THE ART OF
COMPUTER PROGRAMMING

FASCICLE 1

MMIX

DONALD E. KNUTH Stanford University

A
ADDISON-WESLEY vv

Internet page http://www-cs-faculty.stanford.edu/ knuth/taocp.html contains
current information about this book and related books.

See also http://www-cs-faculty.stanford.edu/"knuth/mmix.html for downloadable
software, and http://mmixmasters.sourceforge.net for general news about MMIX.

Copyright © 1999 by Addison—Wesley

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form, or by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without the prior consent of the publisher, except
that the official electronic file may be used to print single copies for personal (not
commercial) use.

Zeroth printing (revision 15), 15 February 2004

PREFACE

fas-ci-cle \'fasekal\ n ... 1: a small bundle ... an inflorescence consisting of
a compacted cyme less capitate than a glomerule
. 2: one of the divisions of a book published in parts

— P. B. GOVE, Webster’s Third New International Dictionary (1961)

THIS IS THE FIRST of a series of updates that I plan to make available at
regular intervals as I continue working toward the ultimate editions of The Art
of Computer Programming.

I was inspired to prepare fascicles like this by the example of Charles Dickens,
who issued his novels in serial form; he published a dozen installments of Oliver
Twist before having any idea what would become of Bill Sikes! I was thinking
also of James Murray, who began to publish 350-page portions of the Oxford
English Dictionary in 1884, finishing the letter B in 1888 and the letter C in
1895. (Murray died in 1915 while working on the letter T; my task is, fortunately,
much simpler than his.)

Unlike Dickens and Murray, I have computers to help me edit the material,
so that I can easily make changes before putting everything together in its final
form. Although I'm trying my best to write comprehensive accounts that need
no further revision, I know that every page brings me hundreds of opportunities
to make mistakes and to miss important ideas. My files are bursting with notes
about beautiful algorithms that have been discovered, but computer science has
grown to the point where I cannot hope to be an authority on all the material
I wish to cover. Therefore I need extensive feedback from readers before I can
finalize the official volumes.

In other words, I think these fascicles will contain a lot of Good Stuff, and I'm
excited about the opportunity to present everything I write to whoever wants
to read it, but I also expect that beta-testers like you can help me make it
Way Better. As usual, I will gratefully pay a reward of $2.56 to the first
person who reports anything that is technically, historically, typographically,
or politically incorrect.

Charles Dickens usually published his work once a month, sometimes once
a week; James Murray tended to finish a 350-page installment about once every
18 months. My goal, God willing, is to produce two 128-page fascicles per year.
Most of the fascicles will represent new material destined for Volumes 4 and
higher; but sometimes I will be presenting amendments to one or more of the
earlier volumes. For example, Volume 4 will need to refer to topics that belong
in Volume 3, but weren’t invented when Volume 3 first came out. With luck,
the entire work will make sense eventually.

iii

iv PREFACE

Fascicle Number One is about MMIX, the long-promised replacement for MIX.
Thirty years have passed since the MIX computer was designed, and computer
architecture has been converging during those years towards a rather different
style of machine. Therefore I decided in 1990 to replace MIX with a new computer
that would contain even less saturated fat than its predecessor.

Exercise 1.3.1-25 in the first three editions of Volume 1 spoke of an ex-
tended MIX called MixMaster, which was upward compatible with the old version.
But MixMaster itself has long been hopelessly obsolete. It allowed for several
gigabytes of memory, but one couldn’t even use it with ASCII code to print
lowercase letters. And ouch, its standard subroutine calling convention was
irrevocably based on self-modifying instructions! Decimal arithmetic and self-
modifying code were popular in 1962, but they sure have disappeared quickly
as machines have gotten bigger and faster. Fortunately the new RISC machines
have a very appealing structure, so I’ve had a chance to design a new computer
that is not only up to date but also fun.

Many readers are no doubt thinking, “Why does Knuth replace MIX by
another machine instead of just sticking to a high-level programming language?
Hardly anybody uses assemblers these days.” Such people are entitled to their
opinions, and they need not bother reading the machine-language parts of my
books. But the reasons for machine language that I gave in the preface to
Volume 1, written in the early 1960s, remain valid today:

e One of the principal goals of my books is to show how high-level construc-
tions are actually implemented in machines, not simply to show how they
are applied. I explain coroutine linkage, tree structures, random number
generation, high-precision arithmetic, radix conversion, packing of data,
combinatorial searching, recursion, etc., from the ground up.

e The programs needed in my books are generally so short that their main
points can be grasped easily.

e People who are more than casually interested in computers should have at
least some idea of what the underlying hardware is like. Otherwise the
programs they write will be pretty weird.

e Machine language is necessary in any case, as output of some of the software
that I describe.

e Expressing basic methods like algorithms for sorting and searching in ma-
chine language makes it possible to carry out meaningful studies of the effects
of cache and RAM size and other hardware characteristics (memory speed,
pipelining, multiple issue, lookaside buffers, the size of cache blocks, etc.)
when comparing different schemes.

Moreover, if T did use a high-level language, what language should it be? In
the 1960s I would probably have chosen Algol W; in the 1970s, I would then
have had to rewrite my books using Pascal; in the 1980s, I would surely have
changed everything to C; in the 1990s, I would have had to switch to C++ and
then probably to Java. In the 2000s, yet another language will no doubt be de

PREFACE v

rigueur. 1 cannot afford the time to rewrite my books as languages go in and
out of fashion; languages aren’t the point of my books, the point is rather what
you can do in your favorite language. My books focus on timeless truths.

Therefore I will continue to use English as the high-level language in The Art
of Computer Programming, and I will continue to use a low-level language
to indicate how machines actually compute. Readers who only want to see
algorithms that are already packaged in a plug-in way, using a trendy language,
should buy other people’s books.

The good news is that programming for MMIX is pleasant and simple. This
fascicle presents

1) a programmer’s introduction to the machine (replacing Section 1.3.1 of
Volume 1);

2) the MMIX assembly language (replacing Section 1.3.2);

3) new material on subroutines, coroutines, and interpretive routines (replacing
Sections 1.4.1, 1.4.2, and 1.4.3).

Of course, MIX appears in many places throughout Volumes 1-3, and dozens of
programs need to be rewritten for MMIX. Readers who would like to help with
this conversion process are encouraged to join the MMIXmasters, a happy group
of volunteers based at mmixmasters.sourceforge.net.

I am extremely grateful to all the people who helped me with the design
of MMIX. In particular, John Hennessy and Richard L. Sites deserve special
thanks for their active participation and substantial contributions. Thanks also
to Vladimir Ivanovi¢ for volunteering to be the MMIX grandmaster/webmaster.

Stanford, California D. E. K.
May 1999

You can, if you want, rewrite forever.
— NEIL SIMON, Rewrites: A Memoir (1996)

CONTENTS

Chapter 1 —Basic Concepts 1

1.3 MMIX L Lo e e e e s e s 2
1.3.1". Description of MMIX < 2
1.3.2". The MMIX Assembly Language 28

1.4’. Some Fundamental Programming Techniques 52
1.4.1°. Subroutineso Lo 52
1.4.2°. Coroutineso L Lo 66
1.4.3". Interpretive Routines 73

Answers to Exercises 94

Index and Glossaryo 127

2 BASIC CONCEPTS 1.3

1.3". MMIX

IN MANY PLACES throughout this book we will have occasion to refer to a com-
puter’s internal machine language. The machine we use is a mythical computer
called “MMIX.” MMIX—pronounced EM-micks—is very much like nearly every
general-purpose computer designed since 1985, except that it is, perhaps, nicer.
The language of MMIX is powerful enough to allow brief programs to be written
for most algorithms, yet simple enough so that its operations are easily learned.

The reader is urged to study this section carefully, since MMIX language
appears in so many parts of this book. There should be no hesitation about
learning a machine language; indeed, the author once found it not uncommon to
be writing programs in a half dozen different machine languages during the same
week! Everyone with more than a casual interest in computers will probably get
to know at least one machine language sooner or later. Machine language helps
programmers understand what really goes on inside their computers. And once
one machine language has been learned, the characteristics of another are easy
to assimilate. Computer science is largely concerned with an understanding of
how low-level details make it possible to achieve high-level goals.

Software for running MMIX programs on almost any real computer can be
downloaded from the website for this book (see page ii). The complete source
code for the author’s MMIX routines appears in the book MMIXware [Lecture Notes
in Computer Science 1750 (1999)]; that book will be called “the MMIXware
document” in the following pages.

1.3.1". Description of MMIX

MMIX is a polyunsaturated, 100% natural computer. Like most machines, it has
an identifying number —the 2009. This number was found by taking 14 actual
computers very similar to MMIX and on which MMIX could easily be simulated,
then averaging their numbers with equal weight:

(Crayl + IBM 801 + RISCII + Clipper C300 + AMD 29K + Motorola 88K
+ IBM 601 + Inteli960 + Alpha21164 + POWER2 + MIPSR4000
+ HitachiSuperH4 + StrongARM 110 + Sparc 64)/14
= 28126/14 = 2009. (1)

The same number may also be obtained in a simpler way by taking Roman
numerals.

Bits and bytes. MMIX works with patterns of 0s and 1s, commonly called
binary digits or bits, and it usually deals with 64 bits at a time. For example,
the 64-bit quantity

1001111000110111011110011011100101111111010010100111110000010110 (2)

is a typical pattern that the machine might encounter. Long patterns like this
can be expressed more conveniently if we group the bits four at a time and use

1.3.1° DESCRIPTION OF MMIX 3

hezadecimal digits to represent each group. The sixteen hexadecimal digits are

0=0000, 4=0100, 8=1000, c=1100,
1=0001, 5=0101, 9=1001, d=1101,
2 = 0010, 6 = 0110, a = 1010, e = 1110, (3)
3=0011, 7=0111, b=1011, £ =1111.

We shall always use a distinctive typeface for hexadecimal digits, as shown here,
so that they won’t be confused with the decimal digits 0-9; and we will usually
also put the symbol # just before a hexadecimal number, to make the distinction
even clearer. For example, (2) becomes

#9e3779b97f4a7c16 (4)

in hexadecimalese. Uppercase digits ABCDEF are often used instead of abcdef,
because #9E3779B97F4A7C16 looks better than #9e3779b97f4a7c16 in some
contexts; there is no difference in meaning.

A sequence of eight bits, or two hexadecimal digits, is commonly called
a byte. Most computers now consider bytes to be their basic, individually
addressable units of information; we will see that an MMIX program can refer
to as many as 2% bytes, each with its own address from #0000000000000000 to
#EEFEEFFEFFEEFEEE. Letters, digits, and punctuation marks of languages like
English are often represented with one byte per character, using the American
Standard Code for Information Interchange (ASCII). For example, the ASCII
equivalent of MMIX is #4d4d4958. ASCII is actually a 7-bit code with control
characters #00—#1f, printing characters #20—#7e, and a “delete” character #*7f
[see CACM 8 (1965), 207-214; 11 (1968), 849-852; 12 (1969), 166-178]. It
was extended during the 1980s to an international standard 8-bit code known as
Latin-1 or ISO 8859-1, thereby encoding accented letters: pdté is #70e274e9.

“Of the 256th squadron?”
“Of the fighting 256th Squadron,” Yossarian replied.
“That’s two to the fighting eighth power.”

— JOSEPH HELLER, Catch-22 (1961)

A 16-bit code that supports nearly every modern language became an inter-
national standard during the 1990s. This code, known as Unicode or ISO/IEC
10646 UCS-2, includes not only Greek letters like 2 and ¢ (#03a3 and #03c3),
Cyrillic letters like IIT and mx (#0429 and #0449), Armenian letters like ¢ and
¢ (#0547 and #0577), Hebrew letters like v (#05e9), Arabic letters like
(#0634), and Indian letters like ¥ (¥0936) or * (*09b6) or & (¥0b36) or ay
(#0bbT), etc., but also tens of thousands of East Asian ideographs such as the
Chinese character for mathematics and computing, . (#7b97). It even has
special codes for Roman numerals: MMIX = #216f216£21602169. Ordinary
ASCII or Latin-1 characters are represented by simply giving them a leading
byte of zero: paté is #007000e2007400e9, a I’Unicode.

4 BASIC CONCEPTS 1.3.1

We will use the convenient term wyde to describe a 16-bit quantity like the
wide characters of Unicode, because two-byte quantities are quite important in
practice. We also need convenient names for four-byte and eight-byte quantities,
which we shall call tetrabytes (or “tetras”) and octabytes (or “octas”). Thus

2 bytes = 1 wyde;
2 wydes = 1 tetra;
2 tetras = 1 octa.

One octabyte equals four wydes equals eight bytes equals sixty-four bits.
Bytes and multibyte quantities can, of course, represent numbers as well as
alphabetic characters. Using the binary number system,

an unsigned byte can express the numbers 0 .. 255;

an unsigned wyde can express the numbers 0 .. 65,535;

an unsigned tetra can express the numbers 0 .. 4,294,967,295;

an unsigned octa can express the numbers 0 .. 18,446,744,073,709,551,615.

Integers are also commonly represented by using two’s complement notation, in
which the leftmost bit indicates the sign: If the leading bit is 1, we subtract 2™ to
get the integer corresponding to an n-bit number in this notation. For example,
—1 is the signed byte #*£f; it is also the signed wyde #f££f, the signed tetrabyte
#ffffffff, and the signed octabyte #ffffffffffffff£ff. In this way

a signed byte can express the numbers —128 .. 127;

a signed wyde can express the numbers —32,768 .. 32,767;

a signed tetra can express the numbers —2,147,483,648 .. 2,147,483,647;

a signed octa can express the numbers —9,223,372,036,854,775,808 ..
9,223,372,036,854,775,807.

Memory and registers. From a programmer’s standpoint, an MMIX computer
has 264 cells of memory and 2% general-purpose registers, together with 2°
special registers (see Fig. 13). Data is transferred from the memory to the
registers, transformed in the registers, and transferred from the registers to the
memory. The cells of memory are called M[0], M[1], ..., M[2%% — 1]; thus if z is
any octabyte, M[z] is a byte of memory. The general-purpose registers are called
$0, $1, ..., $255; thus if x is any byte, $z is an octabyte.

The 25 bytes of memory are grouped into 2%% wydes, M3[0] = My[1] =
M[0]M]1], M2[2] = M3[3] = M[2]M]3], ...; each wyde consists of two consecutive
bytes M[2k]M[2k + 1] = M[2k] x 28 + M[2k + 1], and is denoted either by Ma[2k]
or by My[2k + 1]. Similarly there are 252 tetrabytes

My [4k] = My[4k + 1] = - - = My[dk + 3] = M[4k]M[4k + 1] ... M[4k + 3],
and 26! octabytes
Ms|[8K] = Mg[8k + 1] = - - = Mg[8k + 7] = M[8K]M[8k + 1] ... M[8k + 7].

In general if z is any octabyte, the notations Ms[z], My[z], and Mg[z] denote
the wyde, the tetra, and the octa that contain byte M[z]; we ignore the least

1.3.1° DESCRIPTION OF MMIX)

GEMMIX IO

AT [T [
BT [[T [[T]

rZZ: | \ \ \ \ \ \ \ |

| M]0] ‘ M[1] ‘ M[2] ‘ M[3] ‘ M[4] ‘ MI5] ‘ M[6] ‘ M[7] ‘ MI8] ‘

oooooooo ‘ M[264 9] ‘ M[264 _g] ‘ m[264 7] ‘ Mm[264 —6] ‘ m[264 5] ‘ M[264 _4] ‘ m[264 _3] ‘ m[264 —2] ‘ m[264 —1]

Fig. 13. The MMIX computer, as seen by a programmer, has 256 general-purpose
registers and 32 special-purpose registers, together with 2% bytes of virtual memory.
Each register holds 64 bits of data.

significant 1g ¢ bits of x when referring to M;[z]. For completeness, we also write
M; [z] = M[z], and we define M[z] = M[z mod 254] when z < 0 or z > 264,

The 32 special registers of MMIX are called rA, rB, ..., rZ, rBB, rTT,
rWW, XX, rYY, and rZZ. Like their general-purpose cousins, they each hold
an octabyte. Their uses will be explained later; for example, we will see that
rA controls arithmetic interrupts while rR holds the remainder after division.

Instructions. MMIX’s memory contains instructions as well as data. An in-
struction or “command” is a tetrabyte whose four bytes are conventionally called
OP, X, Y, and Z. OP is the operation code (or “opcode,” for short); X, Y, and Z
specify the operands. For example, #20010203 is an instruction with OP = #20,
X =#01,Y = #02, and Z = #03, and it means “Set $1 to the sum of $2 and
$3.” The operand bytes are always regarded as unsigned integers.

Each of the 256 possible opcodes has a symbolic form that is easy to re-
member. For example, opcode #20 is ADD. We will deal almost exclusively with
symbolic opcodes; the numeric equivalents can be found, if needed, in Table 1
below, and also in the endpapers of this book.

The X, Y, and Z bytes also have symbolic representations, consistent with
the assembly language that we will discuss in Section 1.3.2". For example,
the instruction #20010203 is conventionally written ‘ADD $1,$2,$3’, and the
addition instruction in general is written ‘ADD $X,$Y,$Z’. Most instructions have
three operands, but some of them have only two, and a few have only one. When
there are two operands, the first is X and the second is the two-byte quantity YZ;
the symbolic notation then has only one comma. For example, the instruction

6 BASIC CONCEPTS 1.3.1

‘INCL $X,YZ’ increases register $X by the amount YZ. When there is only one
operand, it is the unsigned three-byte number XYZ, and the symbolic notation
has no comma at all. For example, we will see that ‘JMP @+4*XYZ’ tells MMIX
to find its next instruction by skipping ahead XYZ tetrabytes; the instruction
‘JMP @+1000000’ has the hexadecimal form #£003d090, because JMP = #£0 and
250000 = #03d090.

We will describe each MMIX instruction both informally and formally. For
example, the informal meaning of ‘ADD $X,$Y,$2’ is “Set $X to the sum of §Y
and $Z”; the formal definition is ‘s($X) < s($Y) +s($Z)’. Here s(x) denotes the
signed integer corresponding to the bit pattern z, according to the conventions
of two’s complement notation. An assignment like s(z) +~ N means that x is to
be set to the bit pattern for which s(z) = N. (Such an assignment causes integer
overflow if N is too large or too small to fit in x. For example, an ADD will
overflow if s($Y) + s($Z) is less than —2% or greater than 253 — 1. When we’re
discussing an instruction informally, we will often gloss over the possibility of
overflow; the formal definition, however, will make everything precise. In general
the assignment s(x) < N sets to the binary representation of N mod 2", where
n is the number of bits in z, and it signals overflow if N < —2"~! or N > 2"~1;
see exercise 5.)

Loading and storing. Although MMIX has 256 different opcodes, we will see
that they fall into a few easily learned categories. Let’s start with the instructions
that transfer information between the registers and the memory.

Each of the following instructions has a memory address A obtained by
adding $Y to $Z. Formally,

A = (u($Y) + u($Z)) mod 2°* (5)

is the sum of the unsigned integers represented by $Y and $Z, reduced to a 64-bit
number by ignoring any carry that occurs at the left when those two integers are
added. In this formula the notation u(z) is analogous to s(z), but it considers
to be an unsigned binary number.

LDB $X,$Y,$Z (load byte): s($X) « s(M;[A]).

LDW $X,$Y,$Z (load wyde): s($X) « s(Ma[A]).

LDT $X,$Y,$Z (load tetra): s($X) « s(M4[A]).

LDO $X,$Y,$Z (load octa): s($X) « s(Ms[A]).

These instructions bring data from memory into register $X, changing the data
if necessary from a signed byte, wyde, or tetrabyte to a signed octabyte of the
same value. For example, suppose the octabyte Mg[1002] = Ms[1000] is

M[1000]M[1001] . .. M[1007] = #0123456789abcdet. (6)
Then if $2 = 1000 and $3 = 2, we have A = 1002, and

LDB $1,$2,$3 sets $1 < #0000000000000045;
LDW $1,$2,$3 sets $1 < #0000000000004567 ;
LDT $1,$2,$3 sets $1 «+ #0000000001234567 ;
LDO $1,$2,$3 sets $1 < #0123456789abcdef .

1.3.1° DESCRIPTION OF MMIX 7

But if $3 =5, so that A = 1005,

LDB $1,$2,$3 sets $1 « #ffffffffffff ffab;
LDW $1,$2,$3 sets $1 « #ffff ffff fE£f89ab;
LDT $1,$2,$3 sets $1 <+ #ffff ffff89abcdef;
LDO $1,$2,$3 sets $1 «+ #01234567 89abcdef.

When a signed byte or wyde or tetra is converted to a signed octa, its sign bit
is “extended” into all positions to the left.

LDBU $X,$Y,$Z (load byte unsigned): u($X) < u(M;[A]).
LDWU $X,$Y,$Z (load wyde unsigned): u($X) + u(M[A]).
e LDTU $X,$Y,$Z (load tetra unsigned): u($X) «— u(M4[A]).
e LDOU $X,$Y,$Z (load octa unsigned): u($X) « u(Ms[A]).
These instructions are analogous to LDB, LDW, LDT, and LDO, but they treat the
memory data as unsigned; bit positions at the left of the register are set to
zero when a short quantity is being lengthened. Thus, in the example above,
LDBU $1,$2,$3 with $2 + $3 = 1005 would set $1 + #00000000000000ab.
The instructions LDO and LDOU actually have exactly the same behavior,
because no sign extension or padding with zeros is necessary when an octabyte
is loaded into a register. But a good programmer will use LDO when the sign
is relevant and LDOU when it is not; then readers of the program can better
understand the significance of what is being loaded.

e LDHT $X,$Y,$Z (load high tetra): u($X) < u(M4[A]) x 232,

Here the tetrabyte My[A] is loaded into the left half of $X, and the right half
is set to zero. For example, LDHT $1,$2,$3 sets $1 < #89abcdef 00000000,
assuming (6) with $2 + $3 = 1005.

e LDA $X,$Y,$Z (load address): u($X) < A.

This instruction, which puts a memory address into a register, is essentially

the same as the ADDU instruction described below. Sometimes the words “load
address” describe its purpose better than the words “add unsigned.”

STB $X,$Y,$Z (store byte): s(M[A]) + s($X).
STW $X,$Y,$Z (store wyde): s(Ma[A]) + s($X).
STT $X,$Y,$Z (store tetra): s(M4[A]) « s($X).
STO $X,$Y,$Z (store octa): s(Ms[A]) « s($X).
These instructions go the other way, placing register data into the memory.
Overflow is possible if the (signed) number in the register lies outside the range

of the memory field. For example, suppose register $1 contains the number
—65536 = #£££ff fE£f ££££0000. Then if $2 = 1000, $3 = 2, and (6) holds,

STB $1,$2,$3 sets Mg[1000] <— #01230067 89abcdef (with overflow);
STW $1,$2,$3 sets Mg[1000] < #0123000089abcdef (with overflow);
STT $1,$2,$3 sets Mg[1000] < #£££f 000089ab cdef ;
STO $1,$2,$3 sets Mg[1000] <+ #f££f f££f f££F0000.

8 BASIC CONCEPTS 1.3.1

STBU $X,$Y,$Z (store byte unsigned):
u(M;[A]) + u($X) mod 25.
STWU $X,$Y,$Z (store wyde unsigned):
u(Mz[A]) « u($X) mod 2'¢.
STTU $X,$Y,$Z (store tetra unsigned):
u(My[A]) + u($X) mod 232
e STOU $X,$Y,$Z (store octa unsigned): u(Ms[A]) + u($X).
These instructions have exactly the same effect on memory as their signed
counterparts STB, STW, STT, and STO, but overflow never occurs.
e STHT $X,$Y,$Z (store high tetra): u(Ma[A]) « |u($X)/232].
The left half of register $X is stored in memory tetrabyte My[A].
e STCO X,$Y,$Z (store constant octabyte): u(Ms[A]) + X.
A constant between 0 and 255 is stored in memory octabyte Mg[A].

Arithmetic operators. Most of MMIX’s operations take place strictly between
registers. We might as well begin our study of the register-to-register opera-
tions by considering addition, subtraction, multiplication, and division, because
computers are supposed to be able to compute.
ADD $X,$Y,$Z (add): s($X) < s($Y) + s($2).
SUB $X,$Y,$Z (subtract): s(8X) « s(8Y) — s($Z).
MUL $X,$Y,$Z (multiply): s($X) « s(8Y) x s($Z).
DIV $X,$Y,$Z (divide): s($X) « [s($Y)/s($Z)] [$Z #0], and
s(rR) < s($3Y) mod s($Z).
Sums, differences, and products need no further discussion. The DIV command
forms the quotient and remainder as defined in Section 1.2.4; the remainder goes
into the special remainder register rR, where it can be examined by using the
instruction GET $X,rR described below. If the divisor $Z is zero, DIV sets $X « 0
and rR < $Y (see Eq. 1.2.4—(1)); an “integer divide check” also occurs.
ADDU $X,$Y,$Z (add unsigned): u($X) < (u($Y) + u($Z)) mod 2°4.
SUBU $X,$Y,$Z (subtract unsigned): u($X) < (u($Y) — u($Z)) mod 264.
MULU $X,$Y,$Z (multiply unsigned): u(rH $X) < u($Y) x u($2).
DIVU $X,$Y,$Z (divide unsigned): u($X) « |u(rD$Y)/u($2)|, u(rR) <«
u(rD $Y) mod u($2), if u($Z) > u(rD); otherwise $X < rD, rR + §Y.
Arithmetic on unsigned numbers never causes overflow. A full 16-byte product
is formed by the MULU command, and the upper half goes into the special himult
register TH. For example, when the unsigned number #9e3779b97f4a7c16 in
(2) and (4) above is multiplied by itself we get

rH < #61c8864680b583ea, $X « #1bb32095ccdd5le4. (7)

In this case the value of rH has turned out to be exactly 264 minus the original

number #9e3779b97f4a7c16; this is not a coincidence! The reason is that (2)
actually gives the first 64 bits of the binary representation of the golden ratio
¢! = ¢ — 1, if we place a binary radix point at the left. (See Table 2 in
Appendix A.) Squaring gives us an approximation to the binary representation
of 72 =1 — ¢!, with the radix point now at the left of rH.

1.3.1° DESCRIPTION OF MMIX 9

Division with DIVU yields the 8-byte quotient and remainder of a 16-byte
dividend with respect to an 8-byte divisor. The upper half of the dividend
appears in the special dividend register rD, which is zero at the beginning of
a program; this register can be set to any desired value with the command
PUT rD,$Z described below. If rD is greater than or equal to the divisor,
DIVU $X,$Y,$Z simply sets $X < rD and rR « §Y. (This case always arises
when $Z is zero.) But DIVU never causes an integer divide check.

The ADDU instruction computes a memory address A, according to defini-
tion (5); therefore, as discussed earlier, we sometimes give ADDU the alternative
name LDA. The following related commands also help with address calculation.

e 2ADDU $X,$Y,$Z (times 2 and add unsigned):

u($X) + (u($Y) x 2+ u($Z)) mod 264.
e 4ADDU $X,$Y,$Z (times 4 and add unsigned):

u($X) < (u($Y) x 4+ u($Z)) mod 2.
e 8ADDU $X,$Y,$Z (times 8 and add unsigned):

u($X) < (u($Y) x 8+ u($Z)) mod 2*.
e 16ADDU $X,$Y,$Z (times 16 and add unsigned):

u($X) + (u($Y) x 16 + u($Z)) mod 264,
It is faster to execute the command 2ADDU $X,$Y,$Y than to multiply by 3, if
overflow is not an issue.
o NEG $X,Y,$Z (negate): s($X) «+ Y —s($27).
e NEGU $X,Y,$Z (negate unsigned): u($X) « (Y — u($Z)) mod 2°4.
In these commands Y is simply an unsigned constant, not a register number
(just as X was an unsigned constant in the STCO instruction). Usually Y is zero,
in which case we can write simply NEG $X,$Z or NEGU $X, $Z.
SL $X,$Y,$Z (shift left): s($X) < s($Y) x 2u(¥2),
SLU $X,$Y,$Z (shift left unsigned): u($X) + (u($Y) x 22(¥2)) mod 264.
SR $X,$Y,$Z (shift right): s($X) « [s($Y)/2u¢2)|.
SRU $X,$Y,$Z (shift right unsigned): u($X) « |u($Y)/2u¢2)].
SL and SLU both produce the same result in $X, but SL might overflow while
SLU never does. SR extends the sign when shifting right, but SRU shifts zeros in
from the left. Therefore SR and SRU produce the same result in $X if and only
if §Y is nonnegative or $Z is zero. The SL and SR instructions are much faster
than MUL and DIV by powers of 2. An SLU instruction is much faster than MULU
by a power of 2, although it does not affect rH as MULU does. An SRU instruction
is much faster than DIVU by a power of 2, although it is not affected by rD. The
notation y < z is often used to denote the result of shifting a binary value y to
the left by z bits; similarly, y > z denotes shifting to the right.
e CMP $X,$Y,$Z (compare):

s($X) « [s($Y) > s($Z)] — [s($Y) < S($Z)].
e CMPU $X,$Y,$Z (compare unsigned):

s($X) [u($Y) > u($Z)] — [u($Y) < u($Z)].
These instructions each set $X to either —1, 0, or 1, depending on whether
register $Y is less than, equal to, or greater than register $Z.

10 BASIC CONCEPTS 1.3.1

Conditional instructions. Several instructions base their actions on whether
a register is positive, or negative, or zero, etc.

CSN $X,$Y,$Z (conditional set if negative): if s(3Y) < 0, set $X < $Z.

CSZ $X,$Y,$Z (conditional set if zero): if §Y = 0, set $X + $Z.

CSP $X,$Y,$Z (conditional set if positive): if s($§Y) > 0, set $X < $7Z.

CSOD $X,$Y,$Z (conditional set if odd): if s($Y) mod 2 = 1, set $X «+ $Z.
CSNN $X,$Y,$Z (conditional set if nonnegative): if s($Y) > 0, set $X + $Z.
CSNZ $X,$Y,$Z (conditional set if nonzero): if $Y # 0, set $X «+ $Z.

CSNP $X,$Y,$Z (conditional set if nonpositive): if s($§Y) < 0, set $X + $Z.
CSEV $X,$Y,$Z (conditional set if even): if s($Y) mod 2 = 0, set $X «+ $Z.

If register $Y satisfies the stated condition, register $Z is copied to register $X;
otherwise nothing happens. A register is negative if and only if its leading
(leftmost) bit is 1. A register is odd if and only if its trailing (rightmost) bit is 1.

ZSN $X,$Y,$Z (zero or set if negative): $X < $Z[s($Y) <0].

ZSZ $X,$Y,$Z (zero or set if zero): $X «+ $Z [$Y =0].

ZSP $X,$Y,$Z (zero or set if positive): $X + $Z [s($Y) > 0].

ZS0D $X,$Y,$Z (zero or set if odd): $X + $Z[s($Y) mod 2=1].

ZSNN $X,$Y,$Z (zero or set if nonnegative): $X < $Z [s(3Y) >0].

ZSNZ $X,$Y,$Z (zero or set if nonzero): $X «+ $Z [$Y #0].

ZSNP $X,$Y,$Z (zero or set if nonpositive): $X « $Z [s($Y) <0].

ZSEV $X,$Y,$Z (zero or set if even): $X + $Z [s($Y) mod 2=0].

If register $Y satisfies the stated condition, register $Z is copied to register $X;
otherwise register $X is set to zero.

Bitwise operations. We often find it useful to think of an octabyte x as a
vector v(z) of 64 individual bits, and to perform operations simultaneously on
each component of two such vectors.
AND $X,$Y,$Z (bitwise and): v($X) <« v($Y) A v($Z).
OR $X,$Y,$Z (bitwise or): v($X) < v(8Y) V v($Z).
XOR $X,$Y,$Z (bitwise exclusive-or): v($X) + v($Y) @ v($7).
ANDN $X,$Y,$Z (bitwise and-not): v($X) < v($Y) A ¥($Z).
ORN $X,$Y,$Z (bitwise or-not): v($X) « v($Y) Vv ¥($2).
NAND $X,$Y,$Z (bitwise not-and): 7($X) « v($Y) A v($Z).
NOR $X,$Y,$Z (bitwise not-or): v($X) < v($Y) Vv v($2).
NXOR $X,$Y,$Z (bitwise not-exclusive-or): v($X) « v($Y) @ v($Z).
Here v denotes the complement of vector v, obtained by changing 0 to 1 and
1 to 0. The binary operations A, V, and @, defined by the rules

0A0=0, 0VvV0=0, 060 =0,
0ALl=0, ov1=1, 0m1=1, @®
1A0=0, 1vo=1, 180=1,
IA1=1, 1v1=1, 1e1=0,

are applied independently to each bit. Anding is the same as multiplying or
taking the minimum; oring is the same as taking the maximum. Exclusive-oring
is the same as adding mod 2.

10

1.3.1° DESCRIPTION OF MMIX 11

o MUX $X,$Y,$Z (bitwise multiplex): v($X) < (v($Y)Av(rM))V (v($Z)Av(xM)).
The MUX operation combines two bit vectors by looking at the special multiplex
mask register tM, choosing bits of $Y where rM is 1 and bits of $Z where rM is 0.

e SADD $X,$Y,$Z (sideways add): s($X) « s(3(v($Y) Av($2))).
The SADD operation counts the number of bit positions in which register $Y has
a 1 while register $Z has a 0.

Bytewise operations. Similarly, we can regard an octabyte z as a vector b(x)
of eight individual bytes, each of which is an integer between 0 and 255; or we
can think of it as a vector w(z) of four individual wydes, or a vector t(x) of two
unsigned tetras. The following operations deal with all components at once.

BDIF $X,$Y,$Z (byte difference): b($X) + b($Y) = b($Z).
WDIF $X,$Y,$Z (wyde difference): w($X) + w(8Y) =~ w($Z).
TDIF $X,$Y,$Z (tetra difference): t($X) + t($Y) = t($Z).
ODIF $X,$Y,$Z (octa difference): u($X) < u($Y) — u($2).
Here — denotes the operation of saturating subtraction,

y =~z = max(0,y — 2). (9)

These operations have important applications to text processing, as well as to
computer graphics (when the bytes or wydes represent pixel values). Exercises
27-30 discuss some of their basic properties.

We can also regard an octabyte as an 8 x 8 Boolean matriz, that is, as an
8 x 8 array of 0s and 1s. Let m(z) be the matrix whose rows from top to bottom
are the bytes of from left to right; and let mT(z) be the transposed matrix,
whose columns are the bytes of x. For example, if z = #9e3779b97f4a7c16 is
the octabyte (2), we have

10011110 10010000
00110111 00101110
01111001 01111010
10111001 T 11111011
mE@) =111 11111| m@)=|10111110 (10)
01001010 11001011
01111100 11001101
00010110 01111000

This interpretation of octabytes suggests two operations that are quite familiar
to mathematicians, but we will pause a moment to define them from scratch.
If A is an m X n matrix and B is an n X s matrix, and if o and e are binary
operations, the generalized matrix product A ¢ B is the m x s matrix C' defined
by
Cij = (Air @ Byj) o (Aiz @ Byj) 0 -+ o (Ain ® Byj) (1)
for 1 <i<mand1l<j<s. [See K. E. Iverson, A Programming Language

(Wiley, 1962), 23-24; we assume that o is associative.] An ordinary matrix
product is obtained when o is + and e is X, but we obtain important operations

11

12 BASIC CONCEPTS 1.3.1

on Boolean matrices if we let o be V or @:
(A\; B)ij = AilBlj V AiQBQj VeV Aianj; (12)
(A E)? B)ij = AilBlj 2] AiZBQj S D Aanng (13)

Notice that if the rows of A each contain at most one 1, at most one term in (12)
or (13) is nonzero. The same is true if the columns of B each contain at most
one 1. Therefore AY B and A B both turn out to be the same as the ordinary
matrix product A B = AB in such cases.
e MOR $X,$Y,$Z (multiple or): mT($X) < mT($Y) Y, m™($Z);
equivalently, m($X) + m($Z) ¥ m($Y). (See exercise 32.)
e MXOR $X,$Y,$Z (multiple exclusive-or): m*($X) < mT(8Y) € m™($2);
equivalently, m($X) < m($Z) € m($Y).
These operations essentially set each byte of $X by looking at the corresponding
byte of $Z and using its bits to select bytes of $Y; the selected bytes are then
ored or xored together. If, for example, we have

$7 = #010204 0810204080, (14)

then both MOR and MXOR will set register $X to the byte reversal of register $Y:
The kth byte from the left of $X will be set to the kth byte from the right of $Y,
for 1 < k < 8. On the other hand if $Z = #00000000000000ff, MOR and MXOR
will set all bytes of $X to zero except for the rightmost byte, which will become
either the OR or the XOR of all eight bytes of §Y. Exercises 33-37 illustrate some
of the many practical applications of these versatile commands.

Floating point operators. MMIX includes a full implementation of the famous
IEEE/ANSI Standard 754 for floating point arithmetic. Complete details of the
floating point operations appear in Section 4.2 and in the MMIXware document;
a rough summary will suffice for our purposes here.

Every octabyte x represents a floating binary number f(x) determined as
follows: The leftmost bit of z is the sign (0 = ‘4’, 1 = ‘—’); the next 11 bits are
the exponent E; the remaining 52 bits are the fraction F. The value represented
is then

+0.0, if E=F = 0 (zero);
+27197F if E =0 and F # 0 (denormal);
+28E-1023(1 4 F/252) if 0 < E < 2047 (normal);
+o00, if E = 2047 and F = 0 (infinite);
+NaN(F/2%?), if E = 2047 and F # 0 (Not-a-Number).

The “short” floating point number f(t) represented by a tetrabyte ¢ is similar,
but its exponent part has only 8 bits and its fraction has only 23; the normal
case 0 < E < 255 of a short float represents £25127(1 4 F/223).

e FADD $X,$Y,$Z (floating add): £($X) « f($Y) + £($Z).
e FSUB $X,$Y,$Z (floating subtract): f($X) « f($Y) — £($2).
e FMUL $X,$Y,$Z (floating multiply): f($X) < £($Y) x £($Z).
e FDIV $X,$Y,$Z (floating divide): £($X) < £($Y)/{($Z).

12

1.3.1° DESCRIPTION OF MMIX 13

FREM $X,$Y,$Z (floating remainder): f($X) « f($Y) rem f($Z).
FSQRT $X,$Z or FSQRT $X,Y,$Z (floating square root): f($X) « £($Z)'/2.
FINT $X,$Z or FINT $X,Y,$Z (floating integer): f($X) « int f($Z).
FCMP $X,$Y,$Z (floating compare): s($X) « [f(8Y) > {($Z)]—[£(3Y) < {($Z)].
FEQL $X,$Y,$Z (floating equal to): s($X) « [f(3Y) = £($Z)].
FUN $X,$Y,$Z (floating unordered): s($X) « [f($Y) || £($Z)].
FCMPE $X,$Y,$Z (floating compare with respect to epsilon)
s($X) « [£(8Y) = £($Z) (f(rE))] — [£($Y) < £($Z) (t(E))], see 4.2.2—(=21).
e FEQLE $X,$Y,$Z (floating equivalent with respect to epsilon):
s($X) < [£($Y) ~ £(8Z) (f(rE))], see 4.2.2—(24).
e FUNE $X,$Y,$Z (floating unordered with respect to epsilon):
s($X) « [£($Y) | £(32) (fE))].
e FIX $X,$Z or FIX $X,Y,$Z (convert floating to fixed): s($X) « int f($Z).
e FIXU $X,$Z or FIXU $X,Y,$Z (convert floating to fixed unsigned):
u($X) « (int f($Z)) mod 254.
e FLOT $X,$Z or FLOT $X,Y,$Z (convert fixed to floating): f($X) « s($Z).
e FLOTU $X,$Z or FLOTU $X,Y,$Z (convert fixed to floating unsigned):
f($X) + u($2).
e SFLOT $X,$Z or SFLOT $X,Y,$Z (convert fixed to short float):
f($X) « £(T) « s($2).
e SFLOTU $X,$Z or SFLOTU $X,Y,$Z (convert fixed to short float unsigned):
£($X) « £(T) « u($7).
e LDSF $X,$Y,$Z or LDSF $X,A (load short float): f($X) < f(My[A]).
e STSF $X,$Y,$Z or STSF $X,A (store short float): f(My[A]) + f($X).
Assignment to a floating point quantity uses the current rounding mode to
determine the appropriate value when an exact value cannot be assigned. Four
rounding modes are supported: 1 (ROUND_OFF), 2 (ROUND_UP), 3 (ROUND_DOWN),
and 4 (ROUND_NEAR). The Y field of FSQRT, FINT, FIX, FIXU, FLOT, FLOTU, SFLOT,
and SFLOTU can be used to specify a rounding mode other than the current one,
if desired. For example, FIX $X,ROUND_UP, $Z sets s($X) < [f($Z)]. Operations
SFLOT and SFLOTU first round as if storing into an anonymous tetrabyte T, then
they convert that number to octabyte form.

The ‘int’ operation rounds to an integer. The operation yrem z is defined
to be y — nz, where n is the nearest integer to y/z, or the nearest even integer
in case of a tie. Special rules apply when the operands are infinite or NaN, and
special conventions govern the sign of a zero result. The values +0.0 and —0.0
have different floating point representations, but FEQL calls them equal. All such
technicalities are explained in the MMIXware document, and Section 4.2 explains
why the technicalities are important.

Immediate constants. Programs often need to deal with small constant
numbers. For example, we might want to add or subtract 1 from a register,
or we might want to shift by 32, etc. In such cases it’s a nuisance to load the
small constant from memory into another register. So MMIX provides a general
mechanism by which such constants can be obtained “immediately” from an

13

14 BASIC CONCEPTS 1.3.1

instruction itself: Every instruction we have discussed so far has a variant in
which 87 is replaced by the number Z, unless the instruction treats $Z as a
floating point number.

For example, ‘ADD $X,$Y,$Z’ has a counterpart ‘ADD $X,$Y,Z’, meaning
s($X) « s($Y) + Z; ‘SRU $X,$Y,$Z’ has a counterpart ‘SRU $X,$Y,Z’, meaning
u($X) « |u($Y)/2%]; ‘FLOT $X,$Z" has a counterpart ‘FLOT $X,Z’, meaning
f($X) + Z. But ‘FADD $X,$Y,$Z’ has no immediate counterpart.

The opcode for ‘ADD $X,$Y,$Z’ is #20 and the opcode for ‘ADD $X,$Y,Z’
is #21; we use the same symbol ADD in both cases for simplicity. In general the
opcode for the immediate variant of an operation is one greater than the opcode
for the register variant.

Several instructions also feature wyde immediate constants, which range
from #0000 = 0 to #f£fff = 65535. These constants, which appear in the YZ
bytes, can be shifted into the high, medium high, medium low, or low wyde
positions of an octabyte.

SETH $X,YZ (set high wyde): u($X) « YZ x 248,
SETMH $X,YZ (set medium high wyde): u($X) + YZ x 232,
SETML $X,YZ (set medium low wyde): u($X) < YZ x 216.
SETL $X,YZ (set low wyde): u($X) « YZ.
INCH $X,YZ (increase by high wyde): u($X) « (u($X) 4+ YZ x 24¥) mod 2%4.
INCMH $X,YZ (increase by medium high wyde):
u($X) < (u($X) + YZ x 23%) mod 254.
e INCML $X,YZ (increase by medium low wyde):
u($X) < (u($X) + YZ x 2!%) mod 254.
e INCL $X,YZ (increase by low wyde): u($X) < (u($X) + YZ) mod 25.
e ORH $X,YZ (bitwise or with high wyde): v($X) + v($X) V v(YZ < 48).
e ORMH $X,YZ (bitwise or with medium high wyde):
v($X) + v($X) Vv(YZ <« 32).
e ORML $X,YZ (bitwise or with medium low wyde):
v($X) + v($X) V v(YZ < 16).
e ORL $X,YZ (bitwise or with low wyde): v($X) < v($X) V v(YZ).
e ANDNH $X,YZ (bitwise and-not high wyde): v($X) « v($X) A ¥(YZ < 48).
e ANDNMH $X,YZ (bitwise and-not medium high wyde):
v($X) + v(8X) AV(YZ < 32).
e ANDNML $X,YZ (bitwise and-not medium low wyde):
v($X) + v(8X) AV(YZ < 16).
e ANDNL $X,YZ (bitwise and-not low wyde): v($X) + v($X) A v(YZ).
Using at most four of these instructions, we can get any desired octabyte into a
register without loading anything from the memory. For example, the commands

SETH $0,#0123; INCMH $0,#4567; INCML $0,#89ab; INCL $0,#cdef

put #01234567 89ab cdef into register $0.
The MMIX assembly language allows us to write SET as an abbreviation for
SETL, and SET $X,$Y as an abbreviation for the common operation OR $X,$Y,0.

14

1.3.1° DESCRIPTION OF MMIX 15

Jumps and branches. Instructions are normally executed in their natural
sequence. In other words, the command that is performed after MMIX has obeyed
the tetrabyte in memory location @ is normally the tetrabyte found in memory
location @ 4 4. (The symbol @ denotes the place where we’re “at.”) But jump
and branch instructions allow this sequence to be interrupted.

e JMP RA (jump): @ < RA.

Here RA denotes a three-byte relative address, which could be written more
explicitly as @+4+«XYZ, namely XYZ tetrabytes following the current location Q.
For example, ‘JMP @+4*2’ is a symbolic form for the tetrabyte #£0000002; if this
instruction appears in location #1000, the next instruction to be executed will
be the one in location #1008. We might in fact write ‘JMP #1008’; but then the
value of XYZ would depend on the location jumped from.

Relative offsets can also be negative, in which case the opcode increases
by 1 and XYZ is the offset plus 224. For example, ‘JMP @-4%2’ is the tetrabyte
#f1fffffe. Opcode #£0 tells the computer to “jump forward” and opcode #£f1
tells it to “jump backward,” but we write both as JMP. In fact, we usually
write simply ‘JMP Addr’ when we want to jump to location Addr, and the MMIX
assembly program figures out the appropriate opcode and the appropriate value
of XYZ. Such a jump will be possible unless we try to stray more than about 67
million bytes from our present location.

e GO $X,$Y,$Z (go): u($X) + @ + 4, then @ « A.

The GO instruction allows us to jump to an absolute address, anywhere in mem-
ory; this address A is calculated by formula (5), exactly as in the load and store
commands. Before going to the specified address, the location of the instruction
that would ordinarily have come next is placed into register $X. Therefore we
could return to that location later by saying, for example, ‘GO $X,$X,0’, with
Z = 0 as an immediate constant.

BN $X,RA (branch if negative): if s($X) < 0, set @ <— RA.

BZ $X,RA (branch if zero): if $X =0, set @ <~ RA.

BP $X,RA (branch if positive): if s(3X) > 0, set @ +— RA.

BOD $X,RA (branch if odd): if s(3X) mod 2 = 1, set @ <— RA.

BNN $X,RA (branch if nonnegative): if s($X) > 0, set @ < RA.

BNZ $X,RA (branch if nonzero): if $X # 0, set @ < RA.

BNP $X,RA (branch if nonpositive): if s($X) < 0, set @ <— RA.

e BEV $X,RA (branch if even): if s($X) mod 2 = 0, set @ + RA.

A branch instruction is a conditional jump that depends on the contents of
register $X. The range of destination addresses RA is more limited than it was
with JMP, because only two bytes are available to express the relative offset; but
still we can branch to any tetrabyte between @ — 28 and @ + 218 — 4,

PBN $X,RA (probable branch if negative): if s($X) < 0, set @ <~ RA.

PBZ $X,RA (probable branch if zero): if $X = 0, set @ + RA.

PBP $X,RA (probable branch if positive): if s($X) > 0, set @ <~ RA.
PBOD $X,RA (probable branch if odd): if s($X) mod 2 =1, set @ + RA.
PBNN $X,RA (probable branch if nonnegative): if s($X) > 0, set @ < RA.

15

16 BASIC CONCEPTS 1.3.1

e PBNZ $X,RA (probable branch if nonzero): if $X # 0, set @ < RA.

e PBNP $X,RA (probable branch if nonpositive): if s($X) < 0, set @ < RA.

e PBEV $X,RA (probable branch if even): if $($X) mod 2 = 0, set @ < RA.
High-speed computers usually work fastest if they can anticipate when a branch
will be taken, because foreknowledge helps them look ahead and get ready for
future instructions. Therefore MMIX encourages programmers to give hints about
whether branching is likely or not. Whenever a branch is expected to be taken
more than half of the time, a wise programmer will say PB instead of B.

*Subroutine calls. MMIX also has several instructions that facilitate efficient
communication between subprograms, via a register stack. The details are some-
what technical and we will defer them until Section 1.4"; an informal description
will suffice here. Short programs do not need to use these features.

e PUSHJ $X,RA (push registers and jump): push(X) and set rJ + @ + 4, then
set @ + RA.
e PUSHGO $X,$Y,$Z (push registers and go): push(X) and set rJ < @ + 4, then

set @ « A.

The special return-jump register rJ is set to the address of the tetrabyte following
the PUSH command. The action “push(X)” means, roughly speaking, that local
registers $0 through $X are saved and made temporarily inaccessible. What
used to be $(X+1) is now $0, what used to be $(X+2) is now $1, etc. But
all registers $k& for k£ > rG remain unchanged; rG is the special global threshold
register, whose value always lies between 32 and 255, inclusive.

Register $k is called global if k > rG. It is called local if k < rL; here rL is the
special local threshold register, which tells how many local registers are currently
active. Otherwise, namely if rL. < k < rG, register $% is called marginal, and
$% is equal to zero whenever it is used as a source operand in a command. If
a marginal register $k is used as a destination operand in a command, rL is
automatically increased to k + 1 before the command is performed, thereby
making $k local.

e POP X,YZ (pop registers and return): pop(X), then @ + rJ+ 4 xYZ.

Here “pop(X)” means, roughly speaking, that all but X of the current local
registers become marginal, and then the local registers hidden by the most recent
“push” that has not yet been “popped” are restored to their former values. Full
details appear in Section 1.4", together with numerous examples.

e SAVE $X,0 (save process state): u($X) « context.

e UNSAVE $Z (restore process state): context + u($Z).

The SAVE instruction stores all current registers in memory at the top of the
register stack, and puts the address of the topmost stored octabyte into u($X).
Register $X must be global; that is, X must be > rG. All of the currently local
and global registers are saved, together with special registers like rA, rD, rE,
rG, rH, rJ, rM, rR, and several others that we have not yet discussed. The
UNSAVE instruction takes the address of such a topmost octabyte and restores
the associated context, essentially undoing a previous SAVE. The value of rL is
set to zero by SAVE, but restored by UNSAVE. MMIX has special registers called

16

1.3.1° DESCRIPTION OF MMIX 17

the register stack offset (rO) and register stack pointer (rS), which control the
PUSH, POP, SAVE, and UNSAVE operations. (Again, full details can be found in
Section 1.4".)

*System considerations. Several opcodes, intended primarily for ultrafast
and/or parallel versions of the MMIX architecture, are of interest only to ad-
vanced users, but we should at least mention them here. Some of the associated
operations are similar to the “probable branch” commands, in the sense that
they give hints to the machine about how to plan ahead for maximum efficiency.
Most programmers do not need to use these instructions, except perhaps SYNCID.

e LDUNC $X,$Y,$Z (load octa uncached): s($X) « s(Ms[A]).

e STUNC $X,$Y,$Z (store octa uncached): s(Ms[A]) + s($X).

These commands perform the same operations as LDO and STO, but they also
inform the machine that the loaded or stored octabyte and its near neighbors
will probably not be read or written in the near future.

e PRELD X,$Y,$Z (preload data).
Says that many of the bytes M[A] through M[A + X] will probably be loaded or
stored in the near future.

e PREST X,$Y,$Z (prestore data).
Says that all of the bytes M[A] through M[A + X] will definitely be written
(stored) before they are next read (loaded).

e PREGO X,$Y,$Z (prefetch to go).
Says that many of the bytes M[A] through M[A + X] will probably be used as
instructions in the near future.

e SYNCID X,$Y,$Z (synchronize instructions and data).

Says that all of the bytes M[A] through M[A + X] must be fetched again before
being interpreted as instructions. MMIX is allowed to assume that a program’s
instructions do not change after the program has begun, unless the instructions
have been prepared by SYNCID. (See exercise 57.)

e SYNCD X,$Y,$Z (synchronize data).

Says that all of bytes M[A] through M[A 4 X] must be brought up to date in
the physical memory, so that other computers and input/output devices can
read them.

e SYNC XYZ (synchronize).
Restricts parallel activities so that different processors can cooperate reliably;
see MMIXware for details. XYZ must be 0, 1, 2, or 3.

e CSWAP $X,$Y,$Z (compare and swap octabytes).

If u(Mg[A]) = u(rP), where rP is the special prediction register, set u(Mg[A]) +
u($X) and u($X) < 1. Otherwise set u(rP) < u(Ms[A]) and u($X) « 0. This
is an atomic (indivisible) operation, useful when independent computers share a
common memory.

e LDVTS $X,$Y,$Z (load virtual translation status).
This instruction, described in MMIXware, is for the operating system only.

17

18 BASIC CONCEPTS 1.3.1

*Interrupts. The normal flow of instructions from one tetrabyte to the next
can be changed not only by jumps and branches but also by less predictable
events like overflow or external signals. Real-world machines must also cope
with such things as security violations and hardware failures. MMIX distinguishes
two kinds of program interruptions: “trips” and “traps.” A trip sends control
to a trip handler, which is part of the user’s program; a trap sends control to a
trap handler, which is part of the operating system.

Eight kinds of exceptional conditions can arise when MMIX is doing arith-
metic, namely integer divide check (D), integer overflow (V), float-to-fix over-
flow (W), invalid floating operation (I), floating overflow (O), floating under-
flow (U), floating division by zero (Z), and floating inexact (X). The special
arithmetic status register rA holds current information about all these excep-
tions. The eight bits of its rightmost byte are called its event bits, and they are
named D_BIT (#80), V_BIT (#40), ..., X_BIT (#01), in order DVWIOUZX.

The eight bits just to the left of the event bits in rA are called the enable
bits; they appear in the same order DVWIOUZX. When an exceptional condi-
tion occurs during some arithmetic operation, MMIX looks at the corresponding
enable bit before proceeding to the next instruction. If the enable bit is 0, the
corresponding event bit is set to 1; otherwise the machine invokes a trip handler
by “tripping” to location #10 for exception D, #20 for exception V, ..., #80
for exception X. Thus the event bits of rA record the exceptions that have not
caused trips. (If more than one enabled exception occurs, the leftmost one takes
precedence. For example, simultaneous O and X is handled by O.)

The two bits of rA just to the left of the enable bits hold the current rounding
mode, mod 4. The other 46 bits of rA should be zero. A program can change
the setting of rA at any time, using the PUT command discussed below.

e TRIP X,Y,Z or TRIP X,YZ or TRIP XYZ (trip).
This command forces a trip to the handler at location #00.

Whenever a trip occurs, MMIX uses five special registers to record the current
state: the bootstrap register tB, the where-interrupted register tW, the execution
register rX, the Y operand register rY, and the Z operand register rZ. First rB
is set to $255, then $255 is set to rJ, and rW is set to @ + 4. The left half of rX
is set to #80000000, and the right half is set to the instruction that tripped. If
the interrupted instruction was not a store command, rY is set to $Y and rZ is
set to $Z (or to Z in case of an immediate constant); otherwise rY is set to A
(the memory address of the store command) and rZ is set to $X (the quantity
to be stored). Finally control passes to the handler by setting @ to the handler
address (00 or #10 or --- or #80).

e TRAP X,Y,Z or TRAP X,YZ or TRAP XYZ (trap).

This command is analogous to TRIP, but it forces a trap to the operating system.
Special registers rBB, rtWW, rXX, rYY, and rZZ take the place of rB, rW, rX,
rY, and rZ; the special trap address register r'T supplies the address of the trap
handler, which is placed in @. Section 1.3.2" describes several TRAP commands
that provide simple input/output operations. The normal way to conclude a

18

1.3.1° DESCRIPTION OF MMIX 19

program is to say ‘TRAP 0’; this instruction is the tetrabyte #00000000, so you
might run into it by mistake.

The MMIXware document gives further details about external interrupts,
which are governed by the special interrupt mask register tK and interrupt
request register rQ. Dynamic traps, which arise when rK A rQ # 0, are handled
at address rTT instead of rT.

e RESUME O (resume after interrupt).

If s(rX) is negative, MMIX simply sets @ <~ rW and takes its next instruction
from there. Otherwise, if the leading byte of rX is zero, MMIX sets @ +— rW —4
and executes the instruction in the lower half of rX as if it had appeared in
that location. (This feature can be used even if no interrupt has occurred.
The inserted instruction must not itself be RESUME.) Otherwise MMIX performs
special actions described in the MMIXware document and of interest primarily to
the operating system; see exercise 1.4.3'-14.

The complete instruction set. Table 1 shows the symbolic names of all 256
opcodes, arranged by their numeric values in hexadecimal notation. For example,
ADD appears in the upper half of the row labeled #2x and in the column labeled
#0 at the top, so ADD is opcode #20; ORL appears in the lower half of the row
labeled #Ex and in the column labeled #B at the bottom, so ORL is opcode *EB.

Table 1 actually says ‘ADD[I]’, not ‘ADD’, because the symbol ADD really
stands for two opcodes. Opcode #20 arises from ADD $X,$Y,$Z using register $Z,
while opcode #21 arises from ADD $X,$Y,Z using the immediate constant Z.
When a distinction is necessary, we say that opcode #20 is ADD and opcode #21
is ADDI (“add immediate”); similarly, #FO is JMP and #F1 is JMPB (“jump back-
ward”). This gives every opcode a unique name. However, the extra I and B are
generally dropped for convenience when we write MMIX programs.

We have discussed nearly all of MMIX’s opcodes. Two of the stragglers are

e GET $X,Z (get from special register): u($X) < u(g[Z]), where 0 < Z < 32.

e PUT X,$Z (put into special register): u(g[X]) < u($Z), where 0 < X < 32.
Each special register has a code number between 0 and 31. We speak of registers
rA, rB, ..., as aids to human understanding; but register rA is really g[21] from
the machine’s point of view, and register rB is really g[0], etc. The code numbers
appear in Table 2 on page 21.

GET commands are unrestricted, but certain things cannot be PUT: No value
can be put into rG that is greater than 255, less than 32, or less than the current
setting of rL. No value can be put into rA that is greater than #3ffff. If a
program tries to increase rLL with the PUT command, rL. will stay unchanged.
Moreover, a program cannot PUT anything into rC, rN, rO, rS, rI, r'T, r'TT, rK,
rQ, rU, or r'V; these “extraspecial” registers have code numbers in the range 8-18.

Most of the special registers have already been mentioned in connection with
specific instructions, but MMIX also has a “clock register” or cycle counter, rC,
which keeps advancing; an interval counter, rI, which keeps decreasing, and
which requests an interrupt when it reaches zero; a serial number register, N,
which gives each MMIX machine a unique number; a usage counter, rU, which

19

20 BASIC CONCEPTS 1.3.1
Table 1
THE OPCODES OF MMIX
#o #1 #9 #3 #4 #5 #6 #7
#0 TRAP 50 FCMP FUN » FEQL » FADD 4v FIX 4v FSUB 4v FIXU 40 #0
X X
FLOT[I] 4v FLOTU[I] 4v SFLOT[I] 4v SFLOTU[I] 4v
#1 FMUL 4v FCMPE 4v FUNE » FEQLE 4v FDIV 40v | FSQRT 40v FREM 4v FINT 4v #1
X X
MUL[I] 10v MULU[I] 10v DIV[I] 60v DIVUI[I] 60v
ADD[I] » ADDU[I] v SUB[I] v SUBU[I] v
#2x #2x
2ADDU[I] » 4ADDU[I] » 8ADDU[I] o 16ADDU[I] o
CMP[I] v CMPU[I] o NEG[I] » NEGU[I] v
#3x #3x
SL[I] v SLU[I] v SR[I] » SRU[I] v
BN[B] v+4n BZ[B] v+4r BP[B] v+4r BOD[B] v+n
#4x #4x
BNN[B] v+n BNZ[B] v+r BNP [B] v+n BEV[B] v+4n
5 PBN[B] 3v—= PBZ[B] 3v—n PBP[B] 3v—n PBOD[B] 3v-n 5
X X
PBNN[B] 3v—= PBNZ[B] 3v—= PBNP [B] 3v—= PBEV[B] 3v—=
CSN[I] v CSZI[I] v CSP[I] v CSOD[I] v
#6x #6x
CSNN[I] v CSNZ[I] v CSNP[I] v CSEVI[I] v
ZSN[I] v ZSZ[I] » ZSP[I] v ZSO0D[I] v
#Tx #Tx
ZSNN[I] » ZSNZ[I] v ZSNP[I] v ZSEVI[I] v
g LDBI[I] p+v LDBU[I] u+tv LDW[I] ptv LDWU[I] p+tv #8
X X
LDT[I] p+v LDTU[I] p+v LDO[I] p+to LDOULI] p+v
#g LDSF[I] p+v LDHT[I] p+o CSWAP [I] 2u+2v LDUNCI[I] p+v #9
X X
LDVTSI[I] » PRELD[I] v PREGO[I] v GO[I] 3v
) STB[I] p+tv STBU[I] u+tv STW[I] u+to STWULI] u+v)
X X
STT[I] p+tv STTU[I] u+tv STO[I] u+tv STOULI] u+v
#B STSF[I] pu+tv STHT[I] p+v STCO[I] p+v STUNC[I] p+v #B
X X
SYNCD[I] » PREST[I] » SYNCID[I] o PUSHGO[I] 3v
OR[I] v ORN[I] o NOR[I] » XOR[I] v
#Cx #Cx
AND[I] » ANDN[I] v NAND[I] v NXOR[I] v
BDIF[I] v WDIF[I] v TDIF[I] v ODIF[I] v
#Dx #Dx
MUX[I] v SADD[I] v MOR[I] v MXORI[I] v
+E SETH v SETMH v SETML v SETL v INCH v INCMH » INCML v INCL v *E
X X
ORH v ORMH v ORML v ORL » ANDNH « ANDNMH » | ANDNML o ANDNL «
JMP[B] » PUSHJ[B] v GETA[B] v PUTI[I] v
#Fx #Fx
POP 3v RESUME 5v [UN]SAVE 20pu+v SYNC » SWYM v GET v TRIP 50
#8 #9 #A | #B #C #D #E #F

m = 2v if the branch is taken, 7 = 0 if the branch is not taken

increases by 1 whenever specified opcodes are executed; and a virtual translation
register, rV, which defines a mapping from the “virtual” 64-bit addresses used in
programs to the “actual” physical locations of installed memory. These special
registers help make MMIX a complete, viable machine that could actually be
built and run successfully; but they are not of importance to us in this book.
The MMIXware document explains them fully.

e GETA $X,RA (get address): u($X) «+ RA.
This instruction loads a relative address into register $X, using the same con-

ventions as the relative addresses in branch commands. For example, GETA $0,@
will set $0 to the address of the instruction itself.

20

1.3.1° DESCRIPTION OF MMIX 21

Table 2
SPECIAL REGISTERS OF MMIX
code saved? put?

rA arithmetic status register 21 v v
rB bootstrap register (trip) 0 v v
rC cyclecounter 8
rD dividend registero 1 v v
rE epsilon register02 v v
rF failure location register 22 v
rG global threshold register 19 v v
rH himult register 3 v v
rl interval counter 12
rJ return-jump register 4 v v
rK interrupt mask register 15
rL. local threshold register 20 v v
rM multiplex mask register b v v
rN serial numbero o009
rO register stack offset 10
rP prediction register 23 v v
rQ interrupt request register 16
rR remainder register 6 v v
rS register stack pointer 11
r'T trap address register 13
rU wusagecounter 17
rV virtual translation register 18
rW where-interrupted register (trip) 24 v v
rX execution register (trip) 25 v v
rY Y operand (trip) 26 v v
rZ Zoperand (trip)27 v v
rBB bootstrap register (trap) 7 v
rTT dynamic trap address register 14
rWW where-interrupted register (trap) 28 v
rXX execution register (trap) 29 v
rYY Y operand (trap) 30 v
rZZ Zoperand (trap) 31 v

e SWYM X,Y,Z or SWYM X,YZ or SWYM XYZ (sympathize with your machinery).
The last of MMIX’s 256 opcodes is, fortunately, the simplest of all. In fact, it
is often called a no-op, because it performs no operation. It does, however,
keep the machine running smoothly, just as real-world swimming helps to keep
programmers healthy. Bytes X, Y, and Z are ignored.

Timing. In later parts of this book we will often want to compare different
MMIX programs to see which is faster. Such comparisons aren’t easy to make,
in general, because the MMIX architecture can be implemented in many different
ways. Although MMIX is a mythical machine, its mythical hardware exists in
cheap, slow versions as well as in costly high-performance models. The running
time of a program depends not only on the clock rate but also on the number of

21

22 BASIC CONCEPTS 1.3.1

functional units that can be active simultaneously and the degree to which they
are pipelined; it depends on the techniques used to prefetch instructions before
they are executed; it depends on the size of the random-access memory that is
used to give the illusion of 26 virtual bytes; and it depends on the sizes and
allocation strategies of caches and other buffers, etc., etc.

For practical purposes, the running time of an MMIX program can often be
estimated satisfactorily by assigning a fixed cost to each operation, based on
the approximate running time that would be obtained on a high-performance
machine with lots of main memory; so that’s what we will do. Each operation
will be assumed to take an integer number of v, where v (pronounced “oops”)*
is a unit that represents the clock cycle time in a pipelined implementation.
Although the value of v decreases as technology improves, we always keep up with
the latest advances because we measure time in units of v, not in nanoseconds.
The running time in our estimates will also be assumed to depend on the number
of memory references or mems that a program uses; this is the number of load
and store instructions. For example, we will assume that each LDO (load octa)
instruction costs u + v, where u is the average cost of a memory reference. The
total running time of a program might be reported as, say, 35+ 1000v, meaning
“35 mems plus 1000 oops.” The ratio /v has been increasing steadily for many
years; nobody knows for sure whether this trend will continue, but experience
has shown that p and v deserve to be considered independently.

Table 1, which is repeated also in the endpapers of this book, displays the
assumed running time together with each opcode. Notice that most instructions
take just 1v, while loads and stores take pu+v. A branch or probable branch takes
1v if predicted correctly, 3v if predicted incorrectly. Floating point operations
usually take 4v each, although FDIV and FSQRT cost 40v. Integer multiplication
takes 10v; integer division weighs in at 60v.

Even though we will often use the assumptions of Table 1 for seat-of-the-
pants estimates of running time, we must remember that the actual running time
might be quite sensitive to the ordering of instructions. For example, integer
division might cost only one cycle if we can find 60 other things to do between
the time we issue the command and the time we need the result. Several LDB
(load byte) instructions might need to reference memory only once, if they refer
to the same octabyte. Yet the result of a load command is usually not ready
for use in the immediately following instruction. Experience has shown that
some algorithms work well with cache memory, and others do not; therefore u
is not really constant. Even the location of instructions in memory can have
a significant effect on performance, because some instructions can be fetched
together with others. Therefore the MMIXware package includes not only a simple
simulator, which calculates running times by the rules of Table 1, but also a
comprehensive meta-simulator, which runs MMIX programs under a wide range of
different technological assumptions. Users of the meta-simulator can specify the

* The Greek letter upsilon (v) is wider than an italic letter vee (v), but the author admits
that this distinction is rather subtle. Readers who prefer to say vee instead of oops are free to
do as they wish. The symbol is, however, an upsilon.

22

1.3.1° DESCRIPTION OF MMIX 23

characteristics of the memory bus and the parameters of such things as caches for
instructions and data, virtual address translation, pipelining and simultaneous
instruction issue, branch prediction, etc. Given a configuration file and a program
file, the meta-simulator determines precisely how long the specified hardware
would need to run the program. Only the meta-simulator can be trusted to give
reliable information about a program’s actual behavior in practice; but such
results can be difficult to interpret, because infinitely many configurations are
possible. That’s why we often resort to the much simpler estimates of Table 1.

No benchmark result should ever be taken at face value.
— BRIAN KERNIGHAN and CHRISTOPHER VAN WYK (1998)

MMIX versus reality. A person who understands the rudiments of MMIX
programming has a pretty good idea of what today’s general-purpose computers
can do easily; MMIX is very much like all of them. But MMIX has been idealized
in several ways, partly because the author has tried to design a machine that
is somewhat “ahead of its time” so that it won’t become obsolete too quickly.
Therefore a brief comparison between MMIX and the computers actually being
built at the turn of the millennium is appropriate. The main differences between
MMIX and those machines are:

e Commercial machines do not ignore the low-order bits of memory addresses,
as MMIX does when accessing Mg[A]; they usually insist that A be a multiple
of 8. (We will find many uses for those precious low-order bits.)

e Commercial machines are usually deficient in their support of integer arith-
metic. For example, they almost never produce the true quotient |z/y] and
true remainder x mod y when x is negative or y is negative; they often throw
away the upper half of a product. They don’t treat left and right shifts as
strict equivalents of multiplication and division by powers of 2. Sometimes
they do not implement division in hardware at all; and when they do handle
division, they usually assume that the upper half of the 128-bit dividend is
zero. Such restrictions make high-precision calculations more difficult.

e Commercial machines do not perform FINT and FREM efficiently.

e Commercial machines do not (yet?) have the powerful MOR and MXOR opera-
tions. They usually have a half dozen or so ad hoc instructions that handle
only the most common special cases of MOR.

e Commercial machines rarely have more than 64 general-purpose registers. The
256 registers of MMIX significantly decrease program length, because many
variables and constants of a program can live entirely in those registers
instead of in memory. Furthermore, MMIX’s register stack is more flexible
than the comparable mechanisms in existing computers.

All of these pluses for MMIX have associated minuses, because computer design
always involves tradeoffs. The primary design goal for MMIX was to keep the
machine as simple and clean and consistent and forward-looking as possible,
without sacrificing speed and realism too greatly.

23

v

24 BASIC CONCEPTS 1.3.1

And now | see with eye serene
The very pulse of the machine.

— WILLIAM WORDSWORTH, She Was a Phantom of Delight (1804)

Summary. MMIX is a programmer-friendly computer that operates on 64-bit
quantities called octabytes. It has the general characteristics of a so-called RISC
(“reduced instruction set computer”); that is, its instructions have only a few
different formats (OP X,Y,Z or OP X,YZ or OP XYZ), and each instruction
either transfers data between memory and a register or involves only registers.
Table 1 summarizes the 256 opcodes and their default running times; Table 2
summarizes the special registers that are sometimes important.

The following exercises give a quick review of the material in this section.
Most of them are quite simple, and the reader should try to do nearly all of them.

EXERCISES
1. [00] The binary form of 2009 is (11111011001)2; what is 2009 in hexadecimal?

2. [05] Which of the letters {A,B,C,D,E,F,a,b,c,d,e, £} are odd when considered as
(a) hexadecimal digits? (b) ASCII characters?

3. [10] Four-bit quantities — half-bytes, or hexadecimal digits — are often called
nybbles. Suggest a good name for two-bit quantities, so that we have a complete binary
nomenclature ranging from bits to octabytes.

4. [15] A kilobyte (kB or KB) is 1000 bytes, and a megabyte (MB) is 1000 kB. What
are the official names and abbreviations for larger numbers of bytes?

5. [M13] If « is any string of Os and 1s, let s(a) and u(a) be the integers that it
represents when regarded as a signed or unsigned binary number. Prove that, if z is
any integer, we have

z =s(a) if and only if z =u(a) (modulo 2") and —2"7! <z < 2”71,

where n is the length of a.

6. [M20] Prove or disprove the following rule for negating an n-bit number in two’s
complement notation: “Complement all the bits, then add 1.” (For example, #0...01
becomes #£ ... fe, then #£...£f; also #£...£f becomes #0...00, then #0...01.)

7. [M15] Could the formal definitions of LDHT and STHT have been stated as
s($X) < s(M4[A]) x 2°? and s(M4[A]) « [s(8X)/2%],
thus treating the numbers as signed rather than unsigned?

8. [10] Ifregisters $Y and $Z represent numbers between 0 and 1 in which the binary
radix point is assumed to be at the left of each register, (7) illustrates the fact that MULU
forms a product in which the assumed radix point appears at the left of register rH.
Suppose, on the other hand, that $Z is an integer, with the radix point assumed at its
right, while §Y is a fraction between 0 and 1 as before. Where does the radix point lie
after MULU in such a case?

9. [M10] Does the equation s(§Y) = s($X) - s($Z) + s(rR) always hold after the
instruction DIV $X,$Y,$Z has been performed?

24

v

v

v

v

1.3.1° DESCRIPTION OF MMIX 25

10. [M16] Give an example of DIV in which overflow occurs.

11. [M16] True or false: (a) Both MUL $X,$Y,$Z and MULU $X,$Y,$Z produce the same
result in $X. (b) If register rD is zero, both DIV $X,$Y,$Z and DIVU $X,$Y,$Z produce
the same result in $X.

12. [M20] Although ADDU $X,$Y,$Z never signals overflow, we might want to know if
a carry occurs at the left when adding $Y to $Z. Show that the carry can be computed
with two further instructions.

13. [M21] Suppose MMIX had no ADD command, only its unsigned counterpart ADDU.
How could a programmer tell whether overflow occurred when computing s($Y)+s($2)?
14. [M21] Suppose MMIX had no SUB command, only its unsigned counterpart SUBU.
How could a programmer tell whether overflow occurred when computing s($Y)—s($Z)?

15. [M25] The product of two signed octabytes always lies between —2'?® and 226,
so it can always be expressed as a signed 16-byte quantity. Explain how to calculate
the upper half of such a signed product.

16. [M28] Suppose MMIX had no MUL command, only its unsigned counterpart MULU.
How could a programmer tell whether overflow occurred when computing s($Y) xs($Z)?

17. [M22] Prove that unsigned integer division by 3 can always be done by multipli-
cation: If register $Y contains any unsigned integer y, and if register $1 contains the
constant *aaaaaaaaaaaa aaab, then the sequence

MULU $0,$Y,$1; GET $0,rH; SRU $X,$0,1

puts |y/3] into register $X.

18. [M23] Continuing the previous exercise, prove or disprove that the instructions
MULU $0,$Y,$1; GET $0,rH; SRU $X,$0,2

put |y/5] in $X if $1 is an appropriate constant.
19. [M26] Continuing exercises 17 and 18, prove or disprove the following statement:
Unsigned integer division by a constant can always be done using “high multiplication”
followed by a right shift. More precisely, if 2° < z < 2°T! we can compute |y/z]| by
computing |ay/2547¢], where a = [2547¢/2], for 0 < y < 24,
20. [16] Show that two cleverly chosen MMIX instructions will multiply by 25 faster
than the single instruction MUL $X,$Y,25, if we assume that overflow will not occur.
21. [15] Describe the effects of SL, SLU, SR, and SRU when the unsigned value in
register $Z is 64 or more.
22. [15] Mr. B. C. Dull wrote a program in which he wanted to branch to location
Casel if the signed number in register $1 was less than the signed number in register $2.
His solution was to write ‘SUB $0,$1,$2; BN $0,Casel’.

What terrible mistake did he make? What should he have written instead?
23. [10] Continuing the previous exercise, what should Dull have written if his prob-
lem had been to branch if s($1) was less than or equal to s($2)?

24. [M10] If we represent a subset S of {0,1,...,63} by the bit vector
(loes), [1e8], ..., [63€5)),

the bitwise operations A and V correspond respectively to set intersection (S N7T) and
set union (S UT). Which bitwise operation corresponds to set difference (S\ T')?

25

26 BASIC CONCEPTS 1.3.1

25. [10] The Hamming distance between two bit vectors is the number of positions

in which they differ. Show that two MMIX instructions suffice to set register $X equal

to the Hamming distance between v($Y) and v($Z).

26. [10] What’s a good way to compute 64 bit differences, v($X) + v(8Y) = v($Z)?
» 27. [20] Show how to use BDIF to compute the mazimum and minimum of eight bytes

at a time: b($X) + max(b($Y),b($Z)), b(§W) + min(b($Y),b(8Z)).

28. [16] How would you calculate eight absolute pizel differences |b($Y) — b($Z)|

simultaneously?

29. [21] The operation of saturating addition on n-bit pixels is defined by the formula
y+2z = min(2" — 1,y + 2).

Show that a sequence of three MMIX instructions will set b($X) < b($Y) + b($Z).

» 30. [25] Suppose register $0 contains eight ASCII characters. Find a sequence of three
MMIX instructions that counts the number of blank spaces among those characters. (You
may assume that auxiliary constants have been preloaded into other registers. A blank
space is ASCII code #20.)

31. [22] Continuing the previous exercise, show how to count the number of characters
in $0 that have odd parity (an odd number of 1 bits).

32. [M20] True or false: If C = A ¢ B then CT = BT ¢ AT. (See (11).)

33. [20] What is the shortest sequence of MMIX instructions that will cyclically shift
a register eight bits to the right? For example, #9e3779b97f 4a7c16 would become
#169e3779b97f4a7c.

34. [21] Given eight bytes of ASCII characters in $Z, explain how to convert them to
the corresponding eight wyde characters of Unicode, using only two MMIX instructions
to place the results in $X and $Y. How would you go the other way (back to ASCII)?

v

v

35. [22] Show that two cleverly chosen MOR instructions will reverse the left-to-right
order of all 64 bits in a given register $Y.

v

36. [20] Using only two instructions, create a mask that has #*£f in all byte positions
where $Y differs from $Z, #00 in all byte positions where $Y equals $Z.

37. [HM30] (Finite fields.) Explain how to use MXOR for arithmetic in a field of 256
elements; each element of the field should be represented by a suitable octabyte.

38. [20] What does the following little program do?

v

SETL $1,0; SR $2,$0,56; ADD $1,$1,%2; SLU $0,$0,8; PBNZ $0,0-4x*3.

v

39. [20] Which of the following equivalent sequences of code is faster, based on the
timing information of Table 17
a) BN $0,@+4*2; ADDU $1,$2,$3 versus ADDU $4,$2,$3; CSNN $1,$0,%$4.
b) BN $0,0+4%3; SET $1,$2; JMP @+4x2; SET $1,$3 versus
CSNN $1,$0,$2; CSN $1,$0,$3.
c) BN $0,0+4*3; ADDU $1,$2,$3; JMP @+4%2; ADDU $1,$4,$5 versus
ADDU $1,$2,$3; ADDU $6,%$4,$5; CSN $1,%$0,$6.
d,e,f) Same as (a), (b), and (c), but with PBN in place of BN.

40. [10] What happens if you GO to an address that is not a multiple of 47

26

1.3.1° DESCRIPTION OF MMIX 27

41. [20] True or false:

a) The instructions CSOD $X,$Y,0 and ZSEV $X,$Y,$X have exactly the same effect.
b) The instructions CMPU $X,$Y,0 and ZSNZ $X,$Y,1 have exactly the same effect.
¢) The instructions MOR $X,$Y,1 and AND $X,$Y,#ff have exactly the same effect.
d) The instructions MXOR $X,$Y,#80 and SR $X,$Y,56 have exactly the same effect.

42. [20] What is the best way to set register $1 to the absolute value of the number
in register $0, if $0 holds (a) a signed integer? (b) a floating point number?

v

43. [28] Given a nonzero octabyte in $Z, what is the fastest way to count how many
leading and trailing zero bits it has? (For example, #13£d8124£32434a2 has three
leading zeros and one trailing zero.)

> 44. [M25] Suppose you want to emulate 32-bit arithmetic with MMIX. Show that it is
easy to add, subtract, multiply, and divide signed tetrabytes, with overflow occurring
whenever the result does not lie in the interval [-23!..23),

45. [10] Think of a way to remember the sequence DVWIOUZX.

46. [05] The all-zeros tetrabyte #00000000 halts a program when it occurs as an MMIX
instruction. What does the all-ones tetrabyte *ffffffff do?

47. [05] What are the symbolic names of opcodes #*DF and #557?

48. [11] The text points out that opcodes LDO and LDOU perform exactly the same

operation, with the same efficiency, regardless of the operand bytes X, Y, and Z. What
other pairs of opcodes are equivalent in this sense?

v

49. [22] After the following “number one” program has been executed, what changes
to registers and memory have taken place? (For example, what is the final setting
of $17 of rA? of rB?)

NEG $1,1
STCO 1,%1,1
CMPU $1,%$1,1
STB $1,$1,%1
LDOU $1,$1,%1
INCH $1,1
16ADDU $1,$1,$1
MULU $1,$1,%1
PUT rA,1

STW $1,$1,1
SADD $1,$1,1
FLOT $1,%$1
PUT rB,$1
XO0R $1,$1,1
PBOD $1,0-4%*1
NOR $1,81,%1
SR $1,$1,1
SRU $1,%1,1 1

» 50. [14] What is the execution time of the program in the preceding exercise?

51. [14] Convert the “number one” program of exercise 49 to a sequence of tetrabytes
in hexadecimal notation.

52. [22] For each MMIX opcode, consider whether there is a way to set the X, Y, and Z
bytes so that the result of the instruction is precisely equivalent to SWYM (except that

27

28 BASIC CONCEPTS 1.3.1

the execution time may be longer). Assume that nothing is known about the contents
of any registers or any memory locations. Whenever it is possible to produce a no-op,
state how it can be done. Ezamples: INCL is a no-op if X =255 and Y =Z = 0. BZ is
ano-op if Y =0 and Z = 1. MULU can never be a no-op, since it affects rH.

- [19]
. [20] List all MMIX opcodes that can possibly change the value of rA.
- [21]

6. [28] Location #2000000000000000 contains a signed integer number, . Write
two programs that compute z'® in register $0. One program should use the minimum
number of MMIX memory locations; the other should use the minimum possible execution

time. Assume that z'3 fits into a single octabyte, and that all necessary constants have
been preloaded into global registers.

List all MMIX opcodes that can possibly change the value of rH.

List all MMIX opcodes that can possibly change the value of rL.

57. [20] When a program changes one or more of its own instructions in memory, it is
said to have self-modifying code. MMIX insists that a SYNCID command be issued before
such modified commands are executed. Explain why self-modifying code is usually
undesirable in a modern computer.

58. [50] Write a book about operating systems, which includes the complete design
of an NNIX kernel for the MMIX architecture.

Them fellers is a-mommixin' everything.
— V. RANDOLPH and G. P. WILSON, Down in the Holler (1953)

1.3.2°. The MMIX Assembly Language

A symbolic language is used to make MMIX programs considerably easier to read
and to write, and to save the programmer from worrying about tedious clerical
details that often lead to unnecessary errors. This language, MMIXAL (“MMIX
Assembly Language”), is an extension of the notation used for instructions in
the previous section. Its main features are the optional use of alphabetic names
to stand for numbers, and a label field to associate names with memory locations
and register numbers.

MMIXAL can readily be comprehended if we consider first a simple example.
The following code is part of a larger program; it is a subroutine to find the
maximum of n elements X[1], ..., X[n], according to Algorithm 1.2.10M.

Program M (Find the mazimum). Initially n is in register $0, and the address
of X[0] is in register x0, a global register defined elsewhere.

Assembled code Line no. LABEL opP EXPR Times Remarks
01 j IS $0 j
02 m Is $1 m
03 kk IS $2 8k
04 xk IS $3 X k]
05 t IS $255 Temp storage
06 LOC #100
#100: #39020003 07 Maximum SL kk,$0,3 1 MI1. Initialize. k < n, j < n.
#104: #8c01fe02 08 LDO m,x0,kk 1 m <« X|n].
#108: #£0000006 09 JMP DecrK 1 To M2 with k + n — 1.

28

1.3.2° THE MMIX ASSEMBLY LANGUAGE 29

#10c: #8c03fe02 10 Loop LDO xk,x0,kk n—1 M3. Compare.

#110: #30££0301 11 P t,xk,m n-1 ¢ [X[k]>m]—[X[k] <m]
#114: #5c££0003 12 PBNP t,Decrk n—1 ToMs>5 if X[k] <m.

#118: #c1010300 18 ChangeM SET m,xk A M4. Change m. m + X|[k].
#11c: #3d000203 14 SR j.kk,3 A j k.

#120: #25020208 15 DecrK SUB kk,kk,8 n Mb5. Decrease k. k <k —1.
#124: #6500ff fa 16 PBP kk,Loop n M2. All tested? To M3 if k>0.
#128: #£8020000 17 POP 2,0 1 Return to main program. |

This program is an example of several things simultaneously:

a) The columns headed “LABEL”, “OP”, and “EXPR” are of principal interest;
they contain a program in the MMIXAL symbolic machine language, and we shall
explain the details of this program below.

b) The column headed “Assembled code” shows the actual numeric machine
language that corresponds to the MMIXAL program. MMIXAL has been designed
so that any MMIXAL program can easily be translated into numeric machine
language; the translation is usually carried out by another computer program
called an assembly program or assembler. Thus, programmers can do all of their
machine language programming in MMIXAL, never bothering to determine the
equivalent numeric codes by hand. Virtually all MMIX programs in this book are
written in MMIXAL.

¢) The column headed “Line no.” is not an essential part of the MMIXAL pro-
gram; it is merely included with MMIXAL examples in this book so that we can
readily refer to parts of the program.

d) The column headed “Remarks” gives explanatory information about the
program, and it is cross-referenced to the steps of Algorithm 1.2.10M. The reader
should compare that algorithm (page 96) with the program above. Notice that a
little “programmer’s license” was used during the transcription into MMIX code;
for example, step M2 has been put last.

e) The column headed “Times” will be instructive in many of the MMIX pro-
grams we will be studying in this book; it represents the profile, the number
of times the instruction on that line will be executed during the course of the
program. Thus, line 10 will be performed n—1 times, etc. From this information
we can determine the length of time required to perform the subroutine; it is
nu + (5n + 4A + 5)v, where A is the quantity that was analyzed carefully in
Section 1.2.10. (The PBNP instruction costs (n — 1+ 2A4)v.)

Now let’s discuss the MMIXAL part of Program M. Line 01, ‘j IS $0’°, says
that symbol j stands for register $0; lines 02-05 are similar. The effect of lines
01 and 03 can be seen on line 14, where the numeric equivalent of the instruction
‘SR j,kk,3’ appears as #3d 000203, that is, ‘SR $0,$2,3".

Line 06 says that the locations for succeeding lines should be chosen sequen-
tially, beginning with #100. Therefore the symbol Maximum that appears in the
label field of line 07 becomes equivalent to the number #100; the symbol Loop
in line 10 is three tetrabytes further along, so it is equivalent to #10c.

On lines 07 through 17 the OP field contains the symbolic names of MMIX
instructions: SL, LDO, etc. But the symbolic names IS and LOC, found in

29

30 BASIC CONCEPTS 1.3.2°

the OP column of lines 01-06, are somewhat different; IS and LOC are called
pseudo-operations, because they are operators of MMIXAL but not operators of
MMIX. Pseudo-operations provide special information about a symbolic program,
without being instructions of the program itself. Thus the line ‘j IS $0’ only
talks about Program M; it does not signify that any variable is to be set equal to
the contents of register $0 when the program is run. Notice that no instructions
are assembled for lines 01-06.

Line 07 is a “shift left” instruction that sets k <— n by setting kk < 8n. This
program works with the value of 8%, not k, because 8k is needed for octabyte
addresses in lines 08 and 10.

Line 09 jumps the control to line 15. The assembler, knowing that this JMP
instruction is in location #108 and that DecrK is equivalent to #120, computes
the relative offset (#120 — #108)/4 = 6. Similar relative addresses are computed
for the branch commands in lines 12 and 16.

The rest of the symbolic code is self-explanatory. As mentioned earlier,
Program M is intended to be part of a larger program; elsewhere the sequence

SET $2,100
PUSHJ $1,Maximum
STO $1,Max

would, for example, jump to Program M with n set to 100. Program M would
then find the largest of the elements X[1], ..., X[100] and would return to the
instruction ‘STO0 $1,Max’ with the maximum value in $1 and with its position, j,
in $2. (See exercise 3.)

Let’s look now at a program that is complete, not merely a subroutine. If the
following program is named Hello, it will print out the famous message ‘Hello,
world’ and stop.

Program H (Hail the world).

Assembled code Line LABEL 0P EXPR Remarks
01 argv IS $1 The argument vector
02 LOC #100
#100: #8f££0100 03 Main LDOU $255,argv,0 $255 «+— address of program name.
#104: #00000701 04 TRAP 0,Fputs,StdOut Print that name.
#108: #£4££0003 05 GETA $255,String $255 < address of ", world".
#10c: #00000701 06 TRAP 0,Fputs,StdOut Print that string.
#110: #00000000 07 TRAP 0,Halt,0 Stop.
#114: #2c20776f 08 String BYTE ", world",#a,0 String of characters
#118: #726c640a 09 with newline
#11c: #00 10 and terminator |

Readers who have access to an MMIX assembler and simulator should take a
moment to prepare a short computer file containing the LABEL OP EXPR portions
of Program H before reading further. Name the file ‘Hello.mms’ and assemble
it by saying, for example, ‘mmixal Hello.mms’. (The assembler will produce a
file called ‘Hello.mmo’; the suffix .mms means “MMIX symbolic” and .mmo means
“MMIX object.”) Now invoke the simulator by saying ‘mmix Hello’.

30

1.3.2° THE MMIX ASSEMBLY LANGUAGE 31

The MMIX simulator implements some of the simplest features of a hypo-
thetical operating system called NNIX. If an object file called, say, foo.mmo is
present, NNIX will launch it when a command line such as

foo bar xyzzy (1)

is given. You can obtain the corresponding behavior by invoking the simulator
with the command line ‘mmix (options) foo bar xyzzy’, where (options) is a
sequence of zero or more special requests. For example, option -P will print a
profile of the program after it has halted.

An MMIX program always begins at symbolic location Main. At that time
register $0 contains the number of command line arguments, namely the number
of words on the command line. Register $1 contains the memory address of the
first such argument, which is always the name of the program. The operating
system has placed all of the arguments into consecutive octabytes, starting at
the address in $1 and ending with an octabyte of all zeros. Each argument is
represented as a string, meaning that it is the address in memory of a sequence
of zero or more nonzero bytes followed by a byte that is zero; the nonzero bytes
are the characters of the string.

For example, the command line (1) would cause $0 to be initially 3, and we

might have
$1 =*#4000000000000008 Pointer to the first string

Ms[#4000000000000008] =%4000000000000028 First argument, the string "foo"
M;s[#4000000000000010] = #4000000000000030 Second argument, the string "bar"
Ms[#4000000000000018] = #4000000000000038 Third argument, the string "xyzzy"
M;g[#4000000000000020] = #0000000000000000 Null pointer after the last argument
Mg [#4000000000000028] =#666£6£0000000000 ’f’,’0’,%0’,0,0,0,0,0

Mg [#4000000000000030] =#6261720000000000 ’b’,’a’,’r’,0,0,0,0,0
Ms[#4000000000000038] =#78797a7a79000000 ’x’, ’y?,’z’,’z,’y?,0,0,0

NNIX sets up each argument string so that its characters begin at an octabyte
boundary; strings in general can, however, start anywhere within an octabyte.

The first instruction of Program H, in line 03, puts the string pointer Mg[$1]
into register $255; this string is the program name ‘Hello’. Line 04 is a special
TRAP instruction, which asks the operating system to put string $255 into the
standard output file. Similarly, lines 05 and 06 ask NNIX to contribute ‘, world’
and a newline character to the standard output. The symbol Fputs is predefined
to equal 7, and the symbol StdOut is predefined to equal 1. Line 07, ‘TRAP
0,Halt,0’, is the normal way to terminate a program. We will discuss all such
special TRAP commands at the end of this section.

The characters of the string output by lines 05 and 06 are generated by
the BYTE command in line 08. BYTE is a pseudo-operation of MMIXAL, not an
operation of MMIX; but BYTE is different from pseudo-ops like IS and LOC, because
it does assemble data into memory. In general, BYTE assembles a sequence of
expressions into one-byte constants. The construction ", world" in line 08 is
MMIXAL’s shorthand for the list

I))) dr3)) AD Id 010 A
> ,’w?,’0%,°r’,°17,°d

31

32 BASIC CONCEPTS 1.3.2°

of seven one-character constants. The constant #a on line 08 is the ASCII newline
character, which causes a new line to begin when it appears in a file being printed.
The final ‘,0’ on line 08 terminates the string. Thus line 08 is a list of nine
expressions, and it leads to the nine bytes shown at the left of lines 08-10.

Our third example introduces a few more features of the assembly language.
The object is to compute and print a table of the first 500 prime numbers, with
10 columns of 50 numbers each. The table should appear as follows, when the
standard output of our program is listed as a text file:

First Five Hundred Primes
0002 0233 0547 0877 1229 1597 1993 2371 2749 3187
0003 0239 0557 0881 1231 1601 1997 2377 2753 3191
0005 0241 0563 0883 1237 1607 1999 2381 2767 3203

0229 0541 0863 1223 1583 1987 2357 2741 3181 3571
We will use the following method.
Algorithm P (Print table of 500 primes). This algorithm has two distinct

parts: Steps P1-P8 prepare an internal table of 500 primes, and steps P9-P11
print the answer in the form shown above.

P1. [Start table.] Set PRIME[1] < 2, n < 3, j «+ 1. (In this program, n runs
through the odd numbers that are candidates for primes; j keeps track of
how many primes have been found so far.)

P2. [n is prime.] Set j < j + 1, PRIME[j] < n.

P3. [500 found?] If 5 = 500, go to step P9.

P4. [Advance n.] Set n < n+ 2.

P5. [k < 2] Set k < 2. (PRIME[k] will run through n’s possible prime
divisors.)

P6. [PRIME[k]\n?] Divide n by PRIME[k]; let ¢ be the quotient and r the
remainder. If r = 0 (hence n is not prime), go to P4.

P7. [PRIME[k] large?] If ¢ < PRIME[k], go to P2. (In such a case, n must
be prime; the proof of this fact is interesting and a little unusual —see
exercise 11.)

P8. [Advance k.] Increase k by 1, and go to P6.

P9. [Print title.] Now we are ready to print the table. Output the title line
and set m + 1.

P10. [Print line.] Output a line that contains PRIME[m], PRIME[50 + m], ...,
PRIME[450 4+ m] in the proper format.

P11. [500 printed?] Increase m by 1. If m < 50, return to P10; otherwise the
algorithm terminates. |

Program P (Print table of 500 primes). This program has deliberately been
written in a slightly clumsy fashion in order to illustrate most of the features of
MMIXAL in a single program.

32

P

P2. ni
P3. 500

P9. Print title

[po. prnt e |———f

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23

24

26
27
28
29
30
31
32
33

THE MMIX ASSEMBLY LANGUAGE

1. Start table

ANEHRI

No

)

33

P8. Advance k |

{E5}25%:}6———————————:£9§<E’7. PRIME[k] large?

°(P6. PRIME[k]\n?)

S

%
=
o

W P4. Advance n

P5. k+2 |

Yes

v

"\ No

P10. Print line

1|l

P11. 500 printed? |

\LYes

Fig. 14. Algorithm P.

% Example program ...
L IS 500
t IS $255
n GREG O
q GREG O
r GREG O
jj GREG O
kk GREG O
pk GREG O
mm IS kk
LOC Data_Segment
PRIME1 WYDE 2
LOC PRIME1+2xL
ptop GREG @
jo GREG PRIME1+2-@
BUF 0CTA O
LOC #100
Main SET n,3
SET jj,jo
2H STWU n,ptop,jj
INCL jj,2
3H BZ jj,2F
4H INCL n,2
5H SET kk,jO
6H LDWU pk,ptop,kk
DIV q,n,pk
GET r,rR
BZ r,4B
TH CMP t,q,pk
BNP t,2B
8H INCL Kkk,2
JVP 6B

Table of primes

The number of primes to find
Temporary storage

Prime candidate

Quotient

Remainder

Index for PRIME[5]

Index for PRIME [£]

Value of PRIME[£]

Index for output lines

PRIME[1] = 2

Address of PRIME[501]
Initial value of jj
Place to form decimal string

P1. Start table. n + 3.
7«1

P2. n is prime. PRIME[j+1] < n.
j+—J+1

P3. 500 found?

P4. Advance n.

P5. k < 2.

P6. PRIME[k]\n?

q + |n/PRIME[K]].

r < n mod PRIME[k].

To P4 if r = 0.

P7. PRIME[k] large?

To P2 if ¢ < PRIME[K].

P8. Advance k. k < k+ 1.
To P6.

33

34 BASIC CONCEPTS

34 GREG @

1.3.2°

Base address

35 Title BYTE "First Five Hundred Primes"

36 NewLn BYTE #a,0

Newline and string terminator

87 Blanks BYTE " ",0 String of three blanks

38 2H LDA t,Title P9. Print title.

39 TRAP 0,Fputs,StdOut

40 NEG mm, 2 Initialize m.

41 3H ADD mm,mm,jO P10. Print line.

42 LDA t,Blanks Output " ",

43 TRAP 0,Fputs,StdOut

44 2H LDWU pk,ptop,mm pk < prime to be printed.
45 OH GREG #2030303030000000 " 0000",0,0,0

46 STOU OB,BUF Prepare buffer for decimal conversion.
47 LDA t,BUF+4 t < position of units digit.
48 1H DIV pk,pk,10 pk < |pk/10].

49 GET r,rR r < next digit.

50 INCL r,’0° r < ASCII digit r.

51 STBU r,t,0 Store r in the buffer.

52 SUB t,t,1 Move one byte to the left.
53 PBNZ pk,1B Repeat on remaining digits.
5/ LDA t,BUF Output " " and four digits.
55 TRAP 0,Fputs,StdOut

56 INCL mm,2*L/10 Advance by 50 wydes.

57 PBN mm,2B

58 LDA t,Newln Output a newline.

59 TRAP 0,Fputs,StdOut

60 CMP t,mm,2*(L/10-1) P11. 500 printed?

61 PBNZ t,3B To P10 if not done.

62 TRAP 0,Halt,0 I

The following points of interest should be noted about this program:

1. Line 01 begins with a percent sign and line 17 is blank. Such “comment”
lines are merely explanatory; they have no effect on the assembled program.

Each non-comment line has three fields called LABEL, OP, and EXPR, sep-
arated by spaces. The EXPR field contains one or more symbolic expressions
separated by commas. Comments may follow the EXPR field.

2. Asin Program M, the pseudo-operation IS sets the equivalent of a symbol.
For example, in line 02 the equivalent of L is set to 500, which is the number of
primes to be computed. Notice that in line 03, the equivalent of t is set to $255,
a register number, while L’s equivalent was 500, a pure number. Some symbols
have register number equivalents, ranging from $0 to $255; others have pure
equivalents, which are octabytes. We will generally use symbolic names that
begin with a lowercase letter to denote registers, and names that begin with an
uppercase letter to denote pure values, although MMIXAL does not enforce this
convention.

3. The pseudo-op GREG on line 04 allocates a global register. Register $255
is always global; the first GREG causes $254 to be global, and the next GREG does

34

1.3.2° THE MMIX ASSEMBLY LANGUAGE 35

the same for $253, etc. Lines 04-09 therefore allocate six global registers, and
they cause the symbols n, q, r, jj, kk, pk to be respectively equivalent to $254,
$253, $252, $251, $250, $249. Line 10 makes mm equivalent to $250.

If the EXPR field of a GREG definition is zero, as it is on lines 04-09, the global
register is assumed to have a dynamically varying value when the program is run.
But if a nonzero expression is given, as on lines 14, 15, 34, and 45, the global
register is assumed to be constant throughout a program’s execution. MMIXAL
uses such global registers as base addresses when subsequent instructions refer
to memory. For example, consider the instruction ‘LDA t,BUF+4’ in line 47.
MMIXAL is able to discover that global register ptop holds the address of BUF;
therefore ‘LDA t,BUF+4’ can be assembled as ‘LDA t,ptop,4’. Similarly, the
LDA instructions on lines 38, 42, and 58 make use of the nameless base address
introduced by the instruction ‘GREG @’ on line 34. (Recall from Section 1.3.1°
that @ denotes the current location.)

4. A good assembly language should mimic the way a programmer thinks
about machine programs. Omne example of this philosophy is the automatic
allocation of global registers and base addresses. Another example is the idea of
local symbols such as the symbol 2H, which appears in the label field of lines 21,
38, and 44.

Local symbols are special symbols whose equivalents can be redefined as
many times as desired. A global symbol like PRIME1 has but one significance
throughout a program, and if it were to appear in the label field of more than
one line an error would be indicated by the assembler. But local symbols have
a different nature; we write, for example, 2H (“2 here”) in the LABEL field, and
2F (“2 forward”) or 2B (“2 backward”) in the EXPR field of an MMIXAL line:

2B means the closest previous label 2H;
2F means the closest following label 2H.

Thus the 2F in line 23 refers to line 38; the 2B in line 31 refers back to line 21;
and the 2B in line 57 refers to line 44. The symbols 2F and 2B never refer to
their own line. For example, the MMIXAL instructions

2H IS $10
2H BZ 2B,2F
2H IS 2B-4

are virtually equivalent to the single instruction
Bz $10,0-4.

The symbols 2F and 2B should never be used in the LABEL field; the symbol
2H should never be used in the EXPR field. If 2B occurs before any appearance
of 2H, it denotes zero. There are ten local symbols, which can be obtained by
replacing ‘2’ in these examples by any digit from 0 to 9.

The idea of local symbols was introduced by M. E. Conway in 1958, in
connection with an assembly program for the UNIVAC I. Local symbols free us
from the obligation to choose a symbolic name when we merely want to refer to

35

36 BASIC CONCEPTS 1.3.2°

an instruction a few lines away. There often is no appropriate name for nearby
locations, so programmers have tended to introduce meaningless symbols like
X1, X2, X3, etc., with the potential danger of duplication.

5. The reference to Data_Segment on line 11 introduces another new idea. In
most embodiments of MMIX, the 2%4-byte virtual address space is broken into two
parts, called user space (addresses #0000000000000000 .. #*7TfffffFEFFFFFELF)
and kernel space (addresses #800000