THE ART OF
COMPUTER PROGRAMMING

PRE-FASCICLE 2B

A DRAFT OF SECTION 7.2.1.2:
GENERATING ALL PERMUTATIONS

DONALD E. KNUTH Stanford University

A
ADDISON-WESLEY vv

Internet page http://www-cs-faculty.stanford.edu/“knuth/taocp.html contains
current information about this book and related books.

See also http://www-cs-faculty.stanford.edu/ knuth/sgb.html for information
about The Stanford GraphBase, including downloadable software for dealing with the
graphs used in many of the examples in Chapter 7.

See also http://www-cs-faculty.stanford.edu/ knuth/mmixware.html for down-
loadable software to simulate the MMIX computer.

Copyright © 2002 by Addison—Wesley

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form, or by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without the prior consent of the publisher, except
that the official electronic file may be used to print single copies for personal (not
commercial) use.

Zeroth printing (revision 12), 10 December 2004

PREFACE

| thought it worth a Dayes labour,
to write something on this Art or Science,
that the Rules thereof might not be lost and obscured.

— RICHARD DUCKWORTH, Tintinnalogia (1668)

THIS BOOKLET contains draft material that I'm circulating to experts in the
field, in hopes that they can help remove its most egregious errors before too
many other people see it. I am also, however, posting it on the Internet for
courageous and/or random readers who don’t mind the risk of reading a few
pages that have not yet reached a very mature state. Beware: This material has
not yet been proofread as thoroughly as the manuscripts of Volumes 1, 2, and 3
were at the time of their first printings. And those carefully-checked volumes,
alas, were subsequently found to contain thousands of mistakes.

Given this caveat, I hope that my errors this time will not be so numerous
and/or obtrusive that you will be discouraged from reading the material carefully.
I did try to make it both interesting and authoritative, as far as it goes. But the
field is so vast, I cannot hope to have surrounded it enough to corral it completely.
Therefore I beg you to let me know about any deficiencies you discover.

To put the material in context, this is Section 7.2.1.2 of a long, long chapter
on combinatorial algorithms. Chapter 7 will eventually fill three volumes (namely
Volumes 4A, 4B, and 4C), assuming that I'm able to remain healthy. It will
begin with a short review of graph theory, with emphasis on some highlights
of significant graphs in The Stanford GraphBase (from which I will be drawing
many examples). Then comes Section 7.1, which deals with the topic of bitwise
manipulations. (I drafted about 60 pages about that subject in 1977, but those
pages need extensive revision; meanwhile I've decided to work for awhile on
the material that follows it, so that I can get a better feel for how much to
cut.) Section 7.2 is about generating all possibilities, and it begins with Section
7.2.1: Generating Basic Combinatorial Patterns— which, in turn, begins with
Section 7.2.1.1, “Generating all n-tuples.” (Readers of the present booklet should
have already looked at Section 7.2.1.1, a draft of which is available as Pre-
Fascicle 2A.) That sets the stage for the main contents of this booklet, Section
7.2.1.2: “Generating all permutations.” Then will come Section 7.2.1.3 (about
combinations), etc. Section 7.2.2 will deal with backtracking in general. And
so it will go on, if all goes well; an outline of the entire Chapter 7 as currently
envisaged appears on the taocp webpage that is cited on page ii.

iii

iv PREFACE

Even the apparently lowly topic of permutation generation turns out to be
surprisingly rich, with ties to Sections 1.2.9, 1.3.3, 2.2.3, 2.3.4.2, 3.4.2, 4.1, 5.1.1,
5.1.2, 5.1.4, 5.2.1, 5.2.2, 5.3.1, and 6.1 of the first three volumes. There also is
material related to the MMIX computer, defined in Section 1.3.1" of Fascicle 1.
I strongly believe in building up a firm foundation, so I have discussed this topic
much more thoroughly than I will be able to do with material that is newer or
less basic. To my surprise, I came up with 112 exercises, even though — believe
it or not —1I had to eliminate quite a bit of the interesting material that appears
in my files.

Some of the things presented are new, to the best of my knowledge, although
I will not be at all surprised to learn that my own little “discoveries” have been
discovered before. Please look, for example, at the exercises that I've classed as
research problems (rated with difficulty level 46 or higher), namely exercises 71
and 109; I've also implicitly posed additional unsolved questions in the answers
to exercises 28, 58, 63, 67, 100, 106, and 112. Are those problems still open?
Please let me know if you know of a solution to any of these intriguing questions.
And of course if no solution is known today but you do make progress on any of
them in the future, I hope you’ll let me know.

I urgently need your help also with respect to some exercises that I made
up as I was preparing this material. I certainly don’t like to get credit for things
that have already been published by others, and most of these results are quite
natural “fruits” that were just waiting to be “plucked.” Therefore please tell
me if you know who I should have credited, with respect to the ideas found in
exercises 6, 7, 20, 25, 41, 55, 60, 65, 66, 67, 69, 70, 76, 89, 99, 104, and/or 106.

I shall happily pay a finder’s fee of $2.56 for each error in this draft when it is
first reported to me, whether that error be typographical, technical, or historical.
The same reward holds for items that I forgot to put in the index. And valuable
suggestions for improvements to the text are worth 32¢ each. (Furthermore, if
you find a better solution to an exercise, I'll actually reward you with immortal
glory instead of mere money, by publishing your name in the eventual book:—)

Cross references to yet-unwritten material sometimes appear as ‘00’; this
impossible value is a placeholder for the actual numbers to be supplied later.

Happy reading!

Stanford, California D. E. K.
381 December 2001

7.2.1.2 GENERATING ALL PERMUTATIONS 1

Tin tan din dan bim bam bom bo—
tan tin din dan bam bim bo bom —
tin tan dan din bim bam bom bo—
tan tin dan din bam bim bo bom —
tan dan tin bam din bo bim bom—

Tin tan din dan bim bam bom bo.

— DOROTHY L. SAYERS, The Nine Tailors (1934)

A permutation on the ten decimal digits is simply a 10 digit decimal number
in which all digits are distinct. Hence all we need to do is to produce

all 10 digit numbers and select only those whose digits are distinct.

Isn’t it wonderful how high speed computing saves us from

the drudgery of thinking! We simply program k +1 — k

and examine the digits of k for undesirable equalities.

This gives us the permutations in dictionary order too!

On second sober thought ... we do need to think of something else.

— D. H. LEHMER (1957)

7.2.1.2. Generating all permutations. After n-tuples, the next most im-
portant item on nearly everybody’s wish list for combinatorial generation is the
task of visiting all permutations of some given set or multiset. Many different
ways have been devised to solve this problem. In fact, almost as many different
algorithms have been published for unsorting as for sorting! We will study the
most important permutation generators in this section, beginning with a classical
method that is both simple and flexible:

Algorithm L (Lexicographic permutation generation). Given a sequence of n
elements ajas ... a,, initially sorted so that

a; <az < - <ap, (1)

this algorithm generates all permutations of {a1,as,...,a,}, visiting them in
lexicographic order. (For example, the permutations of {1,2,2, 3} are

1223, 1232, 1322, 2123, 2132, 2213, 2231, 2312, 2321, 3122, 3212, 3221,

ordered lexicographically.) An auxiliary element ag is assumed to be present for
convenience; ag must be strictly less than the largest element a,,.

L1. [Visit.] Visit the permutation ajas ... ay,.

2 COMBINATORIAL ALGORITHMS (F2B) 7.2.1.2

L2. [Find j.] Set j <~ n — 1. If a; > aj1, decrease j by 1 repeatedly until
a; < ajt+1. Terminate the algorithm if j = 0. (At this point j is the smallest
subscript such that we have already visited all permutations beginning with
ay ...aj. Therefore the lexicographically next permutation will increase the
value of a;.)

L3. [Increase a;.| Set I < n. If a; > a;, decrease I by 1 repeatedly until a; < a;.
Then interchange a; <+ a;. (Since ajy1 > --- > ap, element a; is the
smallest element greater than a; that can legitimately follow a1 ...a;_; in a
permutation. Before the interchange we had a1 > -+ > a;_1 > a; > a; >
@jy1 > -+ > ap; after the interchange, we have aj; 1 > -+ > a;—1 > a; >
ap> a4 >0 > ap.)

L4. [Reverse aji1...an.] Set k <— j+ 1 and [< n. Then, if k < [, interchange
ar < aj,set k< k+ 1,1+ 1—1, and repeat until £ > [. Return to L1. |

This algorithm goes back to Narayana Pandita in 14th-century India (see Section
7.2.1.7); it also appeared in C. F. Hindenburg’s preface to Specimen Analyticum
de Lineis Curvis Secundi Ordinis by C. F. Riidiger (Leipzig: 1784), xlvi—xlvii,
and it has been frequently rediscovered ever since. The parenthetical remarks in
steps L2 and L3 explain why it works.

In general, the lexicographic successor of any combinatorial pattern ay . .. a,
is obtainable by a three-step procedure:

1) Find the largest j such that a; can be increased.

2) Increase a; by the smallest feasible amount.

3) Find the lexicographically least way to extend the new a; ...a; to a complete
pattern.

Algorithm L follows this general procedure in the case of permutation generation,
just as Algorithm 7.2.1.1M followed it in the case of n-tuple generation; we will
see numerous further instances later, as we consider other kinds of combinatorial
patterns. Notice that we have a;;1 > -+ > a, at the beginning of step L4.
Therefore the first permutation beginning with the current prefix a;...a; is
a1...Qj0p ...aj41, and step L4 produces it by doing | (n — j)/2] interchanges.
In practice, step L2 finds j = n — 1 half of the time when the elements are
distinct, because exactly n!/2 of the n! permutations have a,, 1 < a,. Therefore
Algorithm L can be speeded up by recognizing this special case, without making
it significantly more complicated. (See exercise 1.) Similarly, the probability
that j < n —t is only 1/¢! when the a’s are distinct; hence the loops in steps L2-
L4 usually go very fast. Exercise 6 analyzes the running time in general, showing
that Algorithm L is reasonably efficient even when equal elements are present,
unless some values appear much more often than others do in the multiset

{al,aQ,...,an}.

Adjacent interchanges. We saw in Section 7.2.1.1 that Gray codes are ad-
vantageous for generating n-tuples, and similar considerations apply when we
want to generate permutations. The simplest possible change to a permutation
is to interchange adjacent elements, and we know from Chapter 5 that any

7.2.1.2 GENERATING ALL PERMUTATIONS 3

permutation can be sorted into order if we make a suitable sequence of such
interchanges. (For example, Algorithm 5.2.2B works in this way.) Hence we can
go backward and obtain any desired permutation, by starting with all elements
in order and then exchanging appropriate pairs of adjacent elements.

A natural question now arises: Is it possible to run through all permutations
of a given multiset in such a way that only two adjacent elements change places
at every step? If so, the overall program that is examining all permutations will
often be simpler and faster, because it will only need to calculate the effect of
an exchange instead of to reprocess an entirely new array a; ...a, each time.

Alas, when the multiset has repeated elements, we can’t always find such
a Gray-like sequence. For example, the six permutations of {1,1,2,2} are con-
nected to each other in the following way by adjacent interchanges:

2112
1122 — 1212 1991 2121 — 22114 (2)

this graph has no Hamiltonian path.

But most applications deal with permutations of distinct elements, and for
this case there is good news: A simple algorithm makes it possible to generate
all n! permutations by making just n! — 1 adjacent interchanges. Furthermore,
another such interchange returns to the starting point, so we have a Hamiltonian
cycle analogous to Gray binary code.

The idea is to take such a sequence for {1,...,n — 1} and to insert the
number n into each permutation in all ways. For example, if n = 4 the sequence
(123,132,312, 321,231, 213) leads to the columns of the array

1234 1324 3124 3214 2314 2134
1243 1342 3142 3241 2341 2143 (3)
1423 1432 3412 3421 2431 2413 3
4123 4132 4312 4321 4231 4213

when 4 is inserted in all four possible positions. Now we obtain the desired
sequence by reading downwards in the first column, upwards in the second, down-
wards in the third, ..., upwards in the last: (1234, 1243,1423,4123,4132,1432,
1342,1324,3124,3142,...,2143,2134).

In Section 5.1.1 we studied the inversions of a permutation, namely the pairs
of elements (not necessarily adjacent) that are out of order. Every interchange
of adjacent elements changes the total number of inversions by +1. In fact, when
we consider the so-called inversion table c; ... c, of exercise 5.1.1-7, where ¢; is
the number of elements lying to the right of j that are less than j, we find that
the permutations in (3) have the following inversion tables:

0000 0010 0020 0120 0110 0100
0001 0011 0021 0121 0111 0101 (4)
0002 0012 0022 0122 0112 0102 4
0003 0013 0023 0123 0113 0103

And if we read these columns alternately down and up as before, we obtain
precisely the reflected Gray code for mixed radices (1,2, 3,4), as in Egs. (46)—(51)

4 COMBINATORIAL ALGORITHMS (F2B) 7.2.1.2

of Section 7.2.1.1. The same property holds for all n, as noticed by E. W. Dijkstra
[Acta Informatica 6 (1976), 357-359], and it leads us to the following formulation:

Algorithm P (Plain changes). Given a sequence ajas...a, of n distinct
elements, this algorithm generates all of their permutations by repeatedly inter-
changing adjacent pairs. It uses an auxiliary array cjcs...c,, which represents
inversions as described above, running through all sequences of integers such that

0<¢; <y for 1 <j<m. (5)

Another array 0103 . ..0, governs the directions by which the entries c¢; change.
P1. [Initialize.] Set ¢; - 0 and 0 «— 1 for 1 < j <n.
P2. [Visit.] Visit the permutation ajas ... ay,.

P3. [Prepare for change.] Set j + n and s < 0. (The following steps determine
the coordinate j for which ¢; is about to change, preserving (5); variable s
is the number of indices k > j such that ¢, = k — 1.)

P4. [Ready to change?] Set ¢ < ¢; +0;. If ¢ <0, go to P7; if ¢ = j, go to P6.
P5. [Change.] Interchange Aj_c;+s ¢ aj_qts- Thenset c; < gand return to P2.
P6. [Increase s.] Terminate if j = 1; otherwise set s + s + 1.

P7. [Switch direction.] Set 0; <~ —o;, j - j — 1, and go back to P4. 1]

This procedure, which clearly works for all n > 1, originated in 17th-century
England, when bell ringers began the delightful custom of ringing a set of bells
in all possible permutations. They called Algorithm P the method of plain
changes. Figure 18(a) illustrates the “Cambridge Forty-Eight,” an irregular
and ad hoc sequence of 48 permutations on 5 bells that had been used in
the early 1600s, before the plain-change principle revealed how to achieve all
5! = 120 possibilities. The venerable history of Algorithm P has been traced to
a manuscript by Peter Mundy now in the Bodleian Library, written about 1653
and transcribed by Ernest Morris in The History and Art of Change Ringing
(1931), 29-30. Shortly afterwards, a famous book called Tintinnalogia, published
anonymously in 1668 but now known to have been written by Richard Duckworth
and Fabian Stedman, devoted its first 60 pages to a detailed description of plain
changes, working up from n = 3 to the case of arbitrarily large n.

Cambridge Forty-eight, for many years,

was the greatest Peal that was Rang or invented; but now,

neither Forty-eight, nor a Hundred, nor Seven-hundred and twenty,

nor any Number can confine us; for we can Ring Changes, Ad infinitum.
. On four Bells, there are Twenty four several Changes,

in Ringing of which, there is one Bell called the Hunt,

and the other three are Extream Bells;

the Hunt moves, and hunts up and down continually ...;

two of the Extream Bells makes a Change

every time the Hunt comes before or behind them.

— DUCKWORTH and STEDMAN, Tintinnalogia (1668)

7.2.1.2 GENERATING ALL PERMUTATIONS 5

N/ E /’\/’\::&m (incomplete)
(a) The Cambridge Forty-Eight.
X X \S
N e NN e RS R AR
(b) Plain Changes.

NS SN SN NG S NN SN
(! o Nomon AN ! A/ / N\ Dooool S N oo! PN

(c¢) Grandsire Doubles.

VAN "\/’_/ &'M eV YALNLNS 'S 7&'\(
)o(,'v\.’ 'v_,'\.'\/ '\.\/\A/ 'v\./ '\.\/\x\/ ~unoons!

(d) Stedman Doubles.

Fig. 18. Four patterns used to ring five church-bells
in 17th-century England. Pattern (b) corresponds to
Algorithm P.

British bellringing enthusiasts soon went on to develop more complicated
schemes in which two or more pairs of bells change places simultaneously. For
example, they devised the pattern in Fig. 18(c) known as Grandsire Doubles,
“the best and most ingenious Peal that ever was composed, to be rang on five
bells” [Tintinnalogia, page 95]. Such fancier methods are more interesting than
Algorithm P from a musical or mathematical standpoint, but they are less useful
in computer applications, so we shall not dwell on them here. Interested readers
can learn more by reading W. G. Wilson’s book, Change Ringing (1965); see
also A. T. White, AMM 103 (1996), 771-778.

H. F. Trotter published the first computer implementation of plain changes
in CACM 5 (1962), 434-435. The algorithm is quite efficient, especially when it
is streamlined as in exercise 16, because n — 1 out of every n permutations are
generated without using steps P6 and P7. By contrast, Algorithm L enjoys its
best case only about half of the time.

The fact that Algorithm P does exactly one interchange per visit means that
the permutations it generates are alternately even and odd (see exercise 5.1.1-
13). Therefore we can generate all the even permutations by simply bypassing
the odd ones. In fact, the c and o tables make it easy to keep track of the current
total number of inversions, ¢; + - - - + ¢,, as we go.

Many programs need to generate the same permutations repeatedly, and in
such cases we needn’t run through the steps of Algorithm P each time. We can
simply prepare a list of suitable transitions, using the following method:

Algorithm T (Plain change transitions). This algorithm computes a table ¢[1],
t[2], ..., t[n! — 1] such that the actions of Algorithm P are equivalent to the
successive interchanges a;) <> ayx)41 for 1 < k < n!. We assume that n > 2.

T1. [Initialize.] Set N < n!, d + N/2, t[d] + 1, and m « 2.

6 COMBINATORIAL ALGORITHMS (F2B) 7.2.1.2

T2. [Loop on m.] Terminate if m = n. Otherwise set m <~ m + 1, d < d/m,
and k < 0. (We maintain the condition d = n!/m!.)

T3. [Hunt down.] Set k < k+d and j < m — 1. Then while 5 > 0, set t[k] < 7,
j<j—1,and k < k+d, until j = 0.

T4. [Offset.] Set ¢[k] < t[k] +1 and k + k +d.

T5. [Hunt up.] While j < m—1, set j + j+1, t[k] « j, and k + k+d. Return
to T3 if £ < N, otherwise return to T2. |

For example, if n = 4 we get the table (¢[1],¢[2],...,t[23]) = (3,2,1,3,1,2,3,1,

3,2,1,3,1,2,3,1,3,2,1,3,1,2,3).

Alphametics. Now let’s consider a simple kind of puzzle in which permutations
are useful: How can the pattern

SEND
+ MORE (6)
MONEY

represent a correct sum, if every letter stands for a different decimal digit?
[H. E. Dudeney, Strand 68 (1924), 97, 214.] Such puzzles are often called
“alphametics,” a word coined by J. A. H. Hunter [Globe and Mail (Toronto:
27 October 1955), 27]; another term, “cryptarithm,” has also been suggested by
S. Vatriquant [Sphinx 1 (May 1931), 50].

The classic alphametic (6) can easily be solved by hand (see exercise 21). But
let’s suppose we want to deal with a large set of complicated alphametics, some
of which may be unsolvable while others may have dozens of solutions. Then we
can save time by programming a computer to try out all permutations of digits

that match a given pattern, seeing which permutations yield a correct sum.
[A computer program for solving alphametics was published by John Beidler in
Creative Computing 4,6 (November—December 1978), 110-113.]

We might as well raise our sights slightly and consider additive alphametics
in general, dealing not only with simple sums like (6) but also with examples like

VIOLIN + VIOLIN + VIOLA = TRIO + SONATA.
Equivalently, we want to solve puzzles such as
2(VIOLIN) + VIOLA — TRIO — SONATA = O, (7)

where a sum of terms with integer coefficients is given and the goal is to obtain
zero by substituting distinct decimal digits for the different letters. Each letter
in such a problem has a “signature” obtained by substituting 1 for that letter
and 0 for the others; for example, the signature for I in (7) is

2(010010) + 01000 — 0010 — 000000,

namely 21010. If we arbitrarily assign the codes (1,2,...,10) to the letters
(v,1,0,L,N,A,T,R,S,X), the respective signatures corresponding to (7) are
5= 210000, s = 21010, 55 = —T90L, 54 =210, s5=-998,
s = —100, s7—=—1010, sg=—100, s9= —100000, s109 = 0.

7.2.1.2 GENERATING ALL PERMUTATIONS 7

(An additional letter, X, has been added because we need ten of them.) The
problem now is to find all permutations aj ... a1 of {0,1,...,9} such that

10
a-s = Zajsj = 0. (9)
j=1

There also is a side condition, because the numbers in alphametics should not
have zero as a leading digit. For example, the sums

7316 5731 6524 2817
+ 0823 and + 0647 and + 0735 and + 0368
08139 06378 07259 03185

and numerous others are not considered to be valid solutions of (6). In general
there is a set F' of first letters such that we must have

a; #0 for all j € F (10)

the set F' corresponding to (7) and (8) is {1,7,9}.

One way to tackle a family of additive alphametics is to start by using
Algorithm T to prepare a table of 10! —1 transitions ¢[k]. Then, for each problem
defined by a signature sequence (s1,...,510) and a first-letter set F, we can
exhaustively look for solutions as follows:

A1. [Initialize.] Set ajag...a19 < 01...9, v Z;il(j —1)s;, k < 1, and
5j(_sj+1*3j fOI‘].Sj<].0
A2. [Test.] If v =0 and if (10) holds, output the solution aj ...aq.
A3. [Swap.] Stop if k& = 10!. Otherwise set j < tlk], v < v — (@41 — a;)0;
aj+1 <> aj, k< k+1, and return to A2. |
Step A3 is justified by the fact that swapping a; with a;;, simply decreases a - s
by (aj4+1 — a;)(sj4+1 — s;). Even though 10! is 3,628,800, a fairly large number,
the operations in step A3 are so simple that the whole job takes only a fraction
of a second on a modern computer.
An alphametic is said to be pure if it has a unique solution. Unfortunately
(7) is not pure; the permutations 1764802539 and 3546281970 both solve (9) and
(10), hence we have both

176478 + 176478 4 17640 = 2576 4 368020

and

354652 + 354652 + 35468 1954 + 742818.

Furthermore sg = sg in (8), so we can obtain two more solutions by interchanging
the digits assigned to A and R.

On the other hand (6) is pure, yet the method we have described will find
two different permutations that solve it. The reason is that (6) involves only
eight distinct letters, hence we will set it up for solution by using two dummy
signatures sg = s;9 = 0. In general, an alphametic with m distinct letters will
have 10 — m dummy signatures $,,41 = --- = s19 = 0, and each of its solutions
will be found (10 — m)! times unless we insist that, say, am4+1 < -+ < ai9-

8 COMBINATORIAL ALGORITHMS (F2B) 7.2.1.2

A general framework. A great many algorithms have been proposed for
generating permutations of distinct objects, and the best way to understand
them is to apply the multiplicative properties of permutations that we studied
in Section 1.3.3. For this purpose we will change our notation slightly, by using
0O-origin indexing and writing agas . ..a,_1 for permutations of {0,1,...,n — 1}
instead of writing a;as . . . a,, for permutations of {1,2,...,n}. More importantly,
we will consider schemes for generating permutations in which most of the action
takes place at the left, so that all permutations of {0,1,...,k — 1} will be
generated during the first k! steps, for 1 < k£ < n. For example, one such
scheme for n =4 is

0123, 1023, 0213, 2013, 1203, 2103, 0132, 1032, 0312, 3012, 1302, 3102,
0231, 2031, 0321, 3021, 2301, 3201, 1230, 2130, 1320, 3120, 2310, 3210; ‘"

this is called “reverse colex order,” because if we reflect the strings from right
to left we get 3210, 3201, 3120, ..., 0123, the reverse of lexicographic order.
Another way to think of (11) is to view the entries as (n—ay,)...(n—az)(n—ay),
where ajas . .. a, runs lexicographically through the permutations of {1,2,...,n}.

Let’s recall from Section 1.3.3 that a permutation like @ = 250143 can be
written either in the two-line form

3 (012345)
“ = 250143
or in the more compact cycle form
a=(02)(153),

with the meaning that o« takes 0 — 2, 1 — 5, 2 — 0, 3 — 1, 4 — 4, and
5 — 3; a 1-cycle like ‘(4)’ need not be indicated. Since 4 is a fixed point of this
permutation we say that “o fixes 4.” We also write 0o = 2, la = 5, and so on,
saying that ja is “the image of j under a.” Multiplication of permutations, like
a times 8 where 8 = 543210, is readily carried out either in the two-line form

_ (012345) (012345) _ (012345) (250143) _ (012345)
- \250143/\ 543210 250143/ \ 305412 305412

or in the cycle form

af=(02)(153) - (05)(14)(23) = (0341)(25).

Notice that the image of 1 under af is 1(af) = (la) = 58 = 0, etc. Warning:
About half of all books that deal with permutations multiply them the other way
(from right to left), imagining that a8 means that 8 should be applied before a.
The reason is that traditional functional notation, in which one writes a(1) = 5,
makes it natural to think that @3(1) should mean «(5(1)) = a(4) = 4. However,
the present book subscribes to the other philosophy, and we shall always multiply
permutations from left to right.

The order of multiplication needs to be understood carefully when permu-
tations are represented by arrays of numbers. For example, if we “apply” the
reflection 5 = 543210 to the permutation @ = 250143, the result 341052 is not a3

7.2.1.2 GENERATING ALL PERMUTATIONS 9

but Sa. In general, the operation of replacing a permutation a = agay ... an_1
by some rearrangement aggaig...ap,_1)g takes k — agp = kBa. Permuting
the positions by [corresponds to premultiplication by [, changing a to Sa;
permuting the values by (3 corresponds to postmultiplication by 3, changing «
to af. Thus, for example, a permutation generator that interchanges a; <> as is
premultiplying the current permutation by (1 2), postmultiplying it by (a; az).

Following a proposal made by Evariste Galois in 1830, a nonempty set G
of permutations is said to form a group if it is closed under multiplication, that
is, if the product af is in G whenever « and § are elements of G [see Ecrits
et Mémoires Mathématiques d’Evariste Galois (Paris: 1962), 47]. Consider, for
example, the 4-cube represented as a 4 x 4 torus

0132
4576 (12)
cdfe
89ba

as in exercise 7.2.1.1-17, and let G be the set of all permutations of the vertices
{0,1,...,f} that preserve adjacency: A permutation « is in G if and only if
U v implies uae — wva in the 4-cube. (Here we are using hexadecimal
digits (0,1,...,f) to stand for the integers (0,1,...,15). The labels in (12)
are chosen so that u— v if and only if v and v differ in only one bit position.)
This set G is obviously a group, and its elements are called the symmetries or
“automorphisms” of the 4-cube.

Groups of permutations G are conveniently represented inside a computer by
means of a Sims table, introduced by Charles C. Sims [Computational Methods
in Abstract Algebra (Oxford: Pergamon, 1970), 169-183], which is a family of
subsets S, Sa, ... of G having the following property: Sy contains exactly one
permutation oy; that takes k — j and fixes the values of all elements greater
than k&, whenever G contains such a permutation. We let ogx be the identity
permutation, which is always present in G; but when 0 < j < k, any suitable
permutation can be selected to play the role of o1;. The main advantage of a
Sims table is that it provides a convenient representation of the entire group:

Lemma S. Let Sy, Sa, ..., S,_1 be a Sims table for a group G of permutations
on {0,1,...,n —1}. Then every element o of G has a unique representation
Q=0102...0,_1, where o, € S for 1 <k < n. (13)

Proof. If a has such a representation and if 0,1 is the permutation o(,,_1); €
Sn_1, then a takes n — 1 — j, because all elements of S; U---U S,,_5 fix the
value of n — 1. Conversely, if o takes n — 1+ j we have a = o/o(,,_1);, where

r_ —
I Y
is a permutation of G that fixes n — 1. (As in Section 1.3.3, o~ denotes the
inverse of 0.) The set G’ of all such permutations is a group, and S1, ..., Sp_2

is a Sims table for G’; therefore the result follows by induction on n. |

10 COMBINATORIAL ALGORITHMS (F2B) 7.2.1.2

For example, a bit of calculation shows that one possible Sims table for the
automorphism group of the 4-cube is

Se = {(), (01)(23)(45)(67)(89)(ab)(cd)(ef), ...,
(0£)(1e)(2d)(3¢)(4b)(52)(69)(78)};

Se ={(), (12)(86)(9a)(de), (14)(36)(9¢c)(be), (18)(3a)(5c)(7e)};
Sa={(), (24)(35)(ac)(bd), (28)(39)(6c)(7d)}; (14)
Se=1{0}

Sy = {(), (48)(59)(62)(7b)};

Sa=S8y=-=8={0k

here S¢ contains 16 permutations o¢; for 0 < j < 15, which respectively take
i+ 1@ (15— j) for 0 < ¢ < 15. The set S, contains only four permutations,
because an automorphism that fixes £ must take e into a neighbor of f; thus the
image of e must be either e or d or b or 7. The set S, contains only the identity
permutation, because an automorphism that fixes £, e, and d must also fix c.
Most groups have Si, = {()} for all small values of k, as in this example; hence a
Sims table usually needs to contain only a fairly small number of permutations
although the group itself might be quite large.

The Sims representation (13) makes it easy to test if a given permutation «
lies in G: First we determine 0y, 1 = 0(,_1);, where « takes n — 1 — j, and we
let o/ = ao,,_;; then we determine o, 5 = 0(,_2);/, where o' takes n — 2 j,
and we let o” = o', _,; and so on. If at any stage the required oy; does not
exist in Sy, the original permutation o does not belong to G. In the case of (14),
this process must reduce « to the identity after finding o¢, 0, 04, 0c, and op.

For example, let a be the permutation (14)(28)(3c)(69)(7d)(be), which cor-
responds to transposing (12) about its main diagonal {0, 5, f,a}. Since « fixes f,
o¢ will be the identity permutation (), and o’ = . Then o, is the member of S,
that takes e — b, namely (14)(36)(9¢c)(be), and we find o = (28)(39)(6c)(7d).
This permutation belongs to Sy, so « is indeed an automorphism of the 4-cube.

Conversely, (13) also makes it easy to generate all elements of the corre-
sponding group. We simply run through all permutations of the form

o(l,c1)0(2,¢2)...0(n—1,¢p-1),

where o(k,ci) is the (cp + 1)st element of Sy for 0 < ¢ < s = |Sk| and
1 <k < n, using any algorithm of Section 7.2.1.1 that runs through all (n — 1)-
tuples (cq,...,cn—1) for the respective radices (s1,...,Sn—1).

Using the general framework. Our chief concern is the group of all permuta-
tions on {0,1,...,n—1}, and in this case every set S, of a Sims table will contain
k+1 elements {o(k,0),0(k,1),...,0(k,k)}, where o(k,0) is the identity and the
others take k to the values {0,...,k—1} in some order. (The permutation o(k, 7)
need not be the same as oy, and it usually is different.) Every such Sims table
leads to a permutation generator, according to the following outline:

10

7.2.1.2 GENERATING ALL PERMUTATIONS 11

Algorithm G (General permutation generator). Given a Sims table (S7, S,
..ySp—1) where each S; has k + 1 elements o(k,j) as just described, this
algorithm generates all permutations agay...a,—1 of {0,1,...,n — 1}, using
an auxiliary control table ¢, ...cacq.
G1. [Initialize.] Set a; - j and ¢;j41 < 0 for 0 < j < n.
G2. [Visit.] (At this point the mixed-radix number [C"njl’ S <] is the number
of permutations visited so far.) Visit the permutation aga; ... an_1.

G3.[Add 1 to cy...coc1.] Set kb« 1. If ¢p = k, set ¢ + 0, k «+ k+1,
and repeat until ¢y < k. Terminate the algorithm if k = n; otherwise set
cr ¢ cp + 1.
G4. [Permute.] Apply the permutation 7(k,cg)w(k — 1)~ to agay...an—_1, as
explained below, and return to G2. |
Applying a permutation 7 to aga;...a,—1 means replacing a; by a;, for
0 < j < n; this corresponds to premultiplication by 7 as explained earlier. Let
us define

m(k,j)=o(k,j)o(k,j—1)" for 1 <j <k (15)
wk)=0(1,1)...0(k, k). (16)

Then steps G3 and G4 maintain the property that
apay . ..an—1 is the permutation o(1,¢1)0(2,¢3)...0(n —1,¢n_1), (17)

and Lemma S proves that every permutation is visited exactly once.

Fig. 19. Algorithm G implicitly traverses this tree when n = 4.

The tree in Fig. 19 illustrates Algorithm G in the case n = 4. According
to (17), every permutation agajazas of {0,1,2,3} corresponds to a three-digit
control string czcacy, with 0 <3 < 3,0 < ¢z <2, and 0 < ¢; < 1. Some nodes
of the tree are labeled by a single digit c3; these correspond to the permutations
(3, c3) of the Sims table being used. Other nodes, labeled with two digits czca,
correspond to the permutations ¢(2,c2)o(3,c3). A heavy line connects node c3
to node ¢30 and node czey to node czea0, because o(2,0) and o(1,0) are the
identity permutation and these nodes are essentially equivalent. Adding 1 to the
mixed-radix number c3zcacy in step G3 corresponds to moving from one node of
Fig. 19 to its successor in preorder, and the transformation in step G4 changes
the permutations accordingly. For example, when c3cocy changes from 121 to
200, step G4 premultiplies the current permutation by

7(3,2)w(2)” =7(3,2)0(2,2) 0 (1,1)7;

11

12 COMBINATORIAL ALGORITHMS (F2B) 7.2.1.2

premultiplying by o(1,1)” takes us from node 121 to node 12, premultiplying
by 0(2,2)” takes us from node 12 to node 1, and premultiplying by 7(3,2) =
0(3,2)0(3,1)” takes us from node 1 to node 2 = 200, which is the preorder suc-
cessor of node 121. Stating this another way, premultiplication by 7(3,2)w(2)~
is exactly what is needed to change o(1,1)0(2,2)0(3,1) to o(1,0)a(2,0)0(3,2),
preserving (17).

Algorithm G defines a huge number of permutation generators (see exer-
cise 37), so it is no wonder that many of its special cases have appeared in the
literature. Of course some of its variants are much more efficient than others,
and we want to find examples where the operations are particularly well suited
to the computer we are using.

We can, for instance, obtain permutations in reverse colex order as a special
case of Algorithm G (see (11)), by letting o(k, j) be the (5 + 1)-cycle

o(k,j) = (k—j k—j+l ... k). (18)

The reason is that o(k, 7) should be the permutation that corresponds to ¢y, ... c1
in reverse colex order when ¢, = j and ¢; = 0 for i # k, and this permutation
apay ...an—1is 01...(k—7—1)(k—7+1)...(k)(k—7)(k+1)...(n—1). For exam-
ple, when n = 8 and ¢, ...c; = 00030000 the corresponding reverse colex
permutation is 01345267, which is (234 5) in cycle form. When o(k,) is given
by (18), Egs. (15) and (16) lead to the formulas

7(k,j) = (k—j k); (19)
w(k) = (01)(012)...(01 ... k) = (0k)(Lk—1)(2k—2) ... = ¢(k); (20)

here ¢(k) is the “(k+1)-flip” that changes ag . ..ax to ag ...ag. In this case w(k)
turns out to be the same as w(k) ™, because ¢(k)? = ().

Equations (19) and (20) are implicitly present behind the scenes in Algo-
rithm L and in its reverse colex equivalent (exercise 2), where step L3 essentially
applies a transposition and step L4 does a flip. Step G4 actually does the flip
first; but the identity

(k=3 k)¢(k —1) = ok —-1)(G-1 k) (21)

shows that a flip followed by a transposition is the same as a (different) trans-
position followed by the flip.
In fact, equation (21) is a special case of the important identity

7 (1 Je ...)7 = (Jam Jom ... Ji7), (22)

which is valid for any permutation 7 and any t-cycle (j1 ja2 ... ji). On the
left of (22) we have, for example, j1m — j; — Jjo > jomr, in agreement with
the cycle on the right. Therefore if a and 7 are any permutations whatsoever,
the permutation 7~ am (called the conjugate of a by 7) has exactly the same
cycle structure as a; we simply replace each element j in each cycle by j.
Another significant special case of Algorithm G was introduced by R. J.
Ord-Smith [CACM 10 (1967), 452; 12 (1969), 638; see also Comp. J. 14 (1971),

12

7.2.1.2 GENERATING ALL PERMUTATIONS 13

136-139], whose algorithm is obtained by setting

o(k,j)=(k ... 10)%. (23)
Now it is clear from (15) that
7(k,j) = (k ... 10); (24)

and once again we have
wlk) = (0 k) (1 k—1)(2 k-2)... = B(k), (25)

because o(k,k) = (0 1 ... k) is the same as before. The nice thing about this
method is that the permutation needed in step G4, namely 7(k,cx)w(k — 1),
does not depend on cg:

(k) wk —1)" = (k ... 10)g(k — 1)~ = (k). (26)

Thus, Ord-Smith’s algorithm is the special case of Algorithm G in which step G4
simply interchanges ag <> ag, a1 <> ai_1, -..; this operation is usually quick,
because k is small, and it saves some of the work of Algorithm L. (See exercise 38
and the reference to G. S. Kliigel in Section 7.2.1.7.)

We can do even better by rigging things so that step G4 needs to do only a
single transposition each time, somewhat as in Algorithm P but not necessarily
on adjacent elements. Many such schemes are possible. The best is probably

to let
(k 0), if k is even,

T(k,j)wlk—-1)" = 2

(k, gk 1) {(kjl), if & is odd, (27)
as suggested by B. R. Heap [Comp. J. 6 (1963), 293—294]. Notice that Heap’s
method always transposes ay <> ag except when k = 3, 5, ... ; and the value of k,
in 5 of every 6 steps, is either 1 or 2. Exercise 40 proves that Heap’s method
does indeed generate all permutations.

Bypassing unwanted blocks. One noteworthy advantage of Algorithm G is
that it runs through all permutations of ag...ag—1 before touching ay; then it
performs another k! cycles before changing ax again, and so on. Therefore if at
any time we reach a setting of the final elements ay, . ..a,_1 that is unimportant
to the problem we’re working on, we can skip quickly over all permutations that
end with the undesirable suffix. More precisely, we could replace step G2 by the
following substeps:

G2.0. [Acceptable?] If aj ...a,_1 is not an acceptable suffix, go to G2.1. Oth-
erwise set k < k — 1. Then if k > 0, repeat this step; if & = 0, proceed to
step G2.2.

G2.1. [Skip this suffix.] If ¢, = k, apply o(k, k)™ to ap...an_1, set ¢ < 0,
k < k + 1, and repeat until ¢ < k. Terminate if k¥ = n; otherwise set
ck < ¢ + 1, apply 7(k,ck) to ag ... an—1, and return to G2.0.

G2.2. [Visit.] Visit the permutation ag...an—1. |

Step G1 should also set k < n — 1. Notice that the new steps are careful to

preserve condition (17). The algorithm has become more complicated, because

13

14 COMBINATORIAL ALGORITHMS (F2B) 7.2.1.2

we need to know the permutations 7(k, j) and o(k, k) in addition to the permu-
tations 7(k,j)w(k — 1)~ that appear in G4. But the additional complications
are often worth the effort, because the resulting program might run significantly
faster.

Fig. 20. Unwanted branches can be pruned from the
tree of Fig. 19, if Algorithm G is suitably extended.

For example, Fig. 20 shows what happens to the tree of Fig. 19 when
the suffixes of agajasas that correspond to nodes 00, 11, 121, and 2 are not
acceptable. (Each suffix ag ...a,—1 of the permutation ag...a,—1 corresponds
to a prefix c,...cy of the control string c,...c;, because the permutations
o(l,c1)...0(k —1,cx_1) do not affect ay ...an_1.) Step G2.1 premultiplies by
7(k,j) to move from node ¢, _1...cp417 to its right sibling ¢, 1 ... cp41(§+1),
and it premultiplies by o(k, k)~ to move up from node c¢,_1...ck11k to its
parent ¢,—1...ck41. Thus, to get from the rejected prefix 121 to its preorder
successor, the algorithm premultiplies by o(1,1) ", 0(2,2) ", and 7(3,2), thereby
moving from node 121 to 12 to 1 to 2. (This is a somewhat exceptional case,
because a prefix with & = 1 is rejected only if we don’t want to visit the unique
permutation aga; . ..a,—; that has suffix ay...a,-1.) After node 2 is rejected,
7(3, 3) takes us to node 3, etc.

Notice, incidentally, that bypassing a suffix a...a,_; in this extension
of Algorithm G is essentially the same as bypassing a prefix a;...a; in our
original notation, if we go back to the idea of generating permutations a; ... a,
of {1,...,n} and doing most of the work at the right-hand end. Our original
notation corresponds to choosing a; first, then ag, ..., then a,; the notation
in Algorithm G essentially chooses a,_; first, then a,_s, ..., then ag. Algo-
rithm G’s conventions may seem backward, but they make the formulas for Sims
table manipulation a lot simpler. A good programmer soon learns to switch
without difficulty from one viewpoint to another.

We can apply these ideas to alphametics, because it is clear for example that
most choices of the values for the letters D, E, and Y will make it impossible for
SEND plus MORE to equal MONEY: We need to have (D+E — Y) mod 10 = 0 in that
problem. Therefore many permutations can be eliminated from consideration.

In general, if r; is the maximum power of 10 that divides the signature
value si, we can sort the letters and assign codes {0,1,...,9} so that ro >
r1 > -+ > rg. For example, to solve the trio sonata problem (7), we could use
(0,1,...,9) respectively for (X,8,V,A,R,I,L,T,0,N), obtaining the signatures

so =0, s;=—100000, s,=210000, s3=—100, s4=—100,
ss = 21010, sg =210, s;=—1010, ss=—7901, sy = —998;

14

7.2.1.2 GENERATING ALL PERMUTATIONS 15

hence (rg,...,ry9) = (00,5,4,2,2,1,1,1,0,0). Now if we get to step G2.0 for a
value of k with ry_; # ri, we can say that the suffix ag ...ag is unacceptable
unless agsk + -+ + agsg is a multiple of 10™-1. Also, (10) tells us that ay ... ag
is unacceptable if ar = 0 and k € F; the first-letter set F' is now {1,2,7}.

Our previous approach to alphametics with steps A1-A3 above used brute
force to run through 10! possibilities. It operated rather fast under the circum-
stances, since the adjacent-transposition method allowed it to get by with only
6 memory references per permutation; but still, 10! is 3,628,800, so the entire
process cost almost 22 megamems, regardless of the alphametic being solved.
By contrast, the extended Algorithm G with Heap’s method and the cutoffs just
described will find all four solutions to (7) with fewer than 128 kilomems! Thus
the suffix-skipping technique runs more than 170 times faster than the previous
method, which simply blasted away blindly.

Most of the 128 kilomems in the new approach are spent applying 7(k, cx)
in step G2.1. The other memory references come primarily from applications of
o(k, k)~ in that step, but 7 is needed 7812 times while o~ is needed only 2162
times. The reason is easy to understand from Fig. 20, because the “shortcut
move” 7(k,ck)w(k — 1) in step G4 hardly ever applies; in this case it is used
only four times, once for each solution. Thus, preorder traversal of the tree is
accomplished almost entirely by 7 steps that move to the right and o~ steps
that move upward. The 7 steps dominate in a problem like this, where very
few complete permutations are actually visited, because each step o(k, k)™ is
preceded by k steps 7(k, 1), 7(k,2), ..., 7(k, k).

This analysis reveals that Heap’s method — which goes to great lengths to
optimize the permutations 7(k,j)w(k — 1)~ so that each transition in step G4
is a simple transposition —is not especially good for the extended Algorithm G
unless comparatively few suffixes are rejected in step G2.0. The simpler reverse
colex order, for which 7(k, j) itself is always a simple transposition, is now much
more attractive (see (19)). Indeed, Algorithm G with reverse colex order solves
the alphametic (7) with only 97 kilomems.

Similar results occur with respect to other alphametic problems. For ex-
ample, if we apply the extended Algorithm G to the alphametics in exercise 24,
parts (a) through (h), the computations involve respectively

(551, 110, 14, 8, 350, 84, 153, 1598) kilomems with Heap’s method; (28)
(429, 84, 10, 5, 256, 63, 117, 1189) kilomems with reverse colex.

The speedup factor for reverse colex in these examples, compared to brute force
with Algorithm T, ranges from 18 in case (h) to 4200 in case (d), and it is about
80 on the average; Heap’s method gives an average speedup of about 60.

We know from Algorithm L, however, that lexicographic order is easily han-
dled without the complication of the control table ¢, .. .c; used by Algorithm G.
And a closer look at Algorithm L shows that we can improve its behavior when
permutations are frequently being skipped, by using a linked list instead of a
sequential array. The improved algorithm is well-suited to a wide variety of
algorithms that wish to generate restricted classes of permutations:

15

16 COMBINATORIAL ALGORITHMS (F2B) 7.2.1.2

Algorithm X (Lexicographic permutations with restricted prefizes). This al-
gorithm generates all permutations ajas .. .a, of {1,2,...,n} that pass a given
sequence of tests

tl(a1)7 t2(a17a2)a LR tn(a17a27"'7an)7

visiting them in lexicographic order. It uses an auxiliary table of links [y, [y,
.., l, to maintain a cyclic list of unused elements, so that if the currently
available elements are

{1,...,n} \ {a1,...,;ax} = {b1, ..., bp_i}, where by < -+- <bp_k, (29)

then we have
lo=b1, Iy, =bjy1 for1<j<n—k, and I, , =0. (30)
It also uses an auxiliary table wq...u, to undo operations that have been
performed on the [array.
X1. [Initialize.] Set Iy + k+ 1 for 0 < k < n, and [, + 0. Then set k + 1.
X2. [Enter level k.] Set p + 0, g < lo.
X3. [Test ay ...ax.] Set ar < q. If tx(aq,...,ax) is false, go to X5. Otherwise,
if k = n, visit a1 ... a, and go to X6.

X4. [Increase k.] Set ug < p, I, < 1y, k < k+ 1, and return to X2.
X5. [Increase ag.] Set p < g, g < l,. If ¢ # O return to X3.

X6. [Decrease k.] Set k < k — 1, and terminate if K = 0. Otherwise set p + ug,
q < ag, lp <+ ¢, and go to X5. |

The basic idea of this elegant algorithm is due to M. C. Er [Comp. J. 30 (1987),
282]. We can apply it to alphametics by changing notation slightly, obtaining
permutations ag . ..ag of {0,...,9} and letting l1o play the former role of [o. The
resulting algorithm needs only 49 kilomems to solve the trio-sonata problem (7),
and it solves the alphametics of exercise 24(a)—(h) in

(248, 38, 4, 3, 122, 30, 55, 553) kilomems, (31)

respectively. Thus it runs about 165 times faster than the brute-force approach.
Another way to apply Algorithm X to alphametics is often faster yet (see
exercise 49).

Fig. 21. The tree implicitly traversed by Algorithm X when n = 4, if all permu-
tations are visited except those beginning with 132, 14, 2, 314, or 4312.

16

7.2.1.2 GENERATING ALL PERMUTATIONS 17

*Dual methods. If Sy, ..., S,_; is a Sims table for a permutation group G,
we learned in Lemma S that every element of G can be expressed uniquely as
a product oy ...0,_1, where o, € Sk; see (13). Exercise 50 shows that every
element o can also be expressed uniquely in the dual form

a=0,_1...05 0y, where o, € S for 1 <k < n, (32)

and this fact leads to another large family of permutation generators. In par-
ticular, when G is the group of all n! permutations, every permutation can be
written

U(n_ 1vcn71)_"'U(2vc2>_0(17cl)_7 (33)
where 0 < ¢ < k for 1 < k < n and the permutations o(k, j) are the same as
in Algorithm G. Now, however, we want to vary c,_; most rapidly and c; least
rapidly, so we arrive at an algorithm of a different kind:

Algorithm H (Dual permutation generator). Given a Sims table as in Algo-

rithm G, this algorithm generates all permutations ag .. .a,—1 of {0,...,n —1},

using an auxiliary table ¢g...c,_1.

H1. [Initialize.] Set a; < j and ¢; < 0 for 0 < j < n.

H2. [Visit.] (At this point the mixed-radix number |5’ > “"~1] is the number
of permutations visited so far.) Visit the permutation aga; ...a, 1.

H3.[Add 1tococy...cno1.] Set k< n—1. Ifcy =k, set ¢ < 0, k < k—1, and
repeat until £k = 0 or ¢, < k. Terminate the algorithm if £ = 0; otherwise
set ¢ < cx + 1.

H4. [Permute.] Apply the permutation 7(k,cg)w(k + 1)~ to agay...an_1, as
explained below, and return to H2. |

Although this algorithm looks almost identical to Algorithm G, the permutations

7 and w that it needs in step H4 are quite different from those needed in step G4.

The new rules, which replace (15) and (16), are

m(k,j) = o(k,j) o(k,j—1), for1<j <k, (34)
wk)=cn-1,n—-1)"ocn—-2,n—-2)"...0(k, k). (35)

The number of possibilities is just as vast as it was for Algorithm G, so we
will confine our attention to a few cases that have special merit. One natural
case to try is, of course, the Sims table that makes Algorithm G produce reverse
colex order, namely

o(k,j) = (k=35 k—j+1 ... k) (36)

as in (18). The resulting permutation generator turns out to be very nearly the
same as the method of plain changes; so we can say that Algorithms L. and P
are essentially dual to each other. (See exercise 52.)

Another natural idea is to construct a Sims table for which step H4 always
makes a single transposition of two elements, by analogy with the construction
of (27) that achieves maximum efficiency in step G4. But such a mission now
turns out to be impossible: We cannot achieve it even when n = 4. For if

17

18 COMBINATORIAL ALGORITHMS (F2B) 7.2.1.2

we start with the identity permutation agajasas = 0123, the transitions that
take us from control table cocicacz = 0000 to 0001 to 0002 to 0003 must move
the 3; so, if they are transpositions, they must be (3a), (ab), and (be) for some
permutation abe of {0,1,2}. The permutation corresponding to cgcycacs = 0003
is now 0(3,3)” = (be)(ab)(3a) = (3abc); and the next permutation, which
corresponds to cpcicecy = 0010, will be 0(2,1), which must fix the element 3.
The only suitable transposition is (3¢), hence o(2,1)”™ must be (3¢)(3abc) =
(abc). Similarly we find that ¢(2,2)” must be (acb), and the permutation
corresponding to cpcieacs = 0023 will be (3abce)(acd) = (3¢). Step H4 is now
supposed to convert this to the permutation o(1,1)~, which corresponds to the
control table 0100 that follows 0023. But the only transposition that will convert
(3 ¢) into a permutation that fixes 2 and 3 is (3 ¢); and the resulting permutation
also fixes 1, so it cannot be o(1,1)".

The proof in the preceding paragraph shows that we cannot use Algorithm H
to generate all permutations with the minimum number of transpositions. But it
also suggests a simple generation scheme that comes very close to the minimum,
and the resulting algorithm is quite attractive because it needs to do extra work
only once per n(n — 1) steps. (See exercise 53.)

Finally, let’s consider the dual of Ord-Smith’s method, when

o(k,j) = (k ... 10) (37)
as in (23). Once again the value of 7(k, 7) is independent of j,
(k) =01 ... k), (38)

and this fact is particularly advantageous in Algorithm H because it allows us
to dispense with the control table cycy -..c, 1. The reason is that ¢, 1 =0 in
step H3 if and only if a,,_1 = n — 1, because of (32); and indeed, when ¢; = 0
for k < j < n in step H3 we have ¢ = 0 if and only if a, = k. Therefore we can
reformulate this variant of Algorithm H as follows.

Algorithm C (Permutation generation by cyclic shifts). This algorithm visits

all permutations ag ... a, of the distinct elements {z1,...,2,}.

C1. [Initialize.] Set a; < x; for 1 < j < n.

C2. [Visit.] Visit the permutation aj ... a,, and set k « n.

C3. [Shift.] Replace ajas...ax by the cyclic shift as...aga;, and return to C2
if ap # .

C4. [Decrease k.] Set k < k — 1, and go back to C3if k> 1. |

For example, the successive permutations of {1,2,3,4} generated when n = 4 are

1234, 2341, 3412, 4123, (1234),

2314, 3142, 1423, 4231, (2314),

3124, 1243, 2431, 4312, (3124), (1234),

2134, 1342, 3421, 4213, (2134),

1324, 3241, 2413, 4132, (1324),

3214, 2143, 1432, 4321, (3214), (2134), (1234),

18

7.2.1.2 GENERATING ALL PERMUTATIONS 19

with unvisited intermediate permutations shown in parentheses. This algorithm
may well be the simplest permutation generator of all, in terms of minimum
program length. It is due to G. G. Langdon, Jr. [CACM 10 (1967), 298-299;
11 (1968), 392]; similar methods had been published previously by C. Tompkins
[Proc. Symp. Applied Math. 6 (1956), 202—205] and, more explicitly, by R. Seitz
[Unternehmensforschung 6 (1962), 2-15]. The procedure is particularly well
suited to applications in which cyclic shifting is efficient, for example when suc-
cessive permutations are being kept in a machine register instead of in an array.

The main disadvantage of dual methods is that they usually do not adapt
well to situations where large blocks of permutations need to be skipped, be-
cause the set of all permutations with a given value of the first control entries
cocy .. .ck—1 is usually not of importance. The special case (36) is, however,
sometimes an exception, because the n!/k! permutations with cpey...cp-1 =
00...0 in that case are precisely those apag...a,—1 in which 0 precedes 1,
1 precedes 2, ..., and k — 2 precedes k — 1.

*Ehrlich’s swap method. Gideon Ehrlich has discovered a completely different
approach to permutation generation, based on yet another way to use a control
table ¢y ...c,_1. His method obtains each permutation from its predecessor by
interchanging the leftmost element with another:

Algorithm E (Ehrlich swaps). This algorithm generates all permutations of the
distinct elements ag...a,_1 by using auxiliary tables by...b, 1 and c; ...cy,.

E1. [Initialize.] Set b; <— j and ¢;j41 < 0 for 0 < j < n.
E2. [Visit.] Visit the permutation ag...a, 1.

E3. [Find k.] Set k + 1. Then if ¢, = k, set ¢ + 0, k < k+ 1, and repeat until
¢ < k. Terminate if £k = n, otherwise set ¢, < ci + 1.

E4. [Swap.] Interchange ag < ay, .

E5. [Flip.] Set j < 1, k < k — 1. If j < k, interchange b; <> by, set j < j + 1,
k < k — 1, and repeat until 7 > k. Return to E2. |

Notice that steps E2 and E3 are identical to steps G2 and G3 of Algorithm G.
The most amazing thing about this algorithm, which Ehrlich communicated to
Martin Gardner in 1987, is that it works; exercise 55 contains a proof. A similar
method, which simplifies the operations of step E5, can be validated in the same
way (see exercise 56). The average number of interchanges performed in step E5
is less than 0.18 (see exercise 57).

As it stands, Algorithm E isn’t faster than other methods we have seen. But
it has the nice property that it changes each permutation in a minimal way, using
only n — 1 different kinds of transpositions. Whereas Algorithm P used adjacent
interchanges, a;—1 <> a;, Algorithm E uses first-element swaps, ag < a;, also
called star transpositions, for some well-chosen sequence of indices ¢[1], ¢[2], ...,
t[n! — 1]. And if we are generating permutations repeatedly for the same fairly
small value of n, we can precompute this sequence, as we did in Algorithm T

19

20 COMBINATORIAL ALGORITHMS (F2B) 7.2.1.2

for the index sequence of Algorithm P. Notice that star transpositions have an
advantage over adjacent interchanges, because we always know the value of ag
from the previous swap; we need not read it from memory.

Let E, be the sequence of n! — 1 indices ¢ such that Algorithm E swaps ag
with a; in step E4. Since E,, ;1 begins with E,,, we can regard E,, as the first
n! — 1 elements of an infinite sequence

EF =121213212123121213212124313132131312.... (39)

For example, if n = 4 and agajasas = 1234, the permutations visited by
Algorithm E are
1234, 2134, 3124, 1324, 2314, 3214,
4213, 1243, 2143, 4123, 1423, 2413,
3412, 4312, 1342, 3142, 4132, 1432,
2431, 3421, 4321, 2341, 3241, 4231.

(40)

*Using fewer generators. After seeing Algorithms P and E, we might naturally
ask whether all permutations can be obtained by using just two basic operations,
instead of n — 1. For example, Nijenhuis and Wilf [Combinatorial Algorithms
(1975), Exercise 6] noticed that all permutations can be generated for n = 4
if we replace ajasas...a, at each step by either asas...azay or asajas...ay,
and they wondered whether such a method exists for all n.

In general, if G is any group of permutations and if ay, ..., ai are ele-
ments of G, the Cayley graph for G with generators (aq, ..., ax) is the directed
graph whose vertices are the permutations 7 of G and whose arcs go from 7
to aym, ..., agm. [Arthur Cayley, American J. Math. 1 (1878), 174-176.] The
question of Nijenhuis and Wilf is equivalent to asking whether the Cayley graph
for all permutations of {1,2,...,n}, with generators o and 7 where o is the cyclic
permutation (12 ... n) and 7 is the transposition (1 2), has a Hamiltonian path.

A basic theorem due to R. A. Rankin [Proc. Cambridge Philos. Soc. 44
(1948), 17-25] allows us to conclude in many cases that Cayley graphs with two
generators do not have a Hamiltonian cycle:

Theorem R. Let G be a group consisting of g permutations. If the Cayley graph
for G with generators (a,3) has a Hamiltonian cycle, and if the permutations
(o, B, 87 are respectively of order (a,b,c), then either c is even or g/a and g/b
are odd.

(The order of a permutation « is the least positive integer a such that a® is the
identity.)

Proof. See exercise 73. |

In particular, when a = ¢ and 8 = 7 as above, we have g = n!, a = n, b = 2, and
c¢=n—1, because o7~ = (2 ... n). Therefore we conclude that no Hamiltonian
cycle is possible when n > 4 is even. However, a Hamiltonian path is easy to

20

7.2.1.2 GENERATING ALL PERMUTATIONS 21

construct when n = 4, because we can join up the 12-cycles

1234 — 2341 — 3412 — 4312 — 3124 — 1243 — 2431
— 4231 — 2314 — 3142 — 1423 — 4123 — 1234,

2134 — 1342 — 3421 — 4321 — 3214 — 2143 — 1432 (41)
— 4132 — 1324 — 3241 — 2413 — 4213 — 2134,

by starting at 2341 and jumping from 1234 to 2134, ending at 4213.

Ruskey, Jiang, and Weston [Discrete Applied Math. 57 (1995), 75-83] un-
dertook an exhaustive search in the o—7 graph for n = 5 and discovered that
it has five essentially distinct Hamiltonian cycles, one of which (the “most
beautiful”) is illustrated in Fig. 22(a). They also found a Hamiltonian path
for n = 6; this was a difficult feat, because it is the outcome of a 720-stage
binary decision tree. Unfortunately the solution they discovered has no apparent
logical structure. A somewhat less complex path is described in exercise 70, but
even that path cannot be called simple. Therefore a o—7 approach will probably
not be of practical interest for larger values of n unless a new construction
is discovered. R. C. Compton and S. G. Williamson [Linear and Multilinear
Algebra 35 (1993), 237-293] have proved that Hamiltonian cycles exist for all n
if the three generators o, 0, and 7 are allowed instead of just o and 7; their
cycles have the interesting property that every nth transformation is 7, and the
intervening n — 1 transformations are either all o or all o~. But their method is
too complicated to explain in a short space.

Exercise 69 describes a general permutation algorithm that is reasonably
simple and needs only three generators, each of order 2. Figure 22(b) illustrates
the case n = 5 of this method, which was motivated by examples of bell-ringing.

ANV,

(a) Using only transitions (12345) and (12).

NG N&”@Q&@Q@O&W& R

(b) Using only transitions (12)(34), (23)(45), and (

Fig. 22. Hamiltonian cycles for 5! permutations.

Faster, faster. What is the fastest way to generate permutations? This question
has often been raised in computer publications, because people who examine n!
possibilities want to keep the running time as small as possible. But the answers
have generally been contradictory, because there are many different ways to
formulate the question. Let’s try to understand the related issues by studying
how permutations might be generated most rapidly on the MMIX computer.

Suppose first that our goal is to produce permutations in an array of n
consecutive memory words (octabytes). The fastest way to do this, of all those
we’ve seen in this section, is to streamline Heap’s method (27), as suggested by
R. Sedgewick [Computing Surveys 9 (1977), 157-160].

21

22 COMBINATORIAL ALGORITHMS (F2B) 7.2.1.2

The key idea is to optimize the code for the most common cases of steps G2
and G3, namely the cases in which all activity occurs at the beginning of the
array. If registers u, v, and w contain the contents of the first three words, and
if the next six permutations to be generated involve permuting those words in
all six possible ways, we can clearly do the job as follows:

PUSHJ 0,Visit

STO v,A0; STO u,Al; PUSHJ 0,Visit

STO w,A0; STO v,A2; PUSHJ 0,Visit

STO u,A0; STO w,Al; PUSHJ 0,Visit (42)

STO v,A0; STO u,A2; PUSHJ 0,Visit

STO w,AO0; STO v,Al; PUSHJ 0,Visit
(Here AO is the address of octabyte ag, etc.) A complete permutation program,
which takes care of getting the right things into u, v, and w, appears in exer-
cise 77, but the other instructions are less important because they need to be
performed only % of the time. The total cost per permutation, not counting the
4v needed for PUSHJ and POP on each call to Visit, comes to approximately
2.77u + 5.69v with this approach. If we use four registers u, v, w, x, and if
we expand (42) to 24 calls on Visit, the running time per permutation drops
to about 2.19u 4 3.07v. And with r registers and r! Visits, exercise 78 shows
that the cost is (2 + O(1/r!))(u + v), which is very nearly the cost of two STO
instructions.

The latter is, of course, the minimum possible time for any method that
generates all permutations in a sequential array. ...Or is it? We have assumed
that the visiting routine wants to see permutations in consecutive locations, but
perhaps that routine is able to read the permutations from different starting
points. Then we can arrange to keep a,_1 fixed and to keep two copies of the
other elements in its vicinity:

apQy ...0n—20n_1000]1 «..C0p_2. (43)

If we now let agay ... a,—o run through (n — 1)! permutations, always changing
both copies simultaneously by doing two STO commands instead of one, we can
let every call to Visit look at the n permutations

apay ...0p—1, a...ap—10agp, ey Ap—-100 ...0Ap_2, (44)

which all appear consecutively. The cost per permutation is now reduced to the
cost of three simple instructions like ADD, CMP, PBNZ, plus O(1/n). [See Varol
and Rotem, Comp. J. 24 (1981), 173-176.]

Furthermore, we might not want to waste time storing permutations into
memory at all. Suppose, for example, that our goal is to generate all permuta-
tions of {0,1,...,n — 1}. The value of n will probably be at most 16, because
16! = 20,922,789,888,000 and 17! = 355,687,428,096,000. Therefore an entire
permutation will fit in the 16 nybbles of an octabyte, and we can keep it in a
single register. This will be advantageous only if the visiting routine doesn’t
need to unpack the individual nybbles; but let’s suppose that it doesn’t. How
fast can we generate permutations in the nybbles of a 64-bit register?

22

7.2.1.2 GENERATING ALL PERMUTATIONS 23

One idea, suggested by a technique due to A. J. Goldstein [U. S. Patent
3383661 (14 May 1968)], is to precompute the table (¢[1],...,¢[5039]) of plain-
change transitions for seven elements, using Algorithm T. These numbers ¢[k] lie
between 1 and 6, so we can pack 20 of them into a 64-bit word. It is convenient
to put the number Y20 | 23¥-1¢[205 + k] into word j of an auxiliary table, for
0 < j < 252, with ¢[5040] = 1; for example, the table begins with the codeword

00001010011100101110100110101100011010001110/001/010/011100101/11000.

The following program reads such codes efficiently:

Perm (Set register a to the first permutation)

OH LDA p,T p ¢ address of first codeword.
JMP 3F

1H (Visit the permutation in register a)
(Swap the nybbles of a that lie t bits from the right)
SRU c¢,c,3 c+c> 3.

2H AND t,c,#lc < cA(11100)s. (45)
PBNZ t,1B Branch if ¢ # 0.
ADD p,p,8

3H LDO «c,p,0 ¢ < next codeword.
PBNZ c,2B (The final codeword is followed by 0.)

(If not done, advance the leading n — 7 nybbles and return to 0B)

Exercise 79 shows how to (Swap the nybbles ...) with seven instructions, using
bit manipulation operations that are found on most computers. Therefore the
cost per permutation is just a bit more than 10v. (The instructions that fetch
new codewords cost only (p + 5v)/20; and the instructions that advance the
leading n— 7 nybbles are even more negligible since their cost is divided by 5040.)
Notice that there is now no need for PUSHJ and POP as there was with (42); we
ignored those instructions before, but they did cost 4v.

We can, however, do even better by adapting Langdon’s cyclic-shift method,
Algorithm C. Suppose we start with the lexicographically largest permutation
and operate as follows:

GREG @
OH OCTA #fedcba9876543210& (1<<(4*N)-1)
Perm LDOU a,0B Set a + #...3210.
JMP 2F
1H SRU a,a,4*(16-N) a <+ |a/167"].
OR a,a,t a+aVt. (46)
2H (Visit the permutation in register a)
SRU t,a,4*(N-1) t « |a/16™71].
SLU a,a,4*(17-N) a + 16" "amod 16'°.
PBNZ t,1B To 1B if t # 0.

(Continue with Langdon’s method)

The running time per permutation is now only 5v + O(1/n), again without the
need for PUSHJ and POP. See exercise 81 for an interesting way to extend (46) to
a complete program, obtaining a remarkably short and fast routine.

23

24 COMBINATORIAL ALGORITHMS (F2B) 7.2.1.2

Fast permutation generators are amusing, but in practice we can usually
save more time by streamlining the visiting routine than by speeding up the
generator.

Topological sorting. Instead of working with all n! permutations of {1,...,n},
we often want to look only at permutations that obey certain restrictions. For
example, we might be interested only in permutations for which 1 precedes 3,
2 precedes 3, and 2 precedes 4; there are five such permutations of {1,2, 3,4},
namely

1234, 1243, 2134, 2143, 2413. (47)

The problem of topological sorting, which we studied in Section 2.2.3 as a first
example of nontrivial data structures, is the general problem of finding a permu-
tation that satisfies m such conditions z; < y1, ..., Ty < Ym, where z < y means
that x should precede y in the permutation. This problem arises frequently in
practice, so it has several different names; for example, it is often called the linear
embedding problem, because we want to arrange objects in a line while preserving
certain order relationships. It is also the problem of extending a partial ordering
to a total ordering (see exercise 2.2.3-14).

Our goal in Section 2.2.3 was to find a single permutation that satisfies
all the relations. But now we want rather to find all such permutations, all
topological sorts. Indeed, we will assume in the present section that the elements
z and y on which the relations are defined are integers between 1 and n, and
that we have * < y whenever z < y. Consequently the permutation 12...n
will always be topologically correct. (If this simplifying assumption is not met,
we can preprocess the data by using Algorithm 2.2.3T to rename the objects

appropriately.)
Many important classes of permutations are special cases of this topological
ordering problem. For example, the permutations of {1,...,8} such that

1<2, 2<3, 3<4, 6<7, 7<8

are equivalent to permutations of the multiset {1,1,1,1,2,3,3,3}, because we
can map {1,2,3,4} — 1, 5 — 2, and {6,7,8} — 3. We know how to generate
permutations of a multiset using Algorithm L, but now we will learn another way.
Notice that = precedes y in a permutation a, ...a, if and only if a; < a; in

the inverse permutation a .. .a.,. Therefore the algorithm we are about to study
will also find all permutations aj ...a; such that a} < aj whenever j < k. For
example, we learned in Section 5.1.4 that a Young tableau is an arrangement of
{1,...,n} in rows and columns so that each row is increasing from left to right
and each column is increasing from top to bottom. The problem of generating all
3 x 3 Young tableaux is therefore equivalent to generating all o} ... a4 such that
ay <ahy<ah, ay<al<ag, ab<af<ajp,

(48)
ay <aj <ah, ah<af<ag ay<ag<ag,

and this is a special kind of topological sorting.

24

7.2.1.2 GENERATING ALL PERMUTATIONS 25

We might also want to find all matchings of 2n elements, namely all ways to
partition {1,...,2n} into n pairs. There are (2n—1)(2n—3)...(1) = (2n)!/(2"n!)
ways to do this, and they correspond to permutations that satisfy

! ! ! ! ! ! ! ! !
a; <@y, a3< Qg ..., Qgup_1 < Gy, ay <ag<--<dag, 1 (49)

An elegant algorithm for exhaustive topological sorting was discovered by
Y. L. Varol and D. Rotem [Comp. J. 24 (1981), 83-84], who realized that a
method analogous to plain changes (Algorithm P) can be used. Suppose we
have found a way to arrange {1,...,n — 1} topologically, so that aj...an_1
satisfies all the conditions that do not involve n. Then we can easily write down
all the allowable ways to insert the final element n without changing the relative
order of ay ...a,_1: We simply start with a; . ..a,_1n, then shift n left one step
at a time, until it cannot move further. Applying this idea recursively yields the
following straightforward procedure.

Algorithm V (All topological sorts). Given a relation < on {1,...,n} with the

property that < y implies * < y, this algorithm generates all permutations

ay -..a, and their inverses aj ...a;, with the property that a} < aj whenever

j < k. We assume for convenience that ag = 0 and that 0 < k for 1 < k < n.

V1. [Initialize.] Set a; < j and a’; < j for 0 < j < n.

V2. [Visit.] Visit the permutation a; ...a,, and its inverse a} ...a,. Then set
k < n.

V3. [Can k move left?] Set j < aj and <—a;_,. If | <k, go to V5.

V4. [Yes, move it.] Set a;_; <k, a; <1, aj, <~ j — 1, and a} « j. Go to V2.
V5. [No, put k back.] While j < k, set | < a;,,, a; + [, aj < j, and j « j+1.
Then set a,, < a}, < k. Decrease k by 1 and return to V3 if & > 0. |
For example, Theorem 5.1.4H tells us that there are exactly 42 Young tableaux
of size 3 x 3. If we apply Algorithm V to the relations (48) and write the inverse

permutation in array form

A |
ajpaszas
0!
ay050g |, (50)

! ! !
aragag

we get the following 42 results:

1231|123|(123|(123|(123| (124|124 |124||124|({124||125||125||125||125
456|457 |458|467||468||356||357||358||367||368||367||368||346||347
78916891679 [589](579]|789|689|679||589||579] 489|479/ 789|689

125(126||126||127||126||126||127||134||134||134||134||134||{135||135
348|347 |348|[348||357(|358|[358||256||257|(258||267||268||267||268
679589579 |569]489|]1479] 469 |789]|689||679||589]||579] 489|479

145]|145||135(|135||135||136||136||137||136||136||137||146||146||147
267|1268|1|246||247||248|(247||248||248(|257||258||258||257||258||258
389|379 |789|689]||679||589]|579|(569]|(489]479]| 469|389 379|369

25

26 COMBINATORIAL ALGORITHMS (F2B) 7.2.1.2

Let t, be the number of topological sorts for which the final n — r elements
are in their initial position a; = j for » < j < n. Equivalently, ¢, is the number
of topological sorts ay . ..a, of {1,...,r}, when we ignore the relations involving
elements greater than r. Then the recursive mechanism underlying Algorithm V
shows that step V2 is performed N times and step V3 is performed M times,
where

M =t,+ -+t and N = t,. (51)

Also, step V4 and the loop operations of V5 are performed N — 1 times; the rest
of step V5 is done M — N + 1 times. Therefore the total running time of the
algorithm is a linear combination of M, N, and n.

If the element labels are chosen poorly, M might be much larger than V.
For example, if the constraints input to Algorithm V are

2<3, 3<4, ..., n—1<n, (52)

then ¢t; = j for 1 < j < n and we have M = 1(n* + n), N = n. But those
constraints are also equivalent to

1<2, 2<3 ..., n—2<n-1, (53)

under renaming of the elements; then M is reduced to 2n —1 = 2N — 1.
Exercise 89 shows that a simple preprocessing step will find element labels

so that a slight modification of Algorithm V is able to generate all topological

sorts in O(N + n) steps. Thus topological sorting can always be done efficiently.

Think twice before you permute. We have seen several attractive algorithms
for permutation generation in this section, but many algorithms are known by
which permutations that are optimum for particular purposes can be found
without running through all possibilities. For example, Theorem 6.1S showed
that we can find the best way to arrange records on a sequential storage simply
by sorting them with respect to a certain cost criterion, and this process takes
only O(nlogn) steps. In Section 7.5.2 we will study the assignment problem,
which asks how to permute the columns of a square matrix so that the sum of
the diagonal elements is maximized. That problem can be solved in at most
O(n®) operations, so it would be foolish to use a method of order n! unless n
is extremely small. Even in cases like the traveling salesrep problem, when no
efficient algorithm is known, we can usually find a much better approach than
to examine every possible solution. Permutation generation is best used when
there is good reason to look at each permutation individually.

EXERCISES

1. [20] Explain how to make Algorithm L run faster, by streamlining its operations
when the value of j is near n.

2. [20] Rewrite Algorithm L so that it produces all permutations of a1 ...a, in
reverse colex order. (In other words, the values of the reflections as, ...a1 should be
lexicographically decreasing, as in (11). This form of the algorithm is often simpler
and faster than the original, because fewer calculations depend on the value of n.)

26

7.2.1.2 GENERATING ALL PERMUTATIONS 27

» 3. [M21] The rank of a combinatorial arrangement X with respect to a generation
algorithm is the number of other arrangements that the algorithm visits prior to X.
Explain how to compute the rank of a given permutation a;...a, with respect to
Algorithm L, if {a1,...,an} = {1,...,n}. What is the rank of 3145926877

4. [M23] Generalizing exercise 3, explain how to compute the rank of a; ...a, with
respect to Algorithm L when {ai,...,a,} is the multiset {n1 - z1,...,n¢ - & }; here
ni+---+n; =nand z1 < --- < z¢. (The total number of permutations is, of course,
the multinomial coefficient

n _ n!)
(nl,...,nt> T nal.ong!]

see Eq. 5.1.2—(3).) What is the rank of 3141592657

5. [HM25] Compute the mean and variance of the number of comparisons made by
Algorithm L in (a) step L2, (b) step L3, when the elements {as,...,a,} are distinct.

6. [HM34] Derive generating functions for the mean number of comparisons made
by Algorithm L in (a) step L2, (b) step L3, when {ai,...,a,} is a general multiset
as in exercise 4. Also give the results in closed form when {a1,...,a,} is the binary
multiset {s- 0, (n —s)-1}.

7. [HM35] What is the limit as ¢ — oo of the average number of comparisons
made per permutation in step L2 when Algorithm L is being applied to the multiset
(a) {2-1,2-2,...,2-4}? (b) {1-1,2-2, ..., ¢t-t}? (c) {2-1,4-2, ..., 2 - £}?

» 8. [21] The variations of a multiset are the permutations of all its submultisets. For
example, the variations of {1,2,2, 3} are

e, 1,12,122, 1223, 123, 1232, 13, 132, 1322,
2,21, 212, 2123, 213, 2132, 22, 221, 2213, 223, 2231, 23, 231, 2312, 232, 2321
3,31, 312, 3122, 32, 321, 3212, 322, 3221.

Show that simple changes to Algorithm L will generate all variations of a given multiset
{a1,az2,...,an}.

9. [22] Continuing the previous exercise, design an algorithm to generate all r-
variations of a given multiset {a1,az,...,an}, also called its r-permutations, namely all
permutations of its r-element submultisets. (For example, the solution to an alphametic
with r distinct letters is an r-variation of {0,1,...,9}.)

10. [20] What are the values of a1az...an, c1C2...cn, and 0102 ...0, at the end of
Algorithm P, if a1as...an = 12...n at the beginning?
11. [M22] How many times is each step of Algorithm P performed? (Assume that
n>2.)

» 12. [M23] What is the 1000000th permutation visited by (a) Algorithm L, (b) Algo-
rithm P, (¢) Algorithm C, if {a1,...,an} = {0,...,9}? Hint: In mixed-radix notation

]2 6,6,25,1,2,2,0,0]__70,0,1,2,3,0,2,7,1, 0
we have 1000000—[10, 9,8,7,6,5, 4, 3, 2,1] —[1, 2,3,4,5,6,7,8, 9, 10]'

13. [M21] (Martin Gardner, 1974.) True or false: If aiasz...a, is initially 12...n,
Algorithm P begins by visiting all n!/2 permutations in which 1 precedes 2; then the
next permutation is n...21.

14. [M22] True or false: If aiaz ... ay, is initially 122 ... 5 in Algorithm P, we always
have aj_¢;+s = z; at the beginning of step P5.

27

28 COMBINATORIAL ALGORITHMS (F2B) 7.2.1.2

15. [M23] (Selmer Johnson, 1963.) Show that the offset variable s never exceeds 2 in
Algorithm P.

16. [21] Explain how to make Algorithm P run faster, by streamlining its operations
when the value of j is near n. (This problem is analogous to exercise 1.)

17. [20] Extend Algorithm P so that the inverse permutation a ...a,, is available for
processing when a1 .. .a, is visited in step P2. (The inverse satisfies aj, = j if and only
ifa; =k.)

18. [21] (Rosary permutations.) Devise an efficient way to generate (n—1)!/2 permu-
tations that represent all possible undirected cycles on the vertices {1,...,n}; that is,
no cyclic shift of a1 ...an or a, ...a1 will be generated if a1 ...a, is generated. The
permutations (1234, 1324, 3124) could, for example, be used when n = 4.

19. [25] Construct an algorithm that generates all permutations of n distinct elements
looplessly in the spirit of Algorithm 7.2.1.1L.

20. [20] The n-cube has 2"n! symmetries, one for each way to permute and/or com-
plement the coordinates. Such a symmetry is conveniently represented as a signed
permutation, namely a permutation with optional signs attached to the elements. For
example, 231 is a signed permutation that transforms the vertices of the 3-cube by
changing zix2x3 to z2x3%1, so that 000 — 001, 001 — 011, ..., 111 — 110. Design
a simple algorithm that generates all signed permutations of {1,2,...,n}, where each
step either interchanges two adjacent elements or negates the first element.

21. [M21] (E.P. McCravy, 1971.) How many solutions does the alphametic (6) have
in radix b7

22. [M15] True or false: If an alphametic has a solution in radix b, it has a solution
in radix b+ 1.

23. [M20] True or false: A pure alphametic cannot have two identical signatures
sj = sk # 0 when j # k.

24. [25] Solve the following alphametics by hand or by computer:

a) SEND + A + TAD + MORE = MONEY.

b) ZEROES + ONES = BINARY. (Peter MacDonald, 1977)
c) DCLIX + DLXVI = MCCXXV. (Willy Enggren, 1972)
d) COUPLE + COUPLE = QUARTET. (Michael R. W. Buckley, 1977)
e) FISH + N+ CHIPS = SUPPER. (Bob Vinnicombe, 1978)
f) SATURN + URANUS + NEPTUNE + PLUTO = PLANETS. (Willy Enggren, 1968)
g) EARTH + AIR + FIRE + WATER = NATURE. (Herman Nijon, 1977)
h) AN+ ACCELERATING + INFERENTIAL + ENGINEERING + TALE + ELITE + GRANT + FEE +

ET 4+ CETERA = ARTIFICIAL + INTELLIGENCE.
i) HARDY + NESTS = NASTY -+ HERDS.

25. [M21] Devise a fast way to compute min(a - s) and max(a - s) over all valid
permutations ai ...a1 of {0,...,9}, given the signature vector s = (s1,...,s10) and
the first-letter set F' of an alphametic problem. (Such a procedure makes it possible
to rule out many cases quickly when a large family of alphametics is being considered,
as in several of the exercises that follow, because a solution can exist only when
min(a - s) <0 < max(a - s).)

26. [25] What is the unique alphametic solution to

NITHAU + KAUAT =+ OAHU + MOLOKATI + LANATI 4 MAUTI + HAWAII = 07

27. [30] Construct pure additive alphametics in which all words have five letters.

28

v

7.2.1.2 GENERATING ALL PERMUTATIONS 29

28. [M25] A partition of the integer n is an expression of the form n = ni+- - -4n; with
ny > -+ >ng > 0. Such a partition is called doubly true if a(n) = a(ni)+---+a(n,) is
also a pure alphametic, where a(n) is the “name” of n in some language. Doubly true
partitions were introduced by Alan Wayne in AMM 54 (1947), 38, 412-414, where he
suggested solving TWENTY = SEVEN + SEVEN + SIX and a few others.
a) Find all partitions that are doubly true in English when 1 < n < 20.
b) Wayne also gave the example EIGHTY = FIFTY + TWENTY + NINE + ONE. Find all
doubly true partitions for 1 < n < 100 in which the parts are distinct, using the
names ONE, TWO, ..., NINETYNINE, ONEHUNDRED.

29. [M25] Continuing the previous exercise, find all equations of the form ny + --- +
ny = nj + --- + ny, that are both mathematically and alphametically true in English,
when {ny,...,ns,ni,...,n}} are distinct positive integers less than 20. For example,

TWELVE + NINE + TWO = ELEVEN + SEVEN + FIVE;

the alphametics should all be pure.
30. [25] Solve these multiplicative alphametics by hand or by computer:

a) TWO X TWO = SQUARE. (H. E. Dudeney, 1929)
b) HIP x HIP = HURRAY. (Willy Enggren, 1970)
c) PI x R x R = AREA. (Brian Barwell, 1981)
d) NORTH/SOUTH = EAST /WEST. (Nob Yoshigahara, 1995)
e) NAUGHT X NAUGHT = ZERO X ZERO X ZERO. (Alan Wayne, 2003)

31. [M22] (Nob Yoshigahara.) What is the unique solution to A/BC+D/EF+G/HI =1,
when {A,...,I} ={1,...,9}7
32. [M25] (H. E. Dudeney, 1901.) Find all ways to represent 100 by inserting a

plus sign and a slash into a permutation of the digits {1,...,9}. For example, 100 =
91 4+ 5742/638. The plus sign should precede the slash.

33. [25] Continuing the previous exercise, find all positive integers less than 150 that
(a) cannot be represented in such a fashion; (b) have a unique representation.

34. [M26] Make the equation EVEN + 0DD + PRIME = z doubly true when (a) z is a
perfect 5th power; (b) z is a perfect 7th power.

35. [M20] The automorphisms of a 4-cube have many different Sims tables, only one
of which is shown in (14). How many different Sims tables are possible for that group,
when the vertices are numbered as in (12)?

36. [M23] Find a Sims table for the group of all automorphisms of the 4 x 4 tic-tac-toe
board

O 0 O
Q O O =
o M ON
H o N W

namely the permutations that take lines into lines, where a “line” is a set of four
elements that belong to a row, column, or diagonal.

37. [HM22] How many Sims tables can be used with Algorithms G or H? Estimate
the logarithm of this number as n — oo.

38. [HM21] Prove that the average number of transpositions per permutation when
using Ord-Sm