
Jumping succession rules and their generating

functions

Luca Ferrari� Elisa Pergolay Renzo Pinzaniy

Simone Rinaldiy

Abstract

We study a generalization of the concept of succession rule� called

jumping succession rule� where each label is allowed to produce its sons

at di�erent levels� according to the production of a �xed succession rule�

By means of suitable linear algebraic methods� we obtain simple closed

forms for the numerical sequences determined by such rules and give

applications concerning classical combinatorial structures� Some open

problems are proposed at the end of the paper�

� Doubled succession rules

Consider a � � n rectangle and suppose to tile it using � � � domino
pieces� Clearly� if one uses vertical pieces only in the tiling� there is exactly
one solution to the problem� whereas allowing vertical and horizontal pieces
gives Fn possible solutions� where Fn is the n�th Fibonacci number� as it is
well�known� These two� very simple enumerative results are clearly related�
and it seems obvious that the latter can be derived from the former one�
which is completely trivial� Our aim is to develop a general setting to deal
with this kind of problems by slightly extending the concept of succession
rule and the ECO method�

Figure �� The tiling of a �� n rectangle using Fibonacci pieces�
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A succession rule � is a system constituted by an axiom 	a
� a � N
� �

N n f�g� and a set of productions of the form�

	k
� 	e�	k

	e�	k

 � � � 	ek	k

� k �M � N
� �

where ei � N
� � N

� � explaining how to derive� for any given label 	k
�
k � N

� � its successors 	e�	h

� 	e�	h

� � � � � 	ek	h

� In most of the cases for
a succession rule �� we use the more compact notation�

�
	a

	k
� 	e�	k

	e�	k

 � � � 	ek	k

�

	�


to mean that there can be innitely many productions in the system� but
at most one for each integer k � N

� �
The rule � can be represented by means of a generating tree� that is a

rooted tree whose vertices are the labels of �� 	a
 is the label of the root
and each node labelled 	k
 produces k sons labelled 	e�	k

� � � � � 	ek	k

�
respectively� We refer to ��� for further details and examples� A succession
rule � denes a sequence of positive integers ffngn��� being fn the number
of the nodes at level n in the generating tree dened by �� By convention
the root is at level �� so f� � �� The function f�	x
 �

P
n�� fnx

n is the
generating function derived from ��

The concept of succession rules was rst introduced in ��� by Chung
et al� to study reduced Baxter permutations� later� West applied succession
rules to the enumeration of permutations with forbidden subsequences �����
Moreover� they are a fundamental tool used by the ECO method ���� which
is a general method for the enumeration of combinatorial objects essentially
based on the denition of a recursive construction for a class of objects by
means of an operator which performs a �local expansion� on the objects
themselves� Let p be a discriminating parameter on a class of objects O�
that is p � O � N

� � such that jOnj � jfO � O � p	O
 � ngj is nite� An
operator � on the class O is a function from On to �

On�� � where �On�� is
the power set of On���

Proposition ��� ��� Let � be an operator on O� If � satis�es the following
conditions�

�� for each O� � On��	 there exists O � On such that O� � �	O
	

�� for each O�O� � On with O �� O�	 �	O
 � �	O�
 � �	

then the family of sets Fn�� � f�	O
 � O � Ong is a partition of On���

�



Once the parameter p is xed� if we are able to dene an operator
� which satises conditions �� and ��� then Proposition ��� allows us to
construct each object O� � On�� from an object O � On� and each object
O� � On�� is obtained from exactly one O � On�

The generating tree associated to the couple 	O� �
� is a rooted tree
whose vertices are the objects of O� The objects having the same value of
the parameter p lie at the same level� and the sons of an object are the
objects it produces through ��

A slight generalization of the notion of succession rule is provided by
the concept of coloured succession rules� Roughly speaking� a rule is said to
be coloured when more than one production is allowed for at least one label�
The usual notation to indicate a two�coloured rule is the following�

���
	a


	k
� 	e�	k

 � � � 	et	k

	et��	k

 � � � 	ek	k

�

	k
� 	c�	k

 � � � 	cs	k

	cs��	k

 � � � 	ck	k

�

	�


For more details about these topics� see ����

Given a succession rule of the form 	�
� we dene the rule operator L�

	brie�y� L
 associated with � ��� �� as�

L� � R�x� � R�x�

L�	�
 � xa�

L�	x
k
 � xe��k� � � � �� xek�k��

L�	x
k
 � kxk� if the label 	k
 is not in the generating tree of � �

and then extending by linearity on R�x� 	considered as a R�vector space
� In
general� we use the power notation to express the iterated application of L�
Ln��	�
 � L	Ln	�

� For any n � N we have�

fn � �L
n��	�
�x�� � �DL

n	�
�x���

where D is the derivative operator with respect to the variable x� In ��� ��
many properties of the rule operators are given�

The next denition is the key step in our extension of ECO method�
Given a succession rule � as in 	�
� we call doubled succession rule

associated with � the following expression�

�



�� �

�����
	�a


	�k

�
� 	�e�	k

 � � � 	�ek	k



	�k

�
� 	�e�	k

 � � � 	�ek	k

�

	�


In order to understand the meaning of this denition we introduce the
concept of generating tree associated with ��� or doubled generating tree� it
is precisely a rooted labelled tree whose edges can have �length� � or �� The
lengthened level 	brie�y� level
 of a node N in a doubled generating tree is
then dened as follows�

i
 if N is the root� then its level is equal to ��

ii
 otherwise� let F be the father of N � in this case� the level of N is equal
to the level of F plus the length of the edge from F to N �

In a word� the level of a node N is the sum of the lengths of the edges
connecting the root to N � The root of the doubled generating tree is labelled
	�a
 and every node at level l 	labelled 	�k

 has exactly k sons at level l��
	labelled 	�e�	k
� � � � � 	�ek	k

� resp�
 and k sons at level l�� 	with the same
labels
� We remark that a similar notion has been used in ��� ���� Anyway�
these works deal with specic examples only� without providing a general
theory for doubled rules�

At this stage� it is not di�cult to see that our starting problem ts
into this framework� Indeed� given the 	unique
 �vertical� tiling of the ��n

rectangle� we obtain the 	unique
 �vertical� tiling of the ��	n��
 rectangle
simply by adding a vertical domino piece on the right� this can be trivially
described by the succession rule�

� �

�
	�

	�
� 	�
�

	�


On the other hand� if we consider a generic tiling of the �� n rectangle
by vertical and horizontal dominoes� we can add on the right one vertical
domino 	so obtaining a tiling for the �� 	n��
 rectangle
 or two horizontal
dominoes 	in this way obtaining a tiling for the ��	n��
 rectangle
� Because
of the simplicity of this example� it is very easy to show that every tiling of
the �� 	n� �
 rectangle derives from exactly one tiling 	either of the �� n

rectangle or of the �� 	n��
 rectangle
� This construction can be described
by doubling the succession rule �� so obtaining the rule�

�



�� �

�����
	�


	�

�
� 	�


	�

�
� 	�
�

	�


The rst levels of its generating tree are represented in Figure ��
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Figure �� The rst levels of the generating tree of the doubled rule 	�
�

It is immediate to see that the sequence enumerated by the above dou�
bled generating tree is that of Fibonacci numbers� indeed� the number of
nodes at each level is the sum of the cardinalities of the two preceding lev�
els�

� Fibonacci transform

Consider a succession rule � of the form 	�
� and suppose that 	sn
n��
is the numerical sequence determined by �� If �� is the doubled succession
rule associated with �� can we determine the sequence 	s�n
n�� related to �

��
The central result of this section is precisely the solution of this problem�

Before proving our main theorem� we need to state a few denitions�
Let L be the rule operator associated with �� the series�

X
n��

Ln��	�
tn 	�


�



is a formal power series in the variables x and t and it is called the bivariate
generating function of the generating tree determined by �� In particular�
the sequence of the numbers �Ln��	�
�x�� is precisely the one dened by ��
and the coe�cient of xk in the polynomial Ln��	�
 represents the number
of nodes labelled 	k
 at level n�

If �� is the doubled rule associated with �� the normalization of �� is
the rule�

e�� �
�����
	a


	k

�
� 	e�	k

 � � � 	ek	k



	k

�
� 	e�	k

 � � � 	ek	k



	�


which is obtained by �� simply by dividing each label by �� It is clear that
the generating tree dened by e�� loses the �ECO�property�� i�e� every node
labelled 	k
 possesses �k sons instead of k� however� �� and e�� count the same
sequence� and e�� can be better treated in the formalism of rule operators�
We remark that systems like e�� are also called pseudo ECO
systems ����

Proposition ��� The bivariate generating function of the generating tree
de�ned by e�� has the form�

�
�

�� tL� t�L

�
	L	�

 �

X
n��

	tL� t�L
n	L	�

� 	�


being �
M

the compositional inverse of the operator M �

Proof� Denote by pn	x
 the polynomial such that the coe�cient of
xk is the number of nodes labelled 	k
 at level n of the generating tree
of e��� Clearly p�	x
 � xa� p�	x
 � xe��a� � � � � � xea�a� and� in general�
pn	x
 � Ln��	�
� Now observe that a node at level n is the son of a node
at level n � � or of a node at level n � �� Then the following polynomial
recurrence holds�

pn	x
 � L	pn��	x

 � L	pn��	x

� 	�


which is valid for every n 	 � 	by dening p��	x
 � �
�
According to 	�
� the generating function f	x� t
 �

P
n�� pn	x
t

n satis�
es�

f	x� t
 �
X
n��

L	pn��	x

t
n �

X
n��

L	pn��
	x
t
n � L	�


�



which simplies into�

f	x� t
 � 	tL� t�L
	f	x� t

 � L	�


that is

	�� tL� t�L
	f	x� t

 � L	�
�

Therefore f	x� t
 is obtained by simply inverting the operator �� tL�
t�L� which is precisely our thesis� �

Theorem ��� The number sequence enumerated by e�� �or by ��� is the
sequence�

s�n �

nX
k��

�
n� k

k

�
sn�k �

nX
k��

�
k

n� k

�
sk 	��


being 	sn
n�� the sequence determined by ��

Proof� From Proposition ��� we have�

s�n � ��t
n�f	x� t
�x�� �

�	�tn�X
m��

	tL� t�L
m	L	�




�
x��

�

Since

	tL� t�L
m � tm	� � t
mLm �

mX
k��

�
m

k

�
tm�kLm�

we obtain�

�tn�	tL� t�L
m �

nX
k��

�
n� k

k

�
Ln�k�

whence�

�



s�n �

�
nX

k��

�
n� k

k

�
Ln�k��	�



x��

�

nX
k��

�
n� k

k

�
sn�k� �

The numbers s�n of 	��
 count the nodes at level n of the generating tree
of ��� From a combinatorial view point� each term

�
n�k
k

�
sn�k of the sum in

	��
 counts the number of the nodes N at level n such that the path from
the root to N contains exactly n� k edges of length ��

We call Fibonacci transform of a numerical sequence 	sn
n�� the se�
quence�

s�n �
nX

k��

�
n� k

k

�
sn�k� 	��


The reason for choosing this name lies in the following

Corollary ��� �Lucas identity� The Fibonacci transform of the sequence
sn � �	 
n � N	 is the sequence of Fibonacci numbers�

Observe that this corollary is also the solution of our starting problem�

We now consider an extension of the ECO method which represents the
combinatorial interpretation of doubled succession rules� Let O be a class of
combinatorial objects� A doubled operator � is an operator on the class O�

� � On � �On���On�� �

Proposition ��� Let � be a doubled operator on O� If � satis�es the fol

lowing conditions�

�� for each O� � On	 there exists O � On�� � On�� such that O� � �	O
	

�� for each O�O� � On � On�� with O �� O�	 �	O
 � �	O�
 � �	

then the family of sets Fn�� � f�	O
 � O � On�On��g��On�� is a partition
of On���

Clearly� the generating tree associated to the operator � is a doubled
generating tree�

�



Example ��� Doubled Dyck paths and a combinatorial interpretation of a
doubled succession rule�

On the lattice plane N�N � the class C of Dyck paths contains the paths
made up of rise steps 	�� �
 and fall steps 	����
� running from 	�� �
 to
	�n� �
 	see Fig� � 	a

� The length of a Dyck path is the number of its steps�
It is common knowledge that the number of �n�length Dyck paths is the
nth Catalan number Cn �

�
n��

��n
n

�
	for an interesting survey� see ���
�

The last sequence of fall steps in a Dyck path is called its last descent�
Let Cn be the set of Dyck paths having length �n� and � the operator dened
in ��� such that

� � Cn � �Cn�� �

which inserts a peak into any point belonging to the last descent of each
path�

The succession rule � describing this operator on C is�

� �

�
	�

	h
� 	�
	�
 � � � 	h
	h � �
�

	��


Let us consider the class CC of lattice paths made up by rise 	�� �
� fall
	����
� double
rise 	�� �
 and double
fall 	����
 steps� dened recursively as
follows�

i
 the empty path belongs to CC�
ii
 if C� D are paths in CC� then the path obtained by adding a rise step
	resp� a double�rise step
 before C and a fall step 	resp� a double�fall
step
 after C and then concatenating with D belongs to CC�

We call these paths doubled Dyck paths 	see Fig� �� 	b

� In a doubled Dyck
path the last descent is the last sequence of fall�double�fall steps� and a peak
	resp� double peak
 is a rise 	resp� double�rise
 step followed by a fall 	resp�
double�fall
 step�

The class of doubled Dyck paths is suitably introduced� starting from
the class of Dyck paths� with the aim of handling a combinatorial structure
whose recursive construction can be dened by means of a doubled operator�
Indeed� let us consider the doubled operator �� on CC� if CCn denotes the
set of paths having length �n� then�

�� � CCn � �CCn�� � �CCn�� �

The operator �� inserts a peak� or a doubled peak� in each lattice point of the
last descent of a doubled Dyck path� clearly excluding those points internal
to double�fall steps 	see Fig� �
�

�



rise step

fall step

double rise step

double fall step

(a)

(b)

Figure �� A Dyck path and a doubled Dyck path�

The operator �� satises Proposition ���� and the doubled generating tree
associated with �� 	see Fig� �
 determines a doubled succession rule ��� which
is the Fibonacci transform of ��

�� �

�����
	�


	�h

�
� 	�
	�
 � � � 	�h
	�h � �


	�h

�
� 	�
	�
 � � � 	�h
	�h � �
�

	��


Let us have a look at the enumeration of the class CC according to the
path length� Theorem ��� ensures us that the number of doubled Dyck paths
having length �n is equal to

C �
n �

bn
�
cX

k��

�
n� k

k

�
Cn�k �

bn
�
cX

k��

�
k

n� k

�
Ck� 	��


Equality 	��
 has a very simple combinatorial interpretation� for any xed
length �n� for any k � �� � � � � bn� c� there are exactly

�
n�k
k

�
Cn�k paths of CCn

having k doubled rise step�
Doubled Dyck paths can be represented as doubled Dyck words� dened

by the unambiguous grammar�

S � xSxSjyySyySj��
being � the empty word� The generating function is

��
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,

added peak
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Figure �� The doubled operator �� on a doubled Dyck path� The marked
points denote the sites where the operator performs the transformation�

��p�� �	x� � x	


�	x� � x	


dening the numerical sequence �� �� �� �� ��� ���� ���� ����� � � � � omitting the
zeroes 	sequence A������ in ����
�

At the end of this section� we give a result which characterizes the set of
generating functions of doubled succession rules� Recall that two rules are
said to be equivalent when they dene the same sequence�

Theorem ��� Let � be a succession rule	 and �� the doubled rule associated
with �� Then a succession rule ��� exists such that ��� and �� are equivalent�

Proof� We prove that� given a succession rule 	�
� the doubled succes�
sion rule �� associated with �� having the form 	�
� is equivalent to the
following coloured rule�

��� �

���
	a


	k � �
� 	e�	k
 � �
 � � � 	ek	k
 � �
	k


	k
� 	e�	k
 � �
 � � � 	ek	k
 � �
�

	��


Let L be the rule operator associated with �� and M the rule operator
associated with ����

��
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Figure �� The rst levels of the generating tree related to the doubled Catalan
operator ���

M � xR�x� � R�y� �� xR�x� � R�y�

M	�
 � ya�

M	yk
 � xL	xk
�

M	xk��
 � xL	xk
 � yk�

The denition of the rule operator associated with a coloured succession
rule can be found in ���� It is easy to prove the following statements�

�
 M	xp	x

 � xL	p	x

 � p	x
�

�
 M	p	y

 � xL	p	x

�

�
 Mn	�
 � x
Pn��

k��

�
k��

n�k��

�
Lk	xa
 �

Pn��
k��

�
k��

n�k��

�
Lk	ya
�

As a consequence of these facts we have the desired result�

�Mn	�
�x�y�� �

n��X
k��

�
k

n� k � �
�
sk � s�n��� �

Simple as it is� Theorem ��� has a deep meaning from a theoretical view�
point� in a word� it states that the set of generating functions of doubled
succession rules is included into the set of generating functions of succession
rules�

For example� we trivially obtain that the doubled rule 	�
 associated
with the rule 	�
 denes Fibonacci numbers� like the rule�

��



���
	�

	�
� 	�

	�
� 	�
	�
�

Moreover� the doubled rule 	��
� associated with Catalan numbers� is
equivalent to the following rule�

�������
	�

	�
� 	�


	k � �
� 	�
 � � � 	k � �
	k � �

	k
� 	�
 � � � 	k � �
�

	��


� Jumping succession rules

The idea of doubling a succession rule can be slightly generalized in the
following way�

Given the succession rule � of the form 	�
� and i�� � � � � im � N
� such

that � � i� � � � � � im� we call jumping succession rule of type 	i�� � � � � im

associated with � the rule�

��i����� �im� �

���������
	ma


	mk

i�
� 	me�	k

 � � � 	mek	k



� � �

	mk

im
� 	me�	k

 � � � 	mek	k

�

	��


Clearly� a doubled succession rule is a jumping rule of type 	�� �
� Fol�
lowing the same philosophy of Section �� we dene the normalization of
��i����� �im� as�

e��i����� �im� �

���������
	a


	k

i�
� 	e�	k

 � � � 	ek	k



� � �

	k

im
� 	e�	k

 � � � 	ek	k

�

	��


The main enumerative results concerning jumping rules can be easily
proved following the ideas developed in Section ��

Proposition ��� The bivariate generating function of the generating tree
de�ned by e��i����� �im� has the form�

��



�
�

�� ti�L� � � �� timL

��i���X
i��

Li��	�
ti

�

�
X
n��

	ti�L� � � � � timL
n

�
i���X
i��

Li��	�
ti

�
� 	��


being L the rule operator associated with ��

Theorem ��� If � counts the sequence 	sn
n��	 then the sequence enumer

ated by ��i����� �im� is�

s�n �

i���X
���

X
��� � � � � �m

��i� � � � �� �mim � n� �

� Pm
i�� �i

��� � � � � �m

�
s	
P

m

i��
�i��
� 	��


where the expression
�

�
������ ��t

�
	 ���� � ���t � �	 denotes the usual multinomial

coe�cient� We call 	s�n
n�� the Fibonacci transform of type i�� � � � � im of
	sn
n���

Remark ��� �� s�n is the sum of the number of the nodes at levels n�
i�� � � � � n� im in the �jumping generating tree��

�� If i� � �� the expression for the numbers s
�
n counted by �

���i����� �im� is
a bit more readable�

s�n �
X

��� � � � � �m
�� � � � �� �mim � n

� Pm
i�� �i

��� � � � � �m

�
s	
P

m

i��
�i
� 	��


�� It is clear that this result applied to ������ coincides with the result
obtained for doubled rules� since in this case�

s�n �
X
��� ��

�� � ��� � n

�
�� � ��

��� ��

�
s�����

�

nX
����

�
n� ��

��

�
sn��� � 	��


��



Example ��� Tribonacci numbers�
Let � be

� �

�
	�

	�
� 	�
�

the jumping rule ������
� denes the well�known Tribonacci numbers having
T� � �� T� � �� T� � � as initial values� By applying equality 	��
� we obtain
the following remarkable formula�

Tn �
X

��� ��� ��
�� � ��� � 
�� � n

�
�� � �� � �


��� ��� �


�

�

�
n

n� �� �

�
�

�
n� �

n� �� �� �
�
�

�
n� �

n� �� �� �
�

�

�
n� �

n� �� �� �
�
�

�
n� �

n� �� �� �
�
�

�
n� �

n� �� �� �
�

�

�
n� �

n� �� �� �
�
�

�
n� �

n� �� �� �
�
�

�
n� ��

n� �� �� �
�
� � � �

which is the obviuos generalization to Tribonacci numbers of Lucas� identity�
This equality was obtained by Shannon in ���� by a direct computation� the
interest of our proof lies in the fact that it can be easily generalized to n�
bonacci numbers� for every n � N�

��� Scattered succession rules and linear recurrences

We have just studied the generating tree obtained by �repeating� a
succession rule � at various levels� A step forward could be done by allowing
the repetition of � �more than one time� at each level�

We say that �� is a scattered succession rule associated with � whenever
there exist positive integers m�� � � � �mr� i�� � � � � ir such that m � m�� � � ��
mr and�

�� �

���������
	ma


	mk

i�
� 	me�	k



m� � � � 	mek	k


m�

� � �

	mk

ir
� 	me�	k



mr � � � 	mek	k


mr �

The normalization e�� of �� is dened in the usual way�
An interesting application of this denition can be obtained by consid�

ering the simple rule 	�
� In fact� the following proposition holds�

��



Proposition ��� Suppose that the sequence 	an
n�� is de�ned by the lin

ear recurrence an � m�an�� � � � � �mran�r	 m�� � � � �mr � N and having
the initial values a� � �	 a� � m�a�	 a� � m�a� � m�a� 	� � � 	 ar�� �
m�ar�� � � � � � mr��a�� Then 	an
n�� is the sequence determined by the
scattered rule �� de�ned by�

�� �

���������
	m


	m

�
� 	m
m�

� � �

	m

r
� 	m
mr

�

with m � m� � � � ��mr�

� Exploded succession rules

Let � be a succession rule of the form 	�
 and h a positive integer�
Consider the following jumping rule�

��������� �h� �

���������
	ha


	hk

�
� 	he�	k

 � � � 	hek	k



� � �

	hk

h
� 	he�	k

 � � � 	hek	k

�

	��


Now let h tend to innity� clearly the jumping rule ��������� �h� cannot be
expressed formally� whereas its normalization e��������� �h� can� More precisely�
we can informally state that

lim
h��

e��������� �h� � e���
where

e�� �

�������������

	a


	k

�
� 	e�	k

 � � � 	ek	k



� � �

	k

h
� 	e�	k

 � � � 	ek	k



� � � �

	��


Every node possesses an innite number of sons in the generating tree
determined by e��� The rule e�� is called the exploded succession rule asso�
ciated with ��

Next we study the bivariate generating functions and the number se�
quences given by 	��
� Quite surprisingly� we get rather simple expressions
and closed forms in contrast with the 	formal
 di�culties when passing from
doubled rules to arbitrary jumping rules�

��



Proposition ��� The bivariate generating function related to e�� has the
form�

t� �
�� t� tL

	L	�

 � 	t� �
 
X
n��

	� � L
ntn	L	�

� 	��


Proof� Consider the bivariate generating function of the jumping rulee��������� �h��

�

�� tL� t�L� � � � � thL
	L	�

 �

�

�� tL	� � t� � � �� th��

	L	�

�

By letting h tend to innity we get�

�

�� tL Ph�� t
h
	L	�

 �

�

�� tL �
��t

	L	�



�
�� t

�� t� tL
	L	�



which is the desired generating function� �

Theorem ��� The sequence 	s�n 
n�� determined by e�� is�

s�� � ��

s�n �
n��X
k��

�
n� �
k

�
sk��� n 	 �� 	��


We will say that 	s�n 
n�� is the exploded Fibonacci transform of the
sequence 	sn
n���

Proof� We manipulate the generating function obtained in Proposition
��� in the usual way�

f	x� t
 � 	�� t

X
n��

	� � L
ntn	L	�



�
X
n��

	� � L
n	L	�

tn �
X
n��

	� � L
n��	L	�

tn

� L	�
 �
X
n��

	� � L
n��L�	�
tn�

��



Thus� for n 	 �� we have�

s�n � �	� � L
n��L�	�
�x��

�

�
n��X
k��

�
n� �
k

�
Lk��	�



x��

�

n��X
k��

�
n� �
k

�
sk���

as desired� �

Example ��� �� Let

� �

�
	�

	�
� 	�
�

We already know that ������ counts the Fibonacci numbers� ������
�

counts the Tribonacci numbers� and so on� Which is the sequence
counted by the exploded rule e��� By applying theorem ��� we get�

s�n �
n��X
k��

�
n� �
k

�
� �n��� 	��


The table below shows the rst terms of the sequences dened by
������
���� �h��

knn � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � �� � � �

� � � � � � �� �� � � �

� � � � � � �� �� � � �

� � � � � � �� �� � � �
���

���
���

���
���

���
���

���
���

� � � � � � �� �� � � �

��



Thus the total number of nodes at level n in the generating tree deter

mined by e�� is equal to �n��� Now we give a nice combinatorial inter�
pretation of this result� For any xed n� the set of nodes at level n in the
generating tree characterized by e�� can be described using the words
of length n of the language L on the alphabet  � fx�� x�� x
� � � � xng
generated by the regular grammar�

S � x�Sjx��Sjx

Sj � � � jxnnSj��

Indeed� for any node N at level n� let us consider the path from the
root to N � Following such a path� each edge of length i 	i � n
 is coded
by xii� Thus we obtain a word of L having length n� For instance� the
nodes at level n � � are coded by the words x�x�x�x�� x�x�x�x��
x�x�x�x�� x�x�x�x�� x�x�x�x�� x�x
x
x
� x
x
x
x�� x	x	x	x	�

Therefore we give another proof of 	��
 by providing a bijection be�
tween n�length words of L� and 	n � �
�length paths in the discrete
plane� running from 	�� �
 and using rise steps 	�� �
 or fall steps
	����
� Each word w � L can be univocally decomposed into blocks�

w � B�B� � � � Bh� Bi �  ��

such that Bi � xll� i � �� � � � � h� For example the word x�x�x�x�x�x
x
x
x�
is constituted by the blocks x�x�� x�x�� x�� x
x
x
� x�� Now we recur�
sively dene the function 	 on the words of L as follows�

		�
 � 		xi
 � the empty path� xi �  �

		xixj
 �

�
rise step if xi and xj belong to the same block�
fall step otherwise�

		w
 � 		x�x�
		x�x

 � � � 		xn��xn
 being w � x�x� � � � xn� xi �  �

It is easy to prove that� for each n 	 �� 	 is a bijection between n�
length words in L and 	n��
�length paths� Figure � shows the bijection
for n � ��

�� By generalizing the above example we can consider�

�a �

�
	a

	a
� 	a
a�

dening the sequence 	an
n��� A simple computation shows that the

sequence counted by the exploded succession rule e��a is precisely
	a	a� �
n��
n���

��



x1x1 x1x1 x1x1 x x1x x x1

xxxxx1x1xxx1x x x

xxxx x x x1x

x2 2 2 2

3 3 3 2 2 2 2 2 2

4 4 4 4 3 3 3

Figure �� A bijective proof for the innite Fibonacci transform of the se�
quence �� �� �� �� � � � �

Example ��� Let � be the rule 	��
 dening Catalan numbers� Let us now
consider the rules ������
���� �k�� k 	 �� for any xed k� the rule ������
���� �k�

enumerates the language dened by the unambiguous context�free grammar�

S � x�Sjx��Sj � � � jxkkS�j��
Then the generating function fk	x
 of the rule �

�����
���� �k� is easily de�
termined�

fk	x
 �
��

p
�� �	x� x� � � � �� xk


�	x� x� � � � �� xk

�

Letting k tend to innity we have the generating function f�	x
 for the
exploded rule e���

f�	x
 �
�� x�p

�� �x� �x�
�x

�

This generating function denes a sequence f�n which is strictly related
to Catalan numbers� the numbers are �� �� �� ��� ��� ���� ���� ����� ����� � � � �
	A������ in ����
� and count two di!erent structures�

�� f�n�� is the number of ��coloured Motzkin paths having length n 	����
�

�� f�n is the number of edge�rooted polyhexes having n hexagons 	����
�

��



These facts still ask for a combinatorial explanation�

Example ��� Let 	Bn
n�� be the sequence of Bell numbers� by denition�
Bn counts the way to partition an n�set into nonempty subsets� We dene the
sequence 	Bn
n�� of shifted Bell numbers by setting B� � � and Bn�� � Bn

for all n � N� A succession rule � counting these numbers is the following�

� �

���
	�

	�
� 	�

	k
� 	k
k��	k � �
�

This is a typical example of a coloured succession rules� It is not di�cult
to extend all the notions dened in this paper to coloured rules� In particular�
we can consider the exploded succession rule e��� by the usual properties of
Bell numbers� we observe that the shifted Bell numbers constitute a �quasi�
xed point� for the innite Fibonacci transform� since�

B
�
n �

n��X
k��

�
n� �
k

�
Bk�� �

n��X
k��

�
n� �
k

�
Bk � Bn � Bn��� 	��


A result analogous to Theorem ��� holds for exploded succession rules�

Theorem ��� Let � be a succession rule	 and �� the exploded succession
rule associated with �� Then the succession rule

�� �

�����������
	a


	a
� 	e�	a
 � �
 � � � 	ea	a
 � �


	k � �
� 	e�	k
 � �
	e�	k
 � �
 � � � 	ek	k
 � �
	k � �
�

	��


is equivalent to ���

Example ��� Let � be the rule dening Fibonacci numbers� having 	�
 as
axiom� ���

	�

	�
� 	�
�
	�
� 	�
	�


��



According to Theorem ��� the exploded succession rule �� associated
with � is equivalent to the following����

	�

	�
� 	�
	�
�
	�
� 	�
	�
	�
�

which denes the odd Fibonacci numbers"

Example ��� The exploded rule of Catalan numbers� already examined in
Example ���� is equivalent to the rule����

	�

	�
� 	�
�
	k
� 	�
	�
 � � � 	k
	k
	k � �
�

One can go further and iterate the application of the transform dened
in Theorem ��� to a given succession rule� Let S be the set of succession
rules� and let T � S � S be the operator such that� for any rule �� T 	�

is the rule dened by 	��
� equivalent to the exploded succession rule e��
associated with �� Now let us dene�

T �	�
 � �

T n	�
 � T 	T n��	�

 n 	 �
Now let � be the rule 	��
 dening Catalan numbers� We easily obtain

the following facts� which extend our previous results�

i
 for any n 	 �� T n	�
 has the form����
	�

	�
� 	n� �
�
	k
� 	n� �
	n� �
 � � � 	k � �
	k
n��	k � �
�

ii
 for any n 	 �� T n	�
 enumerates 	n � �
�coloured Motzkin paths ac�
cording to the length of the path�

In a word� the combinatorial meaning of Theorem ��� is that exploded
succession rules do not enlarge the set of generating functions of succession
rules�

��



� Further work

�� Given a sequence 	Dn
n��� is it possible to nd a sequence 	Cn
n��
such that 	Dn
n�� is its Fibonacci transform� This is simply the prob�
lem of inverting a combinatorial sum� and it has been solved� for ex�
ample� in the classical text ����� where it is classied as a Chebyshev
inverse relation� The solution is�

Cn �

nX
k��

	��
k
��

n� k � �
k

�
�
�
n� k � �
k � �

��
Dn�k�

Instead� it would be interesting to know when the sequence 	Cn
n��
can be represented by means of a suitable succession rule� since in this
case we are able to describe Dn using a doubled succession rule� Of
course� these problems can be stated for the Fibonacci transform of
any type� but their solution seems much more complicated�

�� If a sequence 	Cn
n�� can be described by means of a succession rule�
does the same happen for its Fibonacci transform� We have seen that
the answer is positive if we allow coloured rules� but the problem re�
mains open if we restrict to non coloured ones� A solution to this
question would allow to iterate the Fibonacci transform� as we did in
Example ��� for the exploded Fibonacci transform�

�� Shifted Bell numbers are a �quasi�xed point� for the exploded Fi�
bonacci transform� What about the Fibonacci transforms of any other
type�

�� Given a double�indexed sequence 
n�k� we can dene� for any sequence
	Cn
n���

C�
n �

nX
k��


n�k�kCn�k�

This is clearly done in analogy with Fibonacci transform� Can we say
anything about the sequence 	C�

n 
n��� Is it possible to give a descrip�
tion of this transform in terms of something similar to succession rules�
at least when 
n�k is a sequence of combinatorial interest 	Stirling num�
bers� etc�
�
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