is no
such cuspform.

9 `-adic representations of Gal(Q̄/Q)

Let E be an elliptic curve defined over Q. Inasmuch as the group law E × E → E is defined
over Q it follows that for each integer m the group (scheme) E[m] of m-torsion points, i.e., for
any field K containing Q the group E[m](K) consisting of all x in E(K) such that mx = 0,
is defined by equations with rational coefficients. Consequently, any automorphism of K must
carry the group E[m](K) into itself. Since E(C) is the quotient of C by a lattice, it is clear that
E[m](C) is isomorphic to Z/mZ× Z/mZ ; in fact, this latter group is isomorphic to E[m](K)
for each algebraically closed field of characteristic 0. There is a unique ring homomorphism
Z/mnZ → Z/mZ for each integer n ≥ 1, and the family of these ring homomorphisms gives
rise to an inverse system in the category of commutative rings. If one specializes to the case
m = `r, where ` is prime, the projective limit is the ring Z` of `-adic integers. The groups
E[m] form a direct system with respect to the inclusions E[m] ⊆ E[mn] , but, corresponding to
the inverse system of the groups Z/mZ, form an inverse system (the Tate system) with respect
to the family of homorphisms E[mn] → E[m] defined by x 7→ nx . If one specializes to the
case m = `r, where ` is prime, one obtains the projective limit

T`(E) = proj limr→∞E[`r](Q̄) ∼= Z` × Z` ,(19)

which is isomorphic to the cohomology module

H1(E,Z`) .

The action of Gal(Q̄/Q) on the torsion groups E[m] induces an action of Gal(Q̄/Q) on the
projective limit T`(E). This action gives rise to a representation

ρ` : Gal(Q̄/Q) −→ GL2(Z`) ,
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which is called the `-adic representation of E. In considering ρ` one is reminded of the action
of the automorphism group of a manifold M on the cohomology H∗(M) and, more particularly,
the action of Gal(C/R) on the cohomology of M when M is an algebraic manifold in Pn(C)
defined by equations with real coefficients, but one must keep in mind that the transformations
of E(Q̄) arising from the elements of Gal(Q̄/Q) are not even remotely continuous in the classical
topology on E(C). More generally, there is an algebraic way of defining the cohomology ring
H∗(M,Z`) (see Tate [28]) when M is an algebraic variety with the property that automorphisms
fixing the field of definition act on H∗(M,Z`). An introduction to the study of ρ` may be found
in Serre’s “Montreal Notes” [21].

The canonical ring homomorphism from the ring Z` of `-adic integers to the field Z/`Z induces
a group homomorphism A → Ā , called reduction mod `, from the group GL2(Z`) to the finite
group GL2(Z/`Z). An `-adic representation ρ of Gal(Q̄/Q) is called modular if it is isomorphic
to the representation ρ` arising from the elliptic curve Ef that is the image under the Shimura
map of a modular form f . A representation

Gal(Q̄/Q) → GL2(Z/`Z)

is called modular if it is isomorphic to ρ̄` for some modular `-adic representation ρ`. In the
extensive detailed study of representations of Gal(Q̄/Q) particular attention has been paid to
the question of when a representation in GL2(Z`) is modular and also to the question of when
a representation of GL2(Z/`Z) is modular. Under certain conditions (see Serre [22] and Ribet
[14], [15]) one can show that ρ` is modular if ρ̄` is modular, i.e., ρ` is modular if it is congruent
mod ` to a modular `-adic representation. Such arguments are central both to the work of
Ribet in showing that the Shimura-Taniyama-Weil conjecture implies “Fermat’s Last Theorem”
and to the reported work of Wiles in proving that semi-stable elliptic curves are modular. In
the work of Ribet the basic idea is that the modularity of the Frey curve, which has square-free
conductor N = abc, implies the existence of a cusp form of weight 2 and level N . By using an
argument at the scene of the mod ` representations, Ribet shows that one may split each odd
prime divisor out of the level N and arrive at the conclusion that there is a cusp form of weight
2 and level 2, which is not possible.
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Appendix Late 1993/early 1994 Status

Andrew Wiles posted the following announcement in the “UseNet” electronic news group called
“sci.math”:

From: wiles@rugola.Princeton.EDU (Andrew Wiles)
Newsgroups: sci.math
Subject: Fermat status
Message-ID: <1993Dec4.013650.12700@Princeton.EDU>
Date: 4 Dec 93 01:36:50 GMT
Sender: news@Princeton.EDU (USENET News System)
Organization: Princeton University
Lines: 21
Originator: news@nimaster
Nntp-Posting-Host: rugola.princeton.edu

In view of the speculation on the status of my work on the
Taniyama-Shimura conjecture and Fermat’s Last Theorem I will give a
brief account of the situation. During the review process a number of
problems emerged, most of which have been resolved, but one in
particular I have not yet settled. The key reduction of (most cases
of ) the Taniyama-Shimura conjecture to the calculation of the Selmer
group is correct. However the final calculation of a precise upper
bound for the Selmer group in the semistable case (of the symmetric
square representation associated to a modular form) is not yet
complete as it stands. I believe that I will be able to finish this
in the near future using the ideas explained in my Cambridge
lectures.

The fact that a lot of work remains to be done on the
manuscript makes it still unsuitable for release as a preprint . In
my course in Princeton beginning in February I will give a full
account of this work.

Andrew Wiles.
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