CORRECTION NETWORKS*

GRZEGORZ STACHOWIAKT

Abstract. In this paper we construct sorting comparator networks which correct a fixed number
t of faults in a sorted sequence of length N. We study two kinds of such networks. One construction
yields a fault tolerant unit that attached at the end of any comparator sorting network makes the
whole network a sorting one resistant to ¢ passive faults. The second network can be used to ‘repair’
a sorted sequence in which at most ¢ entries were changed (no fault tolerance is required). The
new results of this paper are constructions of comparator networks of depth 1.44 - log N for these
problems which is less than the depths of networks described by previous authors [3],[4],[5]. The
author believes it is the lower bound for correction networks. The construction of the networks is
practical for small ¢. The numbers of comparators used by our networks are shown to be reducible
to values optimal up to a constant factor.

Key words. sorting network, comparator, fault tolerance, Fibonacci numbers

AMS subject classifications. 68Q85, 68W10 (68P10, 11B39)

1. Introduction. Sorting is one of the most fundamental problems of computer
science. A classical approach to sort a sequence of keys is to apply a comparator net-
work. Apart from a long tradition, comparator networks are particularly interesting
due to potential hardware implementations. There are also implementations of these
networks as sorting algorithms for parallel computers.

In our approach sorted elements are stored in registers ri,rs,...,ry. Regis-
ters can be indexed with integers or elements of other linearly ordered sets. In this
paper a convenient convention is indexing registers with sequences of integers ¥ =
(1,2, ...,xy) ordered lexicographically. By |Z| we denote the length of . A set of
all registers having the same first coordinate z; is called row labeled with z;. A set
of all registers having the same all but first coordinates we call column labeled with
the sequence of fixed coordinates. We define operation o on sequences of integers as
follows:

(1, zk) o (Y1, s U) = (14 e o, Thy Y1y e o5 YL)-

A comparator [i : j] is a simple device connecting registers r; and r;(¢ < j).
It compares the numbers they contain and if the number in r; is bigger, it swaps them.
The general problem is the following. At the beginning of the computations the input
sequence of keys is placed in the registers. Our task is to sort the sequence of keys
according to the linear order of register indexes applying a sequence of comparators.
The sequence of comparators is the same for all possible inputs. We assume that
comparators connecting disjoint pairs of registers can work in parallel. Thus we
arrange the sequence of comparators into a series of comparator layers which are sets
of comparators connecting disjoint pairs of registers. The total time needed by a
comparator network to perform its computations is proportional to the number of
layers of the network called its depth.

Much research concerning sorting networks have been done in the past. Their
main goals were to minimize the depth and the total number of comparators. The most

*Research supported by University of Wrocltaw grant 2320/W /IIn/99. This is revised version of
the paper: Fibonacci Correction Netoworks [6].

TInstitute of Computer Science, University of Wroclaw, Przesmyckiego 20, 51-151 Wroclaw,
Poland (gst@ii.uni.wroc.pl)

2 G. STACHOWIAK

famous results are asymptotically optimal AKS [1] sorting network of depth O(log N)
and more ‘practical’ Batcher [2] network of depth ~ %log2 N (logarithms in this
paper are of base 2). Another well known result is Yao’s [7] construction of an almost
optimal network to select ¢ smallest (or largest) entries of a given input of size N
(t-selection problem). His network has depth log N + (1 + o(1))logtloglog N and
~ Nlogt comparators which matches lower bounds for that problem (¢ < N).

In this paper we deal with two problems concerning comparator networks. One of
them is to construct a comparator network which is a unit correcting ¢ passive faults
(see [8]) in any sorting network (some comparators are faulty and do nothing). Such a
unit can be attached to any sorting network e.g. AKS (as a number if its last layers) so
that the whole network is a sorting one resistant to ¢ faults. The unit has to correct all
the faults present in the sorting network and be resistant to all errors present in itself.
Such a correcting unit we call t-tolerance network. The best result concerning such
networks is that of Piotréw [4], who constructed asymptotically optimal ¢-tolerance
unit of depth O(log N + t) having O(Nt) comparators. The exact constants hidden
behind these big O-h’s were not determined, but since Piotréw uses network [5] the
constant in front of log N in O(log N + t) is at least 2.

The other problem is to sort an almost sorted sequence. Assume we have a large
sorted database with N entries. In some period of time we make ¢t modifications of
the database and want to have it sorted back. These modifications are swaps between
pairs of elements and changes of element values. We design a specialized comparator
network of a small depth to ‘repair’ the ordering and avoid using costly general sorting
networks. Such a network to sort back a sorted sequence in which at most ¢ changes
were made we call t-correction network. The best known general result here is network
of Kik, Kutylowski, Piotréw [3] of depth 4log N 4+ O(log? tloglog N).

The networks in [3] [4] are based on a nice construction by Schimmler and Starke
[5] of a 1-correction network of depth 2log N and requiring 3.5N comparators. Our
goal is to reduce the constant in front of log IV in the depth, which is most essential if
t is small and IV big. We present t-tolerance and t-correction networks that for fixed
t have depths ~ log(H\/g)/2 N = alog N, where

= =
S

a = =144....
+

log, 5

This way our networks have smaller depths than any correction networks described
by previous authors.

For sorting networks the following useful lemma called zero—one principle holds:

LeMMA 1.1 (zero-one principle). A comparator network is a sorting network if
and only if it can sort any input consisting only of 0’s and 1’s.

This lemma is the reason, why from now on we consider inputs consisting only
of 0’s and 1’s. Below we formulate analogous lemmas for tolerance and correction
networks.

We say 0 (1) is disturbed if it is changed to 1 (0). Resulting 1 (0) we call displaced.
A sequence of 0’s and 1’s produced from a sorted sequence by disturbing at most ¢
zeros and at most ¢ ones we call t-disturbed.

Let us remind the proof of zero—one principle. We have an input consisting of
arbitrary elements and prove it is sorted. To do it we take an arbitrary a from this
input and prove it goes to the register corresponding to its rank in the sequence. We
replace all elements bigger than a by 1, and smaller by 0. Indeed the only difference

CORRECTION NETWORKS 3

between outputs for the sequence where a is replaced by 0 and for one where a is
replaced by 1 is the register with the index corresponding to rank(a).

Now we deal with an input obtained by ¢ modifications in a sorted sequence. We
transform it to a 0-1 sequence as in the proof of zero—one principle. Swapping two
elements of an input corresponds to disturbing a 0 and a 1 or doing nothing. Changing
element value is equivalent to changing at most one position of 0-1 sequence. Thus
an arbitrary input made from a sorted one by ¢ modifications corresponds to a t-
disturbed 0-1 sequence. This gives us a useful lemma being in fact a characterization
of t-correction networks.

LEMMA 1.2. A comparator network is a t-correction network if it can sort any
t-disturbed input.

Now we try to sort a 0-1 sequence using a faulty sorting network. Passive faults in
this network cause some comparators to do nothing, so the network behaves like they
were removed. One faulty comparator can cause a single pair of 0 and 1 to change
their way in the network. Finally it causes at most one swap between 0 and 1 in the
output sequence. This gives us an analogous lemma for ¢-tolerance networks.

LEMMA 1.3. A comparator network is a t-tolerance network if for any v <t it
can sort any x-disturbed input if we remove any set of t — x comparators.

We define dirty area for 0-1 sequences contained in the registers during computa-
tions of a comparator network. Dirty area is the minimal set of subsequent registers
such that below these registers (in registers with lower indexes) there are only 0’s
and above there are only 1’s. A t¢-disturbed input in which only 0’s are disturbed
we call t-partially-disturbed. A comparator network that can reduce dirty area size
to at most A for any z-partially-disturbed input if ¢ — 2 comparators are faulty we
call (¢, A)-partial-tolerance. Comparator network that can reduce dirty area size to at
most A for any t-partially-disturbed input we call (¢, A)-partial-correction. For both
kinds of networks the output is #-partially-disturbed, because a 1 can only increase
the index of its register during computations. The final size of dirty area A can be
some function A(N,t) of N and ¢.

2. One Disturbed Position. In this section we consider sorting inputs with
one disturbed position. For simplicity we assume that the input has a single disturbed
0 (i-e. is 1-partially-disturbed). So we have a displaced 1 at this position. We describe
a comparator network Fy sorting any such an input of size V.

First we recall the definition of Fibonacci numbers fj:

fo=fi=1,

fe = fr2+ fr1.

We define the numbers ¢y, ¥, and 9 behaving similarly to fy:

Yo =1 ="1vYo =11 =1,
Y = pr—2 + i1,

pr = the largest odd number smaller or equal ¢y.

Uk = 2¢ — @i

4 G. STACHOWIAK

Define LG(n) to be the smallest k such that p; > n. Let ry,r2, ...,y be registers.
The network Fiy consists of d = LG(NN) subsequent layers Ly, Lo, ..., Ly such that:

L,={[2i+p:2i+p+pq_plli € Z}

The way we define L,, requires a few words of comment. From all comparators in
the definition of L, only those exist whose end registers are well defined and belong
to the set of all registers. This convention is maintained for the rest of the paper.
Now we prove that the comparator network defined above corrects a single disturbed
position indeed and estimate how many layers it has.

Fact 2.1. d = LG(N) ~log(;, /5, N = alog N

Proof. The Fact follows directly from inequalities fr—1 < ¢ < fr which can be
easily proven. O

Any input with a single disturbed position has this border between 0’s and 1’s
somewhere inside. We can define the border to be the space between registers con-
taining 0 and 1 when we replace the only displaced 1 by 0. If after replacing all the
registers contain 0 (or 1) then the border is above (or below) all the registers. We
define the distance between displaced 1 and the border to be the number of 0’s in
registers with higher indexes than one containing displaced 1. Our network proves
to reduce this distance very efficiently. It ends computations, when the distance is
guaranteed to be 0. The fact the network Fiv really corrects a single disturbed 1 is
implied by the following lemma.

LEMMA 2.2. After applying the first p layers of Fn the distance between the
single displaced 1 and the border is smaller than ¥g_piq. If displaced 1 is in a register
r; for which i = p mod 2, then this distance is smaller than @q_,.

Proof. We proceed by induction on p. For p = 0 the lemma is obvious, because
pg > N. Assume that the lemma holds for p—1 and prove it for p. Let ¢ be the index
of the register containing displaced 1 just before we apply layer p. If the displaced 1 is
not moved by layer p, then two cases are possible. The first is ¢ Z p mod 2 and from
inductive hypothesis for p the distance is smaller than ¢4+ which is not bigger than
Ya—p+1. In the second case ¢ = p mod 2 the fact 1 is not moved by layer p means
that the distance has to be smaller than ¢4 ,. If this 1 is moved then its distance is
reduced by ¢4—;, from some value smaller than q_py>. Thus after applying layer p
this distance is smaller than

Va—pt+2 — Pd—p = Va—p+1-

O
By the last lemma at any moment of computations there is a set of registers below

the border such that a single displaced 1 contained one of these registers is guaranteed
to get to the border. After the first p layers this set consists of all registers r; below
and in the distance from the border smaller than

® Yy _pi1 if i Zpmod 2

® p4_pifi =pmod 2
We call this set the correction area.

3. Partial Tolerance Network. In this section we describe a (t, t? + t)-partial-
tolerance network T'(s, N,t) of a small depth. The network is constructed for a pa-
rameter s being an arbitrary integer constant. Later in this paper we show how having
this network we can easily produce a t-tolerance network of a similar depth.

CORRECTION NETWORKS 5

The main idea of the construction T'(+) is applying a number of subnetworks F:
some of them delayed in comparison to the others. At the beginning of computations
displaced 1’s of an z-disturbed input are moved to least delayed subnetworks (borders
between 0’s and 1’s are in the same place in all subnetworks). As we proved Fy
guarantees sorting any input with a single displaced 1. If the number of displaced 1’s
is bigger, they become to disturb each other to get to the border. At least one of them
gets to the border but others do not have to. We solve this problem moving from time
to time displaced 1’s that drop out of correction area to another subnetwork. This
new subnetwork is delayed in comparison to the previous one. This way 1’s that lost
their chance to get to the border in one subnetwork regain it in another.

Now we describe the whole network in a more formal manner. We use the set of
ordered pairs (¢,7) for i € {1,...,N/t},j € {1,...,t} as the set of register indexes.
Let us have an z-partially-disturbed input. If we change all displaced 1’s to 0’s, then
in each column (see the definition of the column) we have the highest 0 almost in the
same row in its column (the row indexes can differ by 1 between columns). Network
T'(s, N,t) consists of two parts: one preceding another. The first part is preprocessing
consisting of the sequence of layers:

P17P27...7P3t7
where
Pq :{[(i72j+Q) : (i72j+q+1)]|i7j EZ}

The following easy fact describes the role of the first part in the network T'(+).

Facrt 3.1. After applying the first part of T() to x-partially-disturbed input all
displaced 1’s are pushed to registers with biggest possible coordinate j (if the number
of faults in is not bigger than t —x). It means that: r(i, j) contains displaced 1 implies
r(i,7 + 1) also contains 1. O

Let d = LG(N/t). The second part of the network which does the main work is
the sequence of layers:

Lqi,Lo,...,Lg,Cs,Lgst1,...,Las,Cos,Lost1,...,L35,C35,L3541,...
where
Ly, ={[(2i +p,7) : 20 +p+ Pa—pyasi—s),)|, € Z}
and
Co={[Ri+q+1,7): 2i+q+ 14+ @agios—s+1,J — D]li,j € Z}

For this section we take ¢y = 1 for k¥ < 0. The second part of the network T'(s, N, t)
has altogether (1 +1/s)LG(N) + 2(s + 1)(t — 1) layers. As we see the layers L, are
layers of Fy/; inside columns. Layers C; roughly speaking move displaced 1’s to the
next delayed columns when they are beyond correction areas in their columns.

Now we analyze what happens to an z-partially-disturbed input in the network
T(-). We assign to each 1 during computations the property of being or not being
active. Just after the first part we switch each displaced 1 to be active and each not
displaced 1 not to be active. We define the parameter b being the index of the row
which behaves like the border in Fly/;. At the beginning of the computations b is the
index of the highest row containing only 0’s and displaced 1’s. An active 1 ceases to

6 G. STACHOWIAK

be active at the moment it starts to be in a row ¢ : ¢ > b. At the same moment b is
decreased by one which assures that all inactive 1’s are always in rows above b. We
should mention, that there are two ways for a displaced 1 to cease to be active. It
can either be moved to a higher row or b can be decreased to the index of its row. If
a couple of 1’s should simultaneously cease to be active, because they all are in rows
with indexes not smaller than b, then they do it one by one.

We assign an integer value v to each displaced 1. We first define destination
column index u of an active displaced 1 in a given moment of computations. To do it
we change all other active 1’s to 0’s, repair all faulty comparators in the network and
take b as it is at this moment of computations. Then we continue computations of the
network. If the 1 gets to a row ¢ : ¢ > b, then destination column index w is the index
of the column from which comparator moves it to this row. If displaced 1 does not get
to such a row at all, then the index u is set to be 0. The current value v of an active 1
is equal to the minimum of all values u assigned to this 1 till the considered moment
of computations. When the 1 ceases to be active, its value remains unchanged till the
end of computations. It is not hard to see from the definition, that at the beginning
of the second part each 1 has value equal to the index of its column, because of the
layers of the network Fi/; in this column.

The following facts describe behavior of values assigned to 1’s:

Fact 3.2. If an active 1 is stopped by a passive fault, then its value decreases by
one or does not change.

Proof. We prove, that its destination column index u does not change or decreases
by one. We trace the stopped 1 repairing all the faults it can encounter and changing
all other active 1’s to 0’s as in the definition of w. If u obtained this way is equal to
the index of the column in which 1 was stopped, then it means that u was not for sure
decreased by the fault, because such u is maximal for this column. So we consider the
case that u is smaller than this index. Let us now trace the stopped 1 only for 25+ 1
layers after stop occurred. During the time we have a layer C, preceded by layer L,
so the 1 decreases the index of its column in this period. Now we analyze what the
destination column index wu is just after the first layer C;; which moves the 1 to the
next column (with decreased index) in comparison to w just before it is stopped by
a fault. Just after C; the column index is smaller by one, the row is higher, and the
layer is later by at most 2s + 2. The next column because of its delay is at the same
or earlier phase of its computations, as the column in which the stop occurred was at
the moment of the stop. It proves that the index u of 1 does not decrease by more
than one. O

Fact 3.3. Assume an active 1 is stopped by another active 1 and its value
decreases. In such a case its value becomes to be not smaller than the value of 1
causing the delay decreased by one.

Proof. There is no difference for a displaced 1 between being stopped by a passive
fault and another displaced 1. Just before one active 1 stops another they must have
the same destination column index. O

THEOREM 3.4. Network T(s,N,t) is a (t,t? + t)-parital-tolerance network of
depth

a <1 + é) + O(st).

Proof. Putting together the facts one can see that at the end of computations 1’s
which were displaced at the beginning of the second part have values vy, vs, ..., 0.

CORRECTION NETWORKS 7

Without loss of generality we can assume that the values form a not increasing se-
quence. Because of the Facts the difference v; — v;41 is not bigger than the number
of faults 1 with v;4; encountered increased by one. Also vy =t is not smaller, than ¢
decreased by the number of faults that stopped 1 corresponding to v;. We have not
more than ¢ displaced 1’s and faults altogether. Thus v, > 1 and all 1’s are not active
at the end of the second part. It gives dirty area size not bigger than t* + ¢, because
b is decreased x times during the computations. O

4. Partial Correction Network. Now we are going to describe a
(t, ct(log N)¢ 198 t)_partial-correction network C(s, N,t), where s is an integer con-
stant and c; depends on s. This network has depth a(l + 1/s)logN + ¢s(1 +
o(1))log tloglog N. We show later in this paper how from this network we can obtain a
t-correction network of almost the same depth. For this section we change denotation
Yy to (k) (the same for ¢ and ¥). We also put 9 =1 for k£ < 0.

Before we begin to construct the network C'(-) we prove some lemmas about
network F on which the construction is based.

LEMMA 4.1. Assume 1-partially-disturbed input is processed by Fy. In a given
moment of computations the single displaced 1 is in register i. There are at most fs11
registers where it could have been s layers before this moment: at most fs of the same
parity as t + s and at most fs_1 of the opposite parity.

Proof. 1t is enough to prove the lemma for the case, where ¢ is the higher register
of a comparator just before the given moment of computations (in the other case the
1 waited in ¢ for the last layer). In such case there are at most 2 = f, registers where
displaced 1 could be a layer before this moment: at most 1 = fy of parity of ¢ and
at most 1 = f; of parity ¢ + 1. Now we proceed by induction on s. For s 4+ 1 layers
we have at most fs registers of parity ¢ + s because displaced 1 in such register is not
moved by additional first layer. We can have at most fsy; registers of the opposite
parity because there are at most fs; registers displaced 1 can be in before s layers.
For any such a register there is at most one register of parity i+ s+ 1 from which this 1
can come by additional first layer. Thus altogether there are at most fsy2 = fs+ fs+1
registers from which displaced 1 can come to register ¢ by s + 1 layers preceding the
given moment. O

The next lemma describes behavior of Fy if the number of displaced 1’s is bigger
than one

LEMMA 4.2. Assume that in a given moment of computations not less than t
displaced 1’s of a partially disturbed input are in the correction area of Fn. In such a
case after next s layers at least t/ fs11 displaced 1’s remain in the correction area.

Proof. For each register in correction area after s layers there are at most fs11
registers in a given moment from which by these layers a single displaced 1 comes to
this register. If there are more than one displaced 1 in those registers, then still one
of them comes to this destination register. Thus at least ¢/ fs11 displaced 1’s come to
the correction area after s layers. O

The main idea of construction C'(+) is similar to that of T'(-). We have a number of
disjoint subnetworks Fy-. At the beginning all displaced 1’s of a t-partially-disturbed
input are moved to a few subnetworks (other become free from displaced 1’s). In
each subnetwork the border between 0’s and 1’s is in the same place. Each s steps
displaced 1’s that drop out from correction area in their subnetwork are moved to
another subnetwork not containing previously any displaced 1’s. These moved 1’s
are in correction area of their new subnetwork, because the new Fy is delayed by
s+ 1 steps. In the delayed Fy- there is at most fraction 1 — 1/fs41 of displaced 1’s

8 G. STACHOWIAK

from the previous Fy:. Thus the total delay cannot grow very much because in the
subsequent subnetworks maximal numbers of displaced 1’s go down exponentially. In
fact this idea is similar to that applied in [3]. The modifications consist in applying
Fx network and putting C, layers not every second step, but less frequently. The
following simple combinatorial fact says us, that in our construction the number of
subnetworks Fy/ is not too big.

Fact 4.3. The number of nondecreasing sequences j1,J2,--.,jr for 0 < k < K

and 1 < j; < J is equal:
J+ K\ K
(K) =0(7)

Proof. The number is the same as the number of nondecreasing sequences of
integers j; : 0 < j; < J of length K which is the same as the number of increasing
sequences of integers 7, : 1 < j, < J+ K. 0O

Now we define network C'(-) in a more formal way. Let K = —log, /5 t,J =
[LG(N)] + K. In the network C(s, N,t) indexes of registers have the form (n') o
jo(J+ 7). In this denotation 7 € {1,...,t}, 7 = (ji,...,jx) is a nondecreasing
sequence of integers j; € {1,...,J} of length at most K and n' € {1,...,N'}, where
N' = —(J%)t.

Now we define the layers of the network that reduce dirty area of any t-partially
disturbed input. Denote by b the index of the highest row containing only 0’s and
displaced 1’s. We treat the space between rows b — 1 and b — 2 as the border between
0’s and 1’s for the needs of our algorithm. The distance between a row and the border
is the number of rows between them. Displaced 1’s below the border we call active.

The network C(s, N,t) consists of two parts (one preceding another). The first
part consists of selectors [7] for the ¢ largest entries in each row of registers. After
the first part all active 1’s get to registers R(n', 7 + J). Indexes of these registers are
lexicographically biggest in each row. This first part has depth ~ ¢4logtloglog N.

. . 1 _

The constant ¢, depending on s is O (m) = O(fs).

Let d = LG(N'). The second part consists of the sequence of layers

L17 L27 ceey L87 CvavaS-‘rlv ceey L287 0287L2S+17) L387 C3SvL3S+17 s

where

Ly ={[2i+p)ojo(r+J): 2i+p+ed+(s+ 1)l -p)ojo(r+ I}

C, = {[(2i+q+1)0;o(T+J) :
Qi+q+1+9(d+(s+1)]j]—g+1))ojo (g— |}‘|,T+J)H
U {[2z+q Jojo(r+J):

- q e
@i+q+ed+ s+ -a)eje (L-lflr+0)]}.
s

There are altogether (1 +1/s)(LG(N') + K) + (s + 1)K layers in the second part.

In this part layers L, again represent layers of Fiy inside the columns (as in T°(+)).

Correction area of a column is the set of its registers from which a single displaced
1 is guaranteed to get to or below the border by applying only layers L,. Layers

CORRECTION NETWORKS 9

C, represent transfers of active 1’s which are beyond correction area to columns not
containing displaced 1’s.

From the way layers C'; are defined we see that only one transfer to a given column
can occur during the whole time of computations. Active 1’s are transferred from
column J o (74 J) to column j7 o (7 + J) where |j7| = |j]+1 (since j7 = Jo (¢/s—)
All transferred 1’s after the transfer are in a row at the distance not bigger than
o(d + (s 4 1)|57| — ¢ — 1) from the border. Thus they are in correction area of their
new column. At most fraction 1 —1/fs4; of active 1’s is transferred remaining active
after the transfer. Thus the following fact holds:

FACT 4.4. A column with the index j o (r + J) contains not more than
t-(1- 1/f5+1)|;‘ active 1’s.

The fact above is the reason why we do not need columns for |j] > K. Even if
they were present, no displaced 1’s would get to them. Because all displaced 1’s are
at the end of computations in rows b,b — 1 or b — 2 the following fact holds:

FacT 4.5. The second part of the network reduces the dirty area to at most three
TOws.

This way the network C/(-) reduces dirty area to at most 3t(” 1) = ct(log N)e- 108
registers. This proves the following lemma:

LEMMA 4.6. Network C(s,N,t) is a (t,ct(log N)¢ 198) partial-correction unit for
some constant ¢ depending on s. This network has depth

1
a (1 + g> log N + ¢5(1 + o(1)) log t log log N

5. Tolerance and Correction Networks. Now we show how having partial-
tolerance and partial-correction networks we can obtain tolerance and correction net-
works of almost the same depth. The solutions presented in this and the next section
are intended to be as simple as possible and are not optimal. Unfortunately the only
better constructions the author could think about were much more complicated tech-
nically. Describing them would make these sections very boring. The only advantage
would be reducing some constants not estimated in this paper.

The problem which is often encountered in construction of comparator networks
is sorting inputs with dirty areas of a small size. Assume we can reduce dirty area
of t-disturbed sequence of 0’s and 1’s to size A. The question is how many layers
and comparators a comparator network needs to ‘clean’ this dirty area i.e. to finish
sorting. We have two versions of this question. One if we require fault-tolerance the
other if we do not. This question is answered by two easy lemmas:

LEMMA 5.1. Assume that there exists a t-tolerance network Xy, that for input
size N has depth 6(N,t) and v(N,t) comparators. Then there exists a comparator
network that sorts any x-disturbed input with a dirty area of size at most A if it
has not more than t — x faulty comparators. This network has depth 26(2A,t) and
Xv(2A,t) comparators.

LEMMA 5.2. Assume that there exists a t-correction network Xy, that for input
of size N has depth 6(N,t) and v(N,t) comparators. Then there exists a comparator
network that sorts any t-disturbed input with a dirty area of size at most A. This
network has depth 26(2A,t) and §~(2A,t) comparators.

Proof of both lemmas. We index the registers with integers 1,..., N. The network
cousists of two parts 0(2A,t) layers each. The first part consists of networks Xoa on

10 G. STACHOWIAK
each set of registers:

S2i = {r2iat+1,T2iAa42, -+ s T2iA4+2A

The second part is are the networks Xoa on each set of registers:

S2i41 = {T(2i+1)A+17 T 2i+1)A+2) - - - 77'(2i+1)A+2A}~

This network cleans the dirty area because this area is contained in at least one S;. O

Now having these cleaning networks we can formulate the main result of this sec-
tion. We are going to prove is that to produce a good t-tolerance(-correction) network
it is enough to construct (¢, A)-partial-tolerance(-correction) network Yy having small
depth and reasonably small function A and t-tolerance(-correction) network X of
not too big depth and small number of comparators. In such case we can construct
t-tolerance(-correction) network of almost the same depth as Yy and having roughly
speaking twice as many comparators as Xy has. We call these reductions refinement
lemmas. We formulate and prove them at once for tolerance and correction networks.

LEMMA 5.3 (refinement lemma). Assume we have a comparator network Yy
which is (t, A(N, t))-partial-tolerance(-correction) network of depth 6'(N,t). We also
have a t-tolerance(-correction) network Xy of depth 6(N,t) and having v(N,t) com-
parators. Then for any M there ezists a t-tolerance(-correction) network for any input
size N of depth

Nt AMA
d(M,t) + ¢ (—t) +26 <— + 2M,t)
M t
with the number of comparators not bigger than

N
MV

Nt) Nt <4MA
I

Nt
M) + L (2L
(’t)+M6<)t oma o \ e

2M,t
i 200

where A = A(Nt/M,t).

Proof. Let register indexes be pairs (¢,7)(¢ € {1,...,N/M},j € {1,...,M}). Our
network consists of three main parts.

In the first part we apply X,/ in each row separately. This requires §(M,t) layers
and 2~(M, t) comparators. The result of this part is that displaced 0’s are moved to
the first ¢ columns, and displaced 1’s are moved to last ¢ columns (except maybe one
row at the border between 0’s and 1’s).

In the second part we use two copies of Y = Y,/ The first copy is applied
to all registers of last ¢ columns to deal with the displaced 1’s. In the same time
we deal with first & columns in which there are all displaced 0’s. We notice, that Y
reversed upside-down can deal with them as ordinary Y does with displaced 1’s. So
we apply reversed Y to first ¢ columns. All of this requires ¢’ (%, t) layers and at
most %6’ (%7 t) comparators. The result of this part is reduction of dirty area to at
most 2MTA + M registers.

The third part is cleaning network (based on X) for dirty area of size % +M
which requires 26 (42 + 2/, ¢t) layers and ﬁiMﬂ (M2 4 20, t) comparators.
O

Now we show how we can use refinement lemmas to construct tolerance and
correction networks of a small depth. In the construction of t-tolerance network we
apply the Piotréw’s network [5].

CORRECTION NETWORKS 11

THEOREM 5.4. There exists a constant ¢ such that for an arbitrary s there exists
a t-tolerance network of depth:

1
a (1 + E) log N + cloglog N + (2s + ¢)t

having O(Nt) comparators.

Proof. We defined (t, t? + t)-partial-tolerance network 7'(s, N, t), which has depth
a(l+1/s)log N + (2s + ¢)t. Theorem follows from refinement lemma applied to Xy
being Piotréw’s network, Yy = T'(s,N,t), M =tlog N. O

The above network is practical for small ¢. If we fix ¢t and take s = y/log N, then
we obtain a t-tolerance network of depth alog N + O(y/log N).

Similarly as for fault tolerant networks we can now construct a ¢-correction net-
work applying refinement lemma.

THEOREM 5.5. For any integer s there exists a t-correction network of depth

1
a <1 + —) log N + ¢, (log tloglog N)%.
s

for some constant ¢, depending on s.

Proof. We apply refinement lemma taking Y = C(s, N, t), X y—Batcher network,
M =tlogN. O

This network has depth a(l + 1/s)logN + o(logN) for N — oo and
t = O(ZVIOgN/IOgIOgN). We know, that ¢, = O(c?) = O(f%) = O(2?%). We can
take s = logloglog N and obtain the following corollary:

COROLLARY 5.6. For any t there exists a t-correction network of depth

1 .
a1+ —————)logN + clog®tloglog* N ~ alog N
logloglog N

for some constant c.

We can also apply refinement lemma once again taking the network from the last
theorem for s =1 as Xn. We put Yy = C(s,N,t), M = tlog N and get the following
corollary.

COROLLARY 5.7. For any integers s,t there exists a t-correction network of depth

1
a (1 + g) log N + ¢ logtloglog N + o(loglog N).

for some constant ¢! depending on s.
Unfortunately the construction from the corollary works only for relatively small
t.

6. Minimizing the Number of Comparators. First we should know what
the minimal possible numbers of comparators for ¢-tolerance and t-correction networks
are. Any t-tolerance network has at least ¢ comparators going up from any register
different from the highest one to the register with the index higher by one (to make
it impossible for all of them to be faulty for 1-disturbed input). So it has at least
(N —1)t = Q(Nt) comparators. Any ¢-correction network has to be a ¢-selector which
forces it to have (N logt) comparators [7]. These asymptotic lower bounds on the
numbers of comparators in correction networks prove to be achieved.

12 G. STACHOWIAK

A t-tolerance network having asymptotically optimal number of comparators (i.e.
O(Nt)) is one from the previous section. It has depth a(1+1/s) log N +O(loglog N +
st).

An optimal t-correction network is constructed using refinement lemma. Similar
techniques to those we use in this section can be applied to reduce numbers of com-
parators of practical correction networks. The simplest way to make these practical
constructions is to use Batcher network instead of AKS in what follows. Unfortu-
nately we were not able to find a ¢-correction network with asymptotically optimal
number of comparators without using AKS network, so our further constructions are
not practical. First we construct a network that is asymptotically optimal in the sense
of the number of comparators but is not if the depth is concerned.

LEMMA 6.1. There exists a t-correction network that for some constant ¢ and
any input size N has depth cNlogt/t and at most cN logt comparators.

Proof. Let AKS denote a sorting network which has depth £ logt for input of size
2t [1]. It has at most $tlogt comparators. We index registers with integers 1,..., V.
Let S; be the following set of registers

S = {T(ifl)t+lv7‘(ifl)t+2v SRR T(ifl)t+2t}~

Our network consists of 2N/t — 3 parts clogt layers each. Each part consists of a
single AKS network on register set S;. Thus we apply AKS subsequently to

51,52,y S(N/t)—1> S(N/t)—25 - - - O1-

It is easy to see that what we constructed is really a t-correction network. 0

When we have the t-correction network from the last lemma we can put it as
Xy to refinement lemma taking M = tigg iv . As Yy we can use AKS which is a
(t,0)-partial-correction network. This way we obtain the following corollary:

COROLLARY 6.2. There exists a t-correction network of depth O(log N) having
O(N logt) comparators.

Further on we can take correction network from the last lemma as Xy, C(s, N, t)
as Yy and M = tlog N. As a result by refinement lemma we obtain the following
corollary:

COROLLARY 6.3. For any integer s there exists a t-correction network of depth

a(l+1/s)logN + ¢, logtloglog N

for some constant ¢, depending on s which has O(N logt) comparators.

A natural question whether applying AKS sorting network is necessary in above
constructions of correction networks can arise. We can justify the use of AKS by the
following proof of lower bound for the number of comparators in correction network.
Let us have a t-correction network for N entries with the minimum possible number
of comparators. We can notice, that any ¢t subsequent registers have to form a sorting
network together with comparators that connect them. The lower bound for the
number of comparators in a sorting network for ¢ entries is Q(tlogt). Dividing all
registers into groups of ¢ subsequent registers we get the lower bound of Q(N logt)
comparators in ¢-correction network. If we had a correction network not based on AKS
and having O(N logt) comparators, then some groups of ¢ subsequent registers would
be connected with O(tlogt) comparators. These O(tlogt) comparators would form
a sorting network different from AKS. Unfortunately we do not know any different
from AKS sorting networks with O(tlogt) comparators.

CORRECTION NETWORKS 13

7. Conclusions. We constructed ¢-tolerance and t-correction networks of depths
~ alog N for fixed t. This is less than depth of 1-correction network found by Schimm-
ler and Starke [5]. Network T'(-) seems to be better for practical purposes although
it is worse than C(-) for combinations of N and ¢ where N is big and ¢t > log N.
Some considerations we did not include in this paper seem to indicate that the fol-
lowing conjecture is true. This conjecture was originally posed by Mirek Kutylowski
— authors only contribution is the constant a.

CONJECTURE 7.1. The lower bound for depth of 1-correction network is

alog N —c.

for some small constant ¢. Because the author was unable to find 2-correction
networks having depth asymptotically better than T'(-), he dares to pose another
conjecture concerning 2-correction networks.

CONJECTURE 7.2. The lower bound for depth of 2-correction network is

alog N + cy/log N

for some constant ¢ > 0.

Acknowledgments. Author wishes to thank Mirek Kutytowski, Krzysiek Lory$
and Marek Piotréw for presenting the problems, helpful discussions and their encour-
agement to write this paper.

REFERENCES

[1] M. Ajtai, J. Komolés, E. Szemerédi, Sorting in clogn parallel steps, Combinatorica 3 (1983),
1-19.

[2] K.E. Batcher, Sorting networks and their applications, in AFIPS Conf. Proc. 32 (1968), 307-314.

[3] M. Kik, M. Kutytowski, M. Piotréw, Correction Networks, in Proc. of 1999 ICPP, 40-47.

[4] M. Piotréw, Depth Optimal Sorting Networks Resistant to k Passive Faults in Proc. 7th SIAM
Symposium on Discrete Algorithms (1996), 242-251 (also accepted for SIAM J. Comput.).

[5] M. Schimmler, C. Starke, A Correction Network for N-Sorters, SIAM J. Comput. 18 (1989),
1179-1197.

[6] G. Stachowiak, Fibonacci Correction Networks, in Algorithm Theory — SWAT 2000 , M
Halldérsson (Ed.) , LNCS 1851, Springer 2000, 535-548.

[7] A.C. Yao, Bounds on Selection Networks, SIAM J. Comput. 9 (1980), 566-582.

[8] A.C. Yao, F.F. Yao, On Fault-Tolerant Networks for Sorting, SIAM J. Comput. 14 (1985),
120-128.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

