
FINDER

Finite Domain Enumerator

VERSION ���

NOTES AND GUIDE

John Slaney

Centre for Information Science Research

Australian National University

Version of July ��� ����

Introduction

The program FINDER �Finite Domain Enumerator� takes as input a �rst
order theory� expressed as a set of clauses� and gives as output the models of
that theory with domains of given �nite cardinality �up to a maximum size
of ���� It can be used for various kinds of problem	solving� or to generate
counter	examples refuting conjectures� or in combination with other reasoning
systems� For example� it may help to make proof searches more e
cient by
providing semantic information to a conventional deduction system� For an
account of what is meant bymodel in this context� see x������ For a description
of some FINDER applications� see x�� For a full de�nition of the command
language� see x��� and the sections following�

FINDER performs an exhaustive search for interpretations of the given
language� using the given clauses as constraints to direct its backtracking�
One of the main dierences between FINDER and a logic programming system
�which can also be seen as searching for models of sets of clauses� is that for
FINDER there is no order of evaluation of the clauses� and hence no ��ow of
control� such as underlies the operational semantics of conventional systems
like Prolog� A model is generated and tried against all the clauses together�
if all clauses are true� the model is accepted and printed out� while if one of
the clauses is false the model is adjusted to deal with the detected badness�
resulting in a further candidate model� This process goes on until enough
models have been found or until the search space� de�ned as the set of possible
interpretations of the predicate and function symbols on the chosen domain� is
exhausted� The other principal dierence between FINDER�s kind of model	
generation and that associated with more deduction	oriented techniques is
that for FINDER the domain of individuals is given antecedently and is not
constructed from the terms of the language� The objects in� say� a three	
element domain are simply the �rst object� the second object� and the third
object� They need not have names�

The code actually used by FINDER to control the search is exactly the
same as that used by the earlier program MaGIC �see ���� for details�� In a

�This is not strictly so� of course things happen in some order� For description of some
subtle e�ects obtainable by setting the evaluation order see x� below� For the present� the
right conceptual picture of the clauses is as an unordered set�

i

straightforward sense� the problems treated by MaGIC may be seen as special
cases of those treated by FINDER� and certainly the similarities between the
inner workings of the two programs run deep� However� whereas MaGIC is the
product of many years of development� and is a tool for logical research aimed
at a rather speci�c application� FINDER is rather new�two years old�and
much more general	purpose� Hence substantial changes to FINDER may be
expected over the releases of Version �� though there will be an eort to retain
compatibility with the present program�

If you are a user of FINDER � you will �nd that FINDER � is in most
respects very similar� FINDER � input code should be usable for FINDER
� as it stands� though there are some dierences of detail which may make a
rehash advisable� Some of the more obscure of FINDER ��s settings and the
like are no longer supported� and generally speaking it is now a simpler matter
to get acceptable performance from FINDER� Most of the dierences are due
to the substitution of a completely new and more e
cient search algorithm�
This makes the �change	order� relatively unimportant and has the side eect
that the order in which multiple models emerge is harder to predict�

In the �unlikely� event that you are familiar with FINDER �� you should
note that the dierences between that and the later versions are quite large�
There is no sort of compatibility between them� The most obvious dierences
are the introduction of many sorted logic in place of the former crude single
sort and the much greater friendliness of the language used for input� Many
of the settings� output formats and the like are also new� as is the possibility
of piping I�O between FINDERs� Version � is now obsolete and should be
replaced in all applications by Version �� Conversion of any dusty decks of
existing input �les to the new format is not a big job�

FINDER is available by anonymous ftp from arp�anu�edu�au where its
sources will be found in the directory ARP�FINDER as finder�����tar�Z or on
tape by ordinary mail from the author� See x��� below for installation details�

It is suggested that if you install or use FINDER you let us know that you
have it� so that we can distribute information about updates� patches� etc� to
as many sites as possible� Our address is�

Centre for Information Science Research
Australian National University
Canberra� A�C�T� ����

Australia

John�Slaney�anu�edu�au
or

Zdzislaw�Meglicki�anu�edu�au

ii

Copyright of Software

The following copyright notice and disclaimer appears in each of the source
�les for the program FINDER�

FINDER ���

�C� ���� Australian National University�

All rights reserved�
The information in this software is subject to change without notice
and should not be construed as a commitment by the Australian
National University� The Australian National University makes
no representations about the suitability of this software for any
purpose� It is supplied �as is� without express or implied warranty�
If the software is modi�ed in a manner creating derivative copyright
rights� appropriate legends may be placed on the derivative work
in addition to that set forth above�

Permission to use� copy� modify and distribute this software and its
documentation for any purpose and without fee is hereby granted�
provided that both the above copyright notice and this permis	
sion notice appear in all copies and supporting documentation� and
that the name of the Australian National University not be used in
advertising or publicity pertaining to distribution of the software
without speci�c� written prior permission�

iii

iv

Contents

� This is FINDER �

��� What FINDER is for �

��� Installation �

� Reference Guide �

��� First Order Language and Models � � � � � � � � � � � � � � � � � �

����� Language �

����� Models �

��� FINDER input ��

����� Sorts ��

����� Functions ��

����� Clauses ��

����� Settings ��

��� Non	standard input ��

����� Piping ��

����� Command line ��

����� FINDER as TESTER ��

	 How it Works 	�

 Sample Applications
�

��� Problem solving ��

����� Jobs ��

����� Squaring Up ��

����� Queens ��

v

����� Heap Arithmetic ��

����� Ordered semigroups ��

��� Quasigroup problems ��

��� FINDER in deduction ��

vi

Chapter �

This is FINDER

��� What FINDER is for

The following passage occurs in a recent document describing current research
directions within the �eld of automated reasoning�

The notion of reasoning comprises dierent kinds of inferences
which are frequently used in everyday life� Deduction� � � is the kind
of inference which has been intensively investigated for many dif	
ferent logics� But there are other types of reasoning which have
not yet got the attention they deserve� � � �These include� model
generation� abduction and induction� One application of model
generation is the computation of counter examples for a given con	
jecture�

J� Cunningham
��� x�� p� ��

Now it is indeed the case that modelling theories is a form of reasoning� More	
over� besides demonstrating that a theory has models�showing that it could
be true�we might well be interested for sundry purposes in computing the
content of its models�showing how it could be true� Consider� for example�
the problem of deriving a theorem of some theory from its axioms� This is
often done by breaking the goal into simpler subgoals� These subgoals� unfor	
tunately� are often not theorems� so much time is wasted in trying to prove
them� A model of the axioms in which a subgoal is false shows cheaply that
no proof of it exists� so being able to �nd such models is of great value in
theorem proving�� Again� consider the problem of planning a process around
a set of constraints� We need models of the constraints� and are interested in

�For useful re�ections on this use of model generating programs� see �	
�

�

� CHAPTER �� THIS IS FINDER

the details of speci�c plans more than in the existence of some plan or other�
It seems that the applications of model	generating programs have only begun
to be explored�

To approach the view of models as the goals of pieces of reasoning� consider
a couple of examples of theories which have �nite models� Let e� f and g be
function symbols� e nullary� f unary and g binary� Consider the following set
of sentences in a �rst order language with function symbols and an identity
predicate�

�x �gxfx e�
�x �gxe x�
�x �gex x�
�x�y�z �ggxyz gxgyz�

It is of no interest to anybody that this set has a model� Since it is a set of
equations it has a trivial model in a universe of just one object� But of course
its models� better known as groups� are the subject of intensive study and
constitute one of the most important topics in mathematics� so the content of
its models is of great interest while the existence of models is not� We might
well� therefore� set out to generate and examine the small models of such a
theory�� The program FINDER is intended for just such purposes�

Group theory is in many ways special� so that techniques for modelling
arbitrary sets of sentences would be ludicrously cumbersome as methods of
generating groups� but there are many other kinds of algebra which can be
approached quite usefully by general methods� Consider totally ordered semi	
groups� for example�� There are many more of these of a given �nite size than
there are groups� and they are much less orderly� Assuming that the elements
of our domain are the �rst few natural numbers �which are as good as anything
for the purpose and come conveniently ordered� the postulates are these�

�x�y�z �x � y � fxz � fyz�
�x�y�z �x � y � fzx � fzy�
�x�y�z �ffxyz fxfyz�

Here f is the semigroup operation� of course� and we are assuming that the
relation � is primitive� These postulates have� for instance� ����� models in
a domain of six elements� and the computer generation of these for purposes
of study as well as for purposes of refuting nontheorems of ordered semigroup
theory is entirely feasible and worthwhile�

�Lest it be thought that generating �nite groups would also be of little interest� since they
are so well known� note that the generation and characterisation of the groups of order 	��
was a particularly recalcitrant problem solved only recently at ANU not by the Automated
Reasoning Project but by our colleagues in the Mathematics Department��

�This problem is used as an example throughout the present notes� not because I think
it is a deep or important problem but because it is clear� simple to describe and fairly tough
to solve�

���� WHAT FINDER IS FOR �

A program for generating �nite models of sets of clauses has many appli	
cations besides algebra� For example� one justly famous problem is that of
designing a timetable assigning activities to persons and locations and times
in such a way that every person gets to engage in his or her preferred set of
activities� nobody has to be in two places at once� no two activities are in the
same place at the same time and so forth� These constraints can be expressed
as simple �rst	order sentences which must all be true of any model proposed�
and in general a suitable method of solution is to generate candidate timeta	
bles and test them for satisfaction of all the constraining conditions� continuing
until enough satisfactory timetables have been found� Crude generate	and	test
algorithms rapidly run into an explosion in the size of the search space as the
number of variables requiring values increases� More sophisticated versions�
however� such as that used in FINDER� can at least mitigate the eects of
this explosion so that worthwhile instances of such problems can be solved in
a reasonable time�

For a �nal� more amusing example of a problem suitable for FINDER� here
is a logical puzzle known as the Philosophical Railway Problem�

It happened� in the days when trains used to call at the tiny village
of Much Tittering in the Woods� that the ���� once pulled up there
and stood for the best part of an hour� Nobody now remembers
why� At any rate� the driver� the porter� the ticket inspector� the
stationmaster and the guard spent the time in such merry con	
versation as is customary among employees of railway companies�
Their names� in alphabetical order� were James� Kant� Locke� Mill
and Nietzsche�

For reasons lost in the mists of railway history� they agreed to make
two statements each� one true and the other false� They said�

MILL� Nietzsche is the stationmaster�
James is either the guard or the porter�

LOCKE� Neither Kant nor Nietzsche is the ticket inspector�
Mill is not the stationmaster�

KANT� Mill�s second statement was false�
Locke�s �rst statement was true�

NIETZSCHE� Either James is the porter or I am�
Neither Locke nor Mill is the guard�

JAMES� I am not the ticket inspector�
Nietzsche�s second statement was false�

What was the driver�s name!

� CHAPTER �� THIS IS FINDER

Now if we are thinking clearly we shall see that this reduces to a problem
of permuting the �ve occupations until we �nd one permutation that makes
exactly one of each pair of sentences true� There are� in fact� several ways in
which the problem can be put to FINDER� some of which are more e
cient
than others� Most straightforward is to regard the philosophers and their
occupations as dierent sorts� each listed by the given names� and to generate
a bijection between them satisfying the constraints� In this form� it occupies
FINDER for about �� milliseconds on a SPARC	�� most of that time being
taken up with reading in the problem� pre	processing it and printing the results�

So the range of problems usefully addressed by a program which searches
for �nite models of sets of �rst order sentences is really quite large� Some
of the problems which FINDER can solve would be better addressed by a
program which looks for models in some other way such as letting them occur
as a by	product of a search for a proof that there are none� There is a body
of recent work on uses of resolution	style provers to generate models� and
some results with constraint logic programming systems are very encouraging
indeed� Such overtly deductive methods would seem particularly applicable
to cases in which the models are very rare or even unique� and in which the
clauses specifying them have a high degree of recursiveness� There are other
cases� however� in which a specialised and sophisticated searching method such
as that of FINDER is preferable to a more deductive technique� For example�
staples of constraint satisfaction such as the Queens Problem of enumerating
the ways of placing n queens on an n� n chessboard so that no queen attacks
any other tend to be easier for FINDER than for typical applications of logic
programming methods� Ultimately� then� FINDER is recommended not as
the ultimate solution to all known problems but as a tool among others to be
applied sensibly as the occasion warrants�

���� INSTALLATION �

��� Installation

This section is addressed to the system administrator of a Unix� installation�
It is duplicated in the README �le supplied with FINDER� If you have any
problems installing the program contact the author�

In order to install FINDER ��� you should have a directory containing the
following �les�

FINDER�c

FINDER�h

Fdef�h

Fglob�h

Fmain�c

Fprotos�h

Ftypes�h

Makefile

README

finder�man

initial�c

input�c

newtest�c

output�c

parser�c

prepare�c

pretest�c

set�space�c

test�c

newtest�c

vntr�c

vntr�h

If you get the program by anonymous ftp from our site� after uncompres	
sion you will have these �les in a directory� and also a subdirectory ��doc

containing the LATEX source for the full documentation� and another subdirec	
tory ��samples containing some sample input �les� Before compilation and
installation edit the Make�le in the main directory of FINDER� On most
systems only the top few lines of the Make�le will require editing� �	BIN

de�nes where FINDER�s binaries will go� The manual will be installed in
�	MAN
�man�	MAN�EXT
 as finder��	MAN�EXT
�

On our system binary �les and manual pages are writable to the group�
This is re�ected in variables MANDMDE� MANMODE and BINMODE�modify these if
you don�t want the group to be allowed to write on the binaries and libraries�

��Unix� is a trade mark of AT�T Bell Laboratories�

� CHAPTER �� THIS IS FINDER

To read the command line FINDER uses AT"T�s function getopt� Under
certain operating systems this means you will have to use special libraries
during linking� For example� under Dynix on a Sequent you will need the
�lseq library� Alternatively� get GNU�s getopt and link it with FINDER if
you don�t have it on your system already�

FINDER will not compile with Kernighan and Ritchie cc so you should
probably leave CC de�ned as gcc � Alternatively� you may use any other ANSI	
C� We have not tried this ourselves� however� so it may not work�

Once you are happy with the Make�le� type

make

If there were no problems with compilation and linking� type

make install

to install the binaries and manuals� Then to clean up the source directory type

make clean

Happy FINDing#

Chapter �

Reference Guide

��� First Order Language and Models

����� Language

The formal language accepted by FINDER is that of a many	sorted �rst order
logic� Sorts are not indicated by any markers in the surface syntax� such as
subscripts or dierent styles of variable� but must be used consistently for
formulas to be well formed� Formulas must be Skolemized and reduced to
clause form� but the clauses need not be Horn� Function symbols must be
pre	declared before they are used in clauses� but variables need not be� Any
legal identi�er �see below for a de�nition� may be used as a function symbol or
as a variable� Canonical names are available for objects of enumerated sorts�
again see x����� below for details�

The formation rules are as follows�

�� A variable is a formula�

�� A canonical name is a formula�

�� Where X� � � �Xn are formulas of sorts s� � � � sn respectively� and where
f is a function symbol of type s�� � � � � sn � t the compound expression
f�X� � � �Xn� is a formula of sort t�

�� Where X and Y are formulas of the same sort� each of X Y � X � Y

and X � Y is a formula of sort bool �

�� Where X is a formula� E# �X� is a formula of sort bool �

�� Where X is a formula� LEN �X� is a formula of sort int �

�

� CHAPTER �� REFERENCE GUIDE

�� Where X is a formula of sort s� and n is a natural numeral� X $ n is a
formula of sort s�

�� A clause is an ordered pair of sets of formulas�

A variable may be of any sort� but must be of the same sort throughout a
clause� The pre	de�ned sort bool consists of the two objects false and true �
The pre	de�ned sort int consists of the �rst few natural numbers �normally
�� � � ��� which have the expected canonical names�

A few conventions govern the writing of clauses to FINDER� There is one
fairly severe limit in that no function symbol may be of arity greater than ��
Clauses must be �nite in order to be written� of course� though there is in
principle no limit on the number of formulas a clause may contain�

Dyadic function symbols may be placed in in�x position or in pre�x position
at the user�s whim� If pre�x notation is used� parentheses are needed around
the arguments and a comma between them� Thus FINDER will parse

Tom loves Mary�

correctly� though if you feel that

loves	Tom�Mary
�

looks �more logical� or something� then you may use it instead� You may even
mix pre�x and in�x notation in the same clause� Monadic function symbols are
always pre�xed to their arguments� which are always parenthesized� There are
no conventions about the dierence between upper case and lower case letters�
This feature contrasts with languages such as Prolog� where upper case initial
letters �perversely� indicate variables� FINDER is case	sensitive everywhere�
however�

As usual where in�x notation is used� there are conventions allowing paren	
theses to be dropped in some circumstances� Dyadic function symbols have
�scopes� �see x������ and the general convention is that where f has greater
scope than g

X f Y g Z is parsed as X f 	Y g Z

X g Y f Z is parsed as 	X g Y
 f Z �

Among function symbols of the same scope� association to the left is assumed�
Excess parentheses are ignored� but they must match in pairs�

A clause hA�Ci is written by listing the members of set A� separated by
commas� then an arrow �� and then the members of C also separated by
commas� A period terminates the clause� A is the set of antecedents �negative
literals� and C the set of consequents �positive literals�� The order of formulas
within each list is irrelevant� Either the antecedent list or the consequent list
�but not both� may be null� Where the antecedent list is null and there is only
one consequent formula� the arrow may be omitted�

���� FIRST ORDER LANGUAGE AND MODELS �

����� Models

We now consider a �rst order language with a set S of sorts� a set F of function
symbols and a set V of variables� A model of this language consists of two
functions� There is a functionD assigning to each sort a well	ordered nonempty
set called its domain� and a function I assigning to each function symbol an
appropriate function� The condition to be met is the expected one� that if

f � s� � � � �� sn �� t

then
I�f� � D�s��� � � ��D�sn� �� D�t�

As a re�nement� where function symbols are marked as �partial� the functions
assigned to them are allowed to be partial as well�

Next� a valuation V is a function assigning to each variable of sort s an
element of D�s�� In terms of this we may de�ne denotation � relative to a
given D� I and V�

�� For v � V � ��v� V�v�

�� ��f t� � � � tn� I�f� ���t�� � � � ��tn��

That is on the assumption that each ��ti� exists� If one of the functions is
partial� so that ��ti� does not exist� then ��f t� � � � tn� does not exist either� The
formula�s denotation is then said to be unde�ned on valuation V� Exceptions
are made for the constant symbols for identity� order and existence�

�� ��t u� true if ��t� ��u� or if both ��t� and ��u� are unde�ned�
Otherwise ��t u� false

�� ��t � u� true if ��t� � ��u� or if ��t� is de�ned and ��u� is not�
Otherwise ��t � u� false

�� ��t � u� true if ��t� � ��u� or if ��u� is de�ned and ��t� is not�
Otherwise ��t � u� false

�� ��E# �t�� true if ��t� is de�ned� Otherwise ��E#�t�� false

In addition� ��LEN �t�� is the length of the canonical name of ��t��

Valuation V falsi�es a formulaX of sort s i ��X� is �D�s�� the zero element
in the well ordering of the appropriate sort� Otherwise it veri�es X� V veri�es
a clause hA�Ci i either V either falsi�es some member of A or veri�es some
member of C� hA�Ci is true in model hD�Ii i it is veri�ed by every valuation
associated with the model�

�� CHAPTER �� REFERENCE GUIDE

So a clause is a disjunction� The antecedents are treated as negated and the
consequents as un	negated� Note that any nonzero value� even being unde�ned�
counts as truth for the purposes of veri�cation� Note also that the formulas in
a clause do not have to be of sort bool although they usually will be� As usual�
all variables are regarded as bound by universal quanti�ers standing outside
the clause� In this de�nition of models� variables have sorts� This is really so
in the syntax as written� except that the sorts are deduced by FINDER from
the context rather than being made explicit�

In practice� of course� all the domains are �nite� They are very �nite in
fact� usually containing only a handful of individuals and never more than the
maximum of ���

��� FINDER input

A FINDER input �le consists of one or more sections� There are four types of
section� each consisting of a key word followed by a speci�cation list� The key
words are

sort

function

clause

setting

There is no limit on the number of sections of each type and no restriction on
the order in which they may occur� except that any function symbol used in
a clause must be declared before it is used� and any sort used in a function
declaration must likewise have been declared before it is used�

End of input is indicated by placing the word

end

after the last speci�cation section in the �le� Any text following this is regarded
as a comment�

A speci�cation list consists either of a single speci�cation �e�g� a function
declaration or a clause� or of a sequence of them enclosed in braces� There are
no conventions about placing speci�cations one to a line or about indenting�
etc� Any white space is regarded as a separator� In general� punctuation
marks such as commas� periods and semicolons are not required to separate

���� FINDER INPUT ��

items in a speci�cation list� though a period in a list will be treated as the null
speci�cation� There are some obligatory uses of punctuation� however� and
some optional ones� for which see the detailed accounts below�

Comments may occur anywhere in an input �le� A comment begins with
the reserved character and is terminated by a line feed� Any text in
between is totally ignored by FINDER� Intelligent use of comments� as well as
sticking to some reasonable conventions about indentation and the like� greatly
aids readability�

FINDER reads its input from the standard input stream and writes its
output to the standard output stream� There are special cases in which it can
be directed to take input from a speci�ed �le as well� see sections x����� and
x��� below for details�

A legal identi�er for FINDER purposes is any string of characters not con	
taining white space� with the exception of certain reserved words and symbols
as follows� Any string beginning with a numerical digit is taken to be a numeral
and is not available for any other purpose� The characters

� � � �

are reserved for special purposes and may not occur inside identi�ers other
than themselves� Punctuation symbols

� � �

may not occur in identi�ers� and nor may �round� parentheses or fcurlyg
braces� The �percent� symbol introduces a comment and may not be used for
any other purpose� Finally� overloading is not allowed� Although FINDER is
case sensitive� so for example you can use THING as a sort name� Thing as a
function symbol and thing as a variable all in the same �le� you cannot use
a word both as a sort name and as a function symbol in the same input� Nor
can you have two dierent functions with the same name�

If a passage of input contains inconsistent speci�cations �for example a
line setting the output style to �pretty� and one setting it to �ugly�� then the
speci�cation occurring later over	rides the earlier one� This becomes especially
important when command line input is used �see x����� below��

����� Sorts

Any legal identi�er may be stipulated to be a sort name� It then picks out a
domain of individuals� There are two pre	de�ned sorts� bool and int � It
is not a good practice to use these for purposes other than representing truth
values and natural numbers respectively�

�� CHAPTER �� REFERENCE GUIDE

At any given time during FINDER�s search for models� each sort has a
particular cardinality� The minimum cardinality is � and the maximum is
a �gure set when FINDER is compiled� By default it is �� �the maximum
possible� for no especially good reason�� The range within which the cardinality
of a sort must fall may optionally be restricted by inserting speci�cations
immediately after its declaration� A cardinality speci�cation consists of the
word cardinality followed by a numerical comparator �� � � or �� followed
by an integer� Thus for example

sort �

dwarf

cardinality � �

princess

cardinality � �

servant �

cardinality � �

cardinality � �

�

wolf ��

�

sets up a story in which there are seven dwarves �of course�� at most three
princesses� a plurality of servants� but not more than �� and we don�t care how
many wolves� Every sort name is followed by a speci�cation list� in the case
of the wolves it is the empty list� but it must still be given�

The order in which the sorts are presented is signi�cant� FINDER searches
spaces of possible models determined by setting the cardinalities of the sorts�
Each dierent selection of cardinalities from within the stipulated ranges de	
termines a separate search space� The order in which the search spaces are
considered depends on the order of sorts� The sorts presented �rst are most
signi�cant �change their cardinalities least often� and those presented last are
least signi�cant� Lower cardinalities �smaller domains� precede higher ones�
Thus one search space comes before another if they have the same cardinalities
for the �rst n� � sorts and the �rst space has a lower cardinality for the nth
sort than does the second�

The pre	de�ned sorts come �rst of all �bool before int� and have default
cardinalities of � and �� respectively�

An alternative to stipulating the cardinality of a sort is to list the objects
of that sort� giving each a canonical name� The enumeration replaces the car	
dinality speci�cation immediately following the sort declaration� and consists

���� FINDER INPUT ��

of the key word enum followed by the list of names separated by commas and
terminated by a period� For example

sort dwarf

enum� Happy� Sleepy� Dopey� Doc� Sneezy� Grumpy� Bashful�

The colon after the enum is optional� The canonical names supplied in an
enumeration serve as symbolic constants for the purposes of syntax� It is
generally more e
cient to give names by enumeration than to declare them
as zero	adic function symbols� although their syntactic status in clauses is the
same�

According to FINDER� to enumerate objects is to put them in one	one
correspondence with the �rst few natural numbers� starting with zero� Some
numerical properties are carried over to enumerated sorts� The canonical total
order is well de�ned on every domain� and in the case of an enumerated sort
it is given by the enumeration order� The initial item �Happy in the above
example� is the zero of sort dwarf� and in accordance with the C	like under	
lying semantics is the only dwarf not regarded as �true�� As is made clear
in x����� the operation of addition is de�ned on every sort� so for example
Sleepy � � is� by the de�nition encoded in the enumeration� Sneezy �

The cardinality of an enumerated sort may not be changed by subsequent
cardinality speci�cations� since the enumeration itself �xes it� An exception is
made for the sort int which is enumerated� with the obvious canonical names�
but which may be truncated as desired� The other pre	de�ned sort� bool� is
also enumerated�

sort bool

enum� false� true�

Every sort has a dummy object which is taken to be the value of a partial
function in cases where it has no value of the ordinary sort� This object cannot
be the value of a variable� That is� it does not exist for normal purposes� It has
no name� The dummy object is a kind of in�nity� being greater than any thing
in the domain� The arithmetical comparators apply consistently to it on that
basis� Any other function with the dummy as an argument gives the dummy
as value� In most FINDER applications� only total functions are required�
and so these �junk� objects need not be taken into account� There are cases�
however� in which partial functions are useful� so the facility is provided�

����� Functions

Any legal identi�er not already in use may be declared as a function sym	
bol� Functions may be nulladic �in which case the symbols are proper names��

�� CHAPTER �� REFERENCE GUIDE

monadic or dyadic� Function symbols of higher adicity are not allowed in
FINDER at present� though they should be added in future releases� A func	
tion speci�cation consists of the function name� followed by its type de�nition�
followed by a speci�cation list giving some of its features� The order in which
functions are de�ned is important� as it can aect the e
ciency of FINDER�s
search� FINDER backtracks its way through the search space changing the
last	declared function most rapidly and the �rst	declared least rapidly�

As explained in x����� each function maps a Cartesian product of sorts
�its argument sorts or domain� into one sort �its value sort or co	domain��
The type de�nition in a function symbol declaration consists of the list of
argument sorts� ordered left to right and separated by commas� then an arrow
�� followed by the value sort� In the special case of a zero	adic sort� where
the list of argument sorts is null� the arrow may optionally be omitted� In that
case� the value sort must be followed by a period� to tell FINDER that the
type de�nition is �nished� That is�

function Snow�White

�� princess

is entirely equivalent to

function Snow�White

princess�

An alternative notation� requiring neither arrow nor period� is

constant Snow�White

princess

A predicate or relation symbol normally has bool as its value sort� though
nothing prevents us from setting up a many	valued system such as the following
one for the three	valued logic RM��

sort RM��value

enum� False� True� TRUE�

function implies

RM��value� RM��value �� RM��value

Notice� however� that in evaluating clauses FINDER will treat all values except
the initial �zero� one as designated� If we wish to have several undesignated
values we shall have to add a function designated from values to bool after
all�

Several function symbols are pre	de�ned� Every sort S comes equipped
with the following�

���� FINDER INPUT ��

function �

� � S�S �� bool ��

� � S�S �� bool ��

� � S�S �� bool ��

E� � S �� bool ��

� � S�int �� S � partial �

LEN � S �� int ��

�

The �rst three of these are the comparators which� as noted in x����� above�
give truth values even with dummy arguments� The fourth is the �existence�
predicate for sort S� It gives the value truewhen its argument exists and false
when its argument is the dummy� The addition function allows any object of
sort S to be incremented by an integer� The result may be too big to exist� so
this is a partial function� Finally� LEN returns the number of characters in its
argument�s canonical name� FINDER calculates this anyway� for tabulating
its output� so it costs little to make it available in the syntax�

The speci�cation list of a function declaration may be quite complex� The
various options are treated in the following subsections�

Total and partial

Functions may be total� in which case they have a value of their value sort
for each tuple of arguments� or partial� in which case certain arguments may
result in no value� FINDER uses the convention� �rst suggested apparently by
Frege� that all terms which fail to refer in the normal way be taken to refer
to a �junk� object� As noted in x������ each sort has its own dummy object
which functions as a kind of in�nity for that sort� Where partial functions are
used� the existence predicate E� will be found valuable� For an example� see
the formulation of the Queens Problem in x������

The single word total �or partial � speci�es a function as total �or
partial�� Apart from the pre	de�ned addition function� all functions are total
by default�

Injective and surjective

Many problems turn on the fact that no two arguments for a function yield the
same value� In this case the function is said to be an injection� This condition

�� CHAPTER �� REFERENCE GUIDE

is so common and so special that FINDER has a hard	coded e
cient way of
dealing with it� The complementary property to injectiveness is surjectiveness�
a surjective function is one such that every object of the value sort is the
value of the function for some argument or arguments� FINDER also has
reasonably e
cient ways of dealing with surjections� An injective function�
then� is one	one while a surjective function maps the argument sort�s� onto
the value sort� A function which is both an injection and a surjection is a
bijection� It correlates the argument domain with the value domain exactly�

The words injective� surjective and bijective are available as items
in function speci�cation lists�

Some interesting dyadic functions are not injective in the above sense� but
are injective �or surjective� or bijective� in the left argument place� the right
argument place or both� We say that dyadic function f is left injective� or
column injective� i for all arguments x� y and z if f�x� z� f�y� z� then
x y� Right �or row� injectiveness� left and right surjectiveness and left and
right bijectiveness are similar�� A dyadic operation on a domain which is both
left bijective and right bijective is a quasigroup operation� Its Cayley matrix
has the property that every row and every column is a permutation of the
elements� Some hard problems involving quasigroups are considered in x����

The expressions left�injective� right�injective� column�injective�
row�injective� left�surjective� right�surjective� column�surjective�
row�surjective� left�bijective� right�bijective� column�bijective

and row�bijective are available as items in the function speci�cation lists of
dyadic function symbols only�

Commutative

The word commutative is available as an item in the function speci�cation
lists of dyadic function symbols only� It stipulates the property that f�x� y�
f�y� x� for all arguments x and y� FINDER has an e
cient way of forcing
commutativity� so this speci�cation should always be used when it applies� in
preference to a clause laying down the commutativity axiom�

Cut

The word cut may be placed in a function speci�cation list to control back	
tracking rather as in Prolog and similar systems� If a function symbol is marked

�An operation with one of these injectiveness properties is usually said to be cancellative

in the appropriate sense� The only defence for inventing new terms here is that they help
to keep the vocabulary uniform�

���� FINDER INPUT ��

with a cut� FINDER will not generate two models whose most signi�cant dif	
ference is in the values for the marked function� Thus for example� to generate
failures of commutativity in semigroups we may simply declare two Skolem
constants and stipulate that the semigroup operation does not commute on
them�

function �� int�int �� int ��

constant �

a� int ��

b� int ��

�

clause �

x � y � z � x � 	y � z
�

a � b � b � a �� false�

�

The following� by contrast� generates non	commutative semigroups

function �� int�int �� int ��

constant �

a� int � cut �

b� int � cut �

�

clause �

x � y � z � x � 	y � z
�

a � b � b � a �� false�

�

To turn o a cut� the speci�cation no�cut is provided� Note that a cut is in	
compatible with the no	priority speci�cation� so an implicit priority imme	
diately follows the word cut in the input� and conversely no�priority is
implicitly followed by no�cut�

Print mode

The print mode of a function is speci�ed by the word print followed by one
of the three modes none� brief or full � A setting of none causes printing of
the function to be suppressed whatever global print mode for models has been
speci�ed as a setting �see x����� below�� A setting of brief causes the function

�� CHAPTER �� REFERENCE GUIDE

to be printed out only when its value� or that of a more signi�cant function�
changes� A setting of full� naturally� causes the value table for the function
to be printed out whenever a model is found� The brief and full settings have
no eect if over	ridden by low global print modes for models�

The default print mode for the pre	de�ned functions is none � For other
functions it is full�

Scope

Each function symbol has a scope� which is a number in the range �� � � ���
Symbols of larger scope bind less tightly than those of smaller scope for the
purposes of the parser� Scope conventions allowmost parentheses to be omitted
where dyadic function symbols are written in in�x notation� The default scope
is � for monadic symbols� � for ordinary dyadic ones and �� for the pre	de�ned
arithmetical comparators�

Scope is speci�ed with the word scope followed by an integer�

Change�order

When FINDER is backtracking its way through the search space� it proceeds
by choosing a function and a possible argument for it� setting the value of the
function for that argument �or argument tuple� to each possibility in turn and
in each case searching the subspace which remains while that value is held
�xed� How does it choose which function and argument to �x next! This is a
little complicated� so pay attention#

For brevity� let us refer to a function	argument pair as a cell� If there is a cell
with only one possible value� then this value is inserted next no matter what
else happens� If not� the program has to choose a cell for splitting� In general�
it chooses a cell pertaining to a more signi�cant function� as determined by
the order of declaration� over a less signi�cant one� This preference may be
suppressed by means of the no�priority speci�cation which puts successive
functions on a par for change order purposes� Within each function �or no	
priority block of functions� it next prefers a cell with the smallest number of
possible values� This is for reasons of e
ciency� to minimise furcation of the
search tree� Among cells of equal priority and with equal numbers of values
it chooses the �rst in the �natural� change order for the function �or �rst of
the functions in the block�� The natural change order for any function may
be set by means of the change�order option� though in practice it is usually
su
cient to allow FINDER to set the order by default�

For monadic functions there is only one available order� taking the argu	
ments in order of size� The change order is either � in which case lower

���� FINDER INPUT ��

arguments are less signi�cant� or � in which case lower arguments are more
signi�cant than higher ones�

For dyadic functions things are more complicated� Consider what the ma	
trix for a sample dyadic function f might look like as printed by FINDER�

f � A B C D E F

����������������

A � A B C D E F

B � B F E C D A

C � C E F B A D

D � D C B A F E

E � E D A F B C

F � F A D E C B

There are �� cells in this diagram which must be �lled with values� FINDER
puts them in order of signi�cance by means of the following algorithm� At
any stage� we let R be the set of cells which have no position as yet in the
signi�cance order� The cells in R form a rectangle of the printed version�

p �� �

R �� all of the cells

repeat

choose one edge E of the rectangle R

for each cell C in E do

set significance of C to p

p �� p��

end for

R �� R�E

until R is empty

The two choice points here are to determine �a� which edge of the remaining
rectangle to treat next� and �b� whether to take its cells in ascending or in
descending order� FINDER makes these choices by looking at the change
order string associated with the function� This consists of a sequence of edge
speci�cations� T or t for the top edge� B or b for the bottom� L or l for the
left and R or r for the right� Upper case means take the cells of that edge in
increasing order� while lower case means take them in decreasing order� When
FINDER gets to the end of the string of letters it simply cycles back to the
beginning� As in the monadic case� we stipulate � to assign signi�cance
values in increasing order� or � to assign them in decreasing order�

The default for monadic functions is change�order � and the default for
dyadic functions is change�order �T � This results in the following natural
change order for the example of function f above�

�� CHAPTER �� REFERENCE GUIDE

� A B C D E F

����������������������

A � � � � � � �

B � � � � � �� ��

C � �� �� �� �� �� ��

D � �� �� �� �� �� ��

E � �� �� �� �� �� ��

F � �� �� �� �� �� ��

The lower	right corner is the most signi�cant cell� and the change order works
its way back to the upper	left in row	major fashion� This is adequate for most
purposes� An alternative� used in x��� for instance� is change�order �rb �
In this order� rows and columns alternate in herringbone fashion�

� A B C D E F

����������������������

A � � � � �� �� ��

B � � � � �� �� ��

C � � � � �� �� ��

D � � �� �� �� �� ��

E � �� �� �� �� �� ��

F � �� �� �� �� �� ��

Another variant� causing FINDER to �x the middle values �rst and spiral
outwards� would be change�order �TRbl �

� A B C D E F

����������������������

A � � � � � � �

B � �� �� �� �� �� �

C � �� �� �� �� �� �

D � �� �� �� �� �� �

E � �� �� �� �� �� �

F � �� �� �� �� �� ��

Remember that during the search� high numbered cells get their values inserted
�rst�

����� Clauses

A FINDER input �le will normally contain at least one clause section� Such a
section consists of the key word clause� followed optionally by a parenthesized

���� FINDER INPUT ��

integer� followed by a speci�cation list of clauses� For an account of the mean	
ing of clauses and for their syntax see x����� above� Note that every clause
must end with a period�

To understand the subtleties of clause input� it is necessary to know some	
thing of how FINDER uses clauses to constrain its search for models� Every
clause has associated with it a position� a priority� a variable count and a
weight� These are non	negative integers� The weight is a measure of the in	
formation conveyed by the clause� It is de�ned as the maximum number of
values for �non	constant� functions which have to be determined in order for
the clause to be evaluated in a model� This is the number of distinct sub	
formulas in the clause� excluding variables� canonical names and pre	de�ned
function symbols� The variable count is just the number of variables in the
clause� The priority is speci�ed by the parenthesized integer after the word
clause at the start of the section� Hence� to use dierences of priority multiple
clause sections are necessary� If no priority is speci�ed� the default of zero is
assumed� The clause positions simply record the order in which the clauses
occur in the input� The �rst clause has the lowest position number�

Before generation and testing commences� FINDER re	orders the clauses�
To do this it uses the two settings pre�test �default �� and test�by���� �de	
fault test�by�vars�� Clauses of weight pre	test or less are treated at a pre	
processing stage� while constraints from heavier clauses are found by �lazy con	
straint generation� during the generate	and	test phase� �Test	by	vars� makes
the variable count more signi�cant than the weight in determining which clause
to test next during generate	and	test� �test	by	weight� makes weight more sig	
ni�cant� Normally there is no need for the user to change these parameters
from the defaults�

Clauses of low weight �up to the pre	test limit� come before clauses of high
weight� Within the low weight class the order of clauses is determined by
weight �low �rst�� then variable count �low �rst�� then priority �high �rst��
Within the high �testable� weight class� priority is the most important factor�
followed by variable count� and weight� or weight and variable count if �test	
by	weight� has been speci�ed� Finally� accession order resolves any remaining
cases�

Any candidate model tested by FINDER for satisfaction of all the clauses
will already be guaranteed to satisfy any clauses of weight up to the pre	test
limit� The remaining clauses are tested one by one� For most clauses� the
test is a matter of crudely assigning all possible combinations of values to the
variables occurring in the clause and looking up the consequent values of all
the subformulas in each case� Hence clauses with many �more than about �
or �� variables will greatly slow down the search� Clauses with more than �
variables are tested more intelligently by regarding the search for a falsifying

�� CHAPTER �� REFERENCE GUIDE

assignment of values as another constraint satisfaction problem and calling the
FINDER search routine to generate it�

As soon as a clause fails the test� the combination of values responsible for
the failure is recorded and steps are taken to avoid incorporating that partic	
ular combination ever again in a candidate model� Testing of the particular
candidate then stops� no further clauses being examined� and a new candidate
is generated� Thus clauses later in the order will not be examined unless the
structure satis�es those earlier�

As is usual in reasoning systems of all kinds� logically equivalent formu	
lations of a problem can produce markedly dierent behaviour� In general it
pays to look for formulations which keep the weights of clauses low� and clauses
containing many variables are to be avoided if at all possible� Since there is
no concept of ��ow of control� in FINDER� the priority and position orders
are not usually of much signi�cance� but there are cases in which they really
matter� One such case is the �Heap Arithmetic� example in x������

����� Settings

The settings section allows a number of miscellaneous parameters to be spec	
i�ed� The most commonly used settings concern the various output options�
but there are several others� Some of these are only used to control fairly
obscure features of the search algorithm� They have default values which are
good for nearly all purposes� and it is recommended that the defaults be used
everywhere unless you are a FINDER expert� All settings� in fact� are optional�

Number of backtracks

The setting speci�cation backtracks followed by a non	negative integer
sets a limit on the number of times the search is allowed to backtrack before
FINDER cuts its losses and stops searching� The default setting is �� which
sets no limit� Backtracks occur when model candidates are tested �whether or
not they pass the test�� when the look	ahead facility of the search controller
detects that some cell has no possible value left� or when examination of a
surjective function shows that some value is no longer possible for it� As an
approximate guide� FINDER might be expected to backtrack between � and
�� times per million instructions �that is� for example� ��%��� backtracks per
second on a �� MIPS machine��� This �gure is very rough� and deviations
from it of up to an order of magnitude may occur�

�It performs only integer computation� so the �oating point performance of your computer
is irrelevant to this �gure� MIPS otherwise Meaningless Instructions Per Second� can be
used as a good guide here�

���� FINDER INPUT ��

Current priority

When FINDER is used as a �tester� adjunct to another program� each clause
that is input is labelled as the �current clause�� It is added to the theory only
under certain conditions� The setting speci�cation current�priority fol	
lowed by a non	negative integer sets the priority of the current clause� Clauses
given in advance may have any priority� Those added during the search
have priority �� The current clause by default has priority �� though the
current�priority setting allows this to be changed�

Noisy or quiet

The one	word setting noisy causes the terminal bell to sound every time a
model is printed� The setting quiet �the default� turns o this action�

Pre�test limit

As explained in x����� above� clauses of low weight are treated by the pre	
processor while those of high weight are set aside until the generate	and	test
phase� The weight is the number of function symbols in the clause� not count	
ing the built in ones such as � � and �E#�� The boundary between �low� and
�high� for this purpose is by default � �almost always the optimal �gure� but
may be changed by means of the setting pre�test followed by an integer�
being the maximum weight of pre	testable clauses� Note that in calculating
this weight FINDER regards constants ��	adic function symbols� as if they
were canonical names� not requiring table look	up� if their values are �xed� If
their values can vary� of course� they are counted in the weight like any other
function symbols�

Pretty or ugly output

There are two formats for output� The one	word setting speci�cation pretty

causes output that is easily human	readable� Models are numbered� everything
is labelled and the values are neatly tabulated� This is the default format�
For some purposes� especially where output is to be piped through another
program� the buttons and bows of pretty output would get in the way� so an
ugly format is preferable� The one	word speci�cation ugly causes output of
this form� It also has side eects of setting the verbosity levels to

verbosity �

job� brief� models� brief� stats� none�

�

For the detailed syntax of ugly output� see x������

�� CHAPTER �� REFERENCE GUIDE

Primary and secondary

As explained in x�� the search controller of FINDER uses a particular kind of
inference rule to deduce �secondary� constraints which help to guide its search
in addition to the �primary� ones which correspond to ways in which the
clauses could be false� Usually this processing of secondary constraints greatly
speeds up the search� but in a few cases it actually slows things down� Well� in
one case� to be exact� the Queens Problem� Just for such pathological prob	
lems� the setting speci�cation primary is provided� It causes processing of
secondary constraints to be suppressed altogether� Normal� healthy problems
do not need it� The setting secondary is the negation of primary and is
on by default� It may be used� for instance in the command line� to override a
primary setting in �le input�

Refutation length

Another exotic option allows you to set a maximum refutation length� See x�
for an account of the negative constraints called �refutations� which FINDER
uses to drive the search� The length or cardinality of a refutation is the number
of cell	value pairs it involves� If this number is large� the refutation is of
little value as it gives little information and uses up a large chunk of the
database� It is also likely to be subsumed by a smaller and therefore more
informative refutation later in the search� FINDER cuts its losses on processing
large refutations by pretending that they are small ones and then throwing
them away when this pretence is no longer safely sustainable� The maximum
refutation length is the boundary between �large� and �small� refutations
for this purpose� It has a default value of �� and may be reset to any positive
value by means of the setting speci�cation ref�length followed by a positive
integer� In practice this option is hardly ever used except when FINDER is
�ne	tuned for a speci�c problem set� In that case� experimentation is the only
way to discover the optimum setting� A setting of more than � produces a
warning message� since it is in principle possible for too large a setting to
crash the program� In practice� this has never happened� but our insurance
policy says you are to be warned�

Reporting reasons for breaks

Normally if FINDER breaks o a search before the search space is exhausted
it prints the reason �e�g� it has found enough solutions or the time limit has
expired�� The setting silent�breaks turns o this reporting of reasons�
and report�breaks �the default� turns it on� Where FINDER is called as
a procedure from another program� for example� intrusive reports of this kind
may not be desired� so this setting is provided to disable it�

���� FINDER INPUT ��

Reverse test

Independent of the change order �see x������ is the order in which FINDER
tries assigning values to variables in clauses when it is testing for truth in
candidate models� Normally it tries high values for the variables before low
ones� as refutations with higher variable values tend to involve cells which are
more signi�cant in the default change order and therefore to be slightly more
e
cient� The option reverse�test causes low values to be assigned �rst
instead� See the Heap Arithmetic example in x����� for an illustration� The
setting obverse�test is the default and causes high values to be assigned
�rst�

Number of solutions

The setting speci�cation solutions followed by a non	negative integer sets
the maximum number of models required� The most usual settings are � �stop
when a single model is found� and � �the default� no limit�� It can also be
useful to set solutions to �� to decide whether there is a unique model�

Stack

The search control algorithm makes use of a database of pieces of information
about the search space� There is a stack of �blanks� for use in this database�
When the stack is exhausted� FINDER decides that the search job is too
big to be handled in one hit� so it divides the remaining search space into
disjoint subspaces and searches each separately� The stack is made up of two
sections� the part used to hold information discovered by the preprocessor and
the �margin� used to hold that discovered during the search� By default� the
stack is of maximal size ���� as FINDER is supplied� and the margin is of size
�� These are the numbers of batches of ���� database entries�

The size of the stack may be set by means of the stack setting speci�ca	
tion� and the size of the margin by means of stack�margin � Setting a small
stack causes space division to happen often� with consequent repeated loss of
information but with frequent refreshment of the database so that clutter is
reduced� Setting a large stack reverses these eects� There is no general rule
for predicting the optimum stack size� it varies from job to job� Generally�
only the margin will need to be adjusted� unless you are experimenting with
special eects or need to keep memory usage down�

There are symbolic constants for specifying stack sizes� They are de�ned
in the header �le Fdef�h� In increasing order� they are

�� CHAPTER �� REFERENCE GUIDE

itsy �

bitsy �

tiny �

small �

medium �� 	the default

large ��

LARGE ��

huge ���

maximal as many as possible

You may give a numeral instead of a symbolic constant if you want one of the
values in between� though there is no good reason to do so�

Test after

The setting speci�cation test�after followed by a non	negative integer is
for use when FINDER is an adjunct to another system such as OTTER �see
x����� and x��� for this use of FINDER�� It causes FINDER to stop generating
models and start behaving as a tester after the speci�ed number of clauses have
been input�

Testing by variables or weight

During testing� clauses are treated in order� Normally the most signi�cant
factor in determining this order is the number of variables in the clause� with
clause weight as the minor sort� Setting test�by�vars is the default for the
toggle which causes this ordering to be imposed� Optionally� weight may be
made more signi�cant than number of variables� Naturally� this is communi	
cated to FINDER by setting test�by�weight �

Time stamp

The setting time�stamp causes each model printed to be �agged with the
time �in cpu seconds� since the start of the search� The default setting is
no�time�stamp which turns o time stamping�

Time limit

A setting of time�limit �n� causes FINDER to jump out of the search
after n seconds� Note that this refers to elapsed time� not cpu time� The
dafault value is � �no limit��

���� FINDER INPUT ��

Tops on and o�

As explained in x� refutations �constraints� which are too big or involve the
most signi�cant cells are reduced by decapitation� The setting tops�off or
tops�on �default tops�off� enables or disables this action� Do not use it� as
FINDER knows best about such things#

Verbosity

There are three verbosity levels� none� brief and full� There are also three
aspects of a FINDER run on which information can be requested� the input
job� the models found� and some overall statistics� The verbosity level for each
of these three may be set independently of the others by means of the setting
speci�cation verbosity followed by a speci�cation list of levels� The default
setting is

verbosity �

models� full

job� none

stats� brief

�

The level none is self	explanatory� In detail� the other two levels are as follows�

models Printing of solutions as they are found� The format may be either
pretty or ugly�

brief Each function is reported only when it or some more signi�cant
function changes� or when the cardinality of a sort changes�

full Every function with print mode full is detailed every time a model
is found� even if the table of values is the same as for the previous
model�

job Printing of the current speci�cations�

brief The sorts and functions only of the current job are printed out�
with all of their speci�cations�

full The sorts� functions� clauses and settings of the current job are
printed out in that order� with all of their speci�cations�

stats Printing of a report on the completed job�

brief At the end of the run� FINDER prints the number of models found
and the total time taken�

full In addition to the number of models� FINDER prints information
about the numbers of subspaces� backtracks and constraints�

�� CHAPTER �� REFERENCE GUIDE

��� Non�standard input

����� Piping

It is possible to use output from FINDER as input to FINDER� For this
purpose� the ugly output format and the command line switch �f or
�n must be used�

An ugly printing of a model consists of the word model followed by a series
of entries followed by a period� Each entry is either a function symbol followed
by the value table for that function or the word size followed by a sort name
followed by an integer denoting the cardinality of that sort� An ugly output
�le consists of the job� followed by the models found� followed by �end��

The word ugly among the settings causes output to be in the ugly format
and also sets the verbosity levels to new defaults

verbosity �

job� brief� models� brief� stats� none�

�

These may be over	ridden by subsequent speci�cations� but for purposes of
piping the output to another FINDER job there is usually no need to do so�

The command line option �f �filename� is used to specify the �le from
which FINDER is to take input� The �le is in addition to the standard input
stream� not instead of it� If FINDER is given an input �le in this way� it
expects models to be piped into it from stdin and to execute its job on each
one� It also expects a job speci�cation �sorts and functions at least� to come
from stdin before anything else happens� and will not proceed to read its �le
until it receives the end statement�

To illustrate with the usual example of the ordered semigroups of sizes up
to �� here is an input �le called SG�� �

setting ugly

sort element �

cardinality � �

cardinality � �

�

function �� element�element �� element ��

clause �

a � b � a � c �� b � c�

a � c � b � c �� a � b�

a � 	b � c
 � 	a � b
 � c�

�

end

���� NON�STANDARD INPUT ��

Now here is another one called SG�� �

function �� element �� element � bijective cut print�none �

clause a � �	a
 � �	b
 � b�

end

A rather ine
cient way to generate ordered semigroups which admit a quasi	
inverse is to pipe the output from FINDER on SG�� through FINDER with
input �le SG�� � The command line

 finder � SG�� � finder �f SG��

su
ces for this� It is worth dwelling a little on what happens in this case�

 finder � SG��

prints ��� models �out of ��� tested� in ugly format� It starts by printing the
job description and then goes on to specify the sizes and the tables for the
star�

sort �

bool

enum� false� true�

int

cardinality � ��

element �

cardinality 	 �

cardinality
 �

�

�

function �

� element� element �	 element �

total

scope� �

change�order �T

print� full

�

�

end

model

size int ��

�� CHAPTER �� REFERENCE GUIDE

size element �

 � � � �

�

model

 � � � �

�

model

 � � � �

�

When this is piped into another FINDER along with SG�� the piped job de	
scription is read �rst� as far as the word end � Then the �le SG�� is read�
adding the invisible tilde function and the quasi	inverse clauses� Then� after
the end of that input� the models are read from the pipe one by one� and in
each case the second FINDER tries to add the tilde function in accordance
with its speci�cations� Where it succeeds� it prints the model� in its output
format of pretty since it does not inherit settings from the pipe� Where it
fails� it prints nothing� The eventual result is to select from the ��� models
which come along the pipe the ��� on which a quasi	inverse is de�nable�

It sometimes happens that an input �le is created from which you usually
want ordinary runs but sometimes want piped output� In that case the com	
mand line switch �p �for �pipe�� will over	ride the setting speci�cations�
causing ugly output with its default verbosities� To illustrate� the eect of
removing the setting line from SG�� and running

 finder � SG��

is to cause the ordered semigroups to be printed in pretty form as usual� Then
to pipe the output through the second FINDER and �le the output� type

 finder �p � SG�� � finder �f SG�� � SGinv�out

There is no particular reason to use piping for the above problem� as the
two input �les could easily be combined into one� A typical case in which this
cannot be done would be the problem of enumerating the ordered semigroups
on which a quasi	inverse is not de�nable� That is� suppose we want to see not
the ��� structures which do admit quasi	inverses but the ��� which do not�
For this FINDER provides another command line switch� �n �filename� �
which behaves just like �f as far as input is concerned� but gives as output
exactly those models piped into it for which it fails to �nd a model of its larger
theory� Hence

 finder �p � SG�� � finder �n SG�� � SGnoinv�out

���� NON�STANDARD INPUT ��

will �le exactly those models output from

 finder � SG��

which did not get �led before� Before this negation facility was added to
FINDER� its eect could only be secured by virtuoso use of grep and awk and
shell script trickery� The real hackers can still do it their way� but the rest of
us can now do it better�

����� Command line

There are four command line options� Options �f� �n and �p have been covered
in x������ Option �c may be used to append material to what occurs in the
input �le� It is usual� and recommended� to place double quotation marks
around such command line input� so that white space and other meaningful
characters are treated by FINDER and not by the shell or by the operating
system�

FINDER places white space around each piece of text input from the com	
mand line� so breaks between successive such items should not occur in the
middle of words� but otherwise there is no signi�cance to such breaks� The
syntax of command line input is exactly the same as that of �le input� It is
treated as though it came just before the word end �

For a fairly pointless example� consider a FINDER �le for enumeration of
ordered semigroups of order ��

sort element cardinality � �

function �� element�element �� element ��

clause �

a � b� a � c � b � c �� false�

a � b� c � a � c � b �� false�

a � b � c � a � 	b � c
�

�

end

Suppose this is in a �le called OSG�in � If we want to see the ordered semigroups
of order � instead� without editing the �le� we may type

 finder �c sort element cardinality � � � OSG�in

�� CHAPTER �� REFERENCE GUIDE

If instead we wanted to send the ordered idempotent monoids of order � to an
output �le� we could type

 finder �c sort element cardinality � � !

�c function e� element��� !

�c clause � x � e � x� e � x � x� x � x � x� � !

� OSG�in � OIM�out

A more common use of command line input is to change the settings� For ex	
ample� to view the runtime statistics without having to look at all the models�

 finder �c setting verbosity !

�c �stats�full models�none� � OSG�in

Note that the command line input is read last� so it can over	ride any contrary
settings that may have been made in the �le�

����� FINDER as TESTER

This section is expected to be most useful to anyone intending to incorporate
FINDER into other programs� and therefore assumes some knowledge of C
programming� This makes it in some ways more technical than the rest of
these notes�

A facility is provided whereby FINDER can be called as a function from
another C program� In order to do this� the parent program must link in all the
FINDER object �les� of course� with the exception of Fmain�c which contains
the main function of the stand	alone version of FINDER�

In its use as a tester� the input con�guration and the functionality of
FINDER are a little dierent from normal� Firstly� the calling program is
expected to be using the standard input and output streams for its own pur	
poses� so FINDER cannot read from them� Hence before FINDER can be
called� it is necessary to execute a statement

init�finder	path
"

The parameter path is a character string containing the name of a �le� The
function init�finder returns a boolean value� which can be read as an integer
� or � in the usual way� FINDER reads the input in �le path very much as
normal� The input may contain settings and other directives as described in
the above sections� There need not be any clauses in the �le� though there may
be� FINDER will search for a model of whatever clauses are given� returning
true when it �nds one� If no clauses are given� of course� it ��nds� the �rst

���� NON�STANDARD INPUT ��

candidate model in its search space� If no model is found in the search space
it has been instructed to search� it returns false � The model� if any� resides
in memory until FINDER is called again� and the clauses� if any� also reside in
memory� They will be referred to below as the current model and the current
theory� They are not printed out by init�finder �

Subsequent calls to FINDER take the form

true�in�model	C� add�old� add�new
"

where C is a character string representing a clause in the usual input for	
mat recognized by FINDER �see x����� and x����� above�� while add�old

and add�new are boolean �ags �� for false or � for true�� The function
true�in�model tests the clause C for truth in the current model� If it is
true� C is added to the current theory if the parameter add�old is true� and
true�in�model then returns true � If C is not true in the current model� and
the parameter add�new is false� then it returns false � If the clause fails the
test and add�new is true� then FINDER temporarily adds C as current clause
to its current theory and searches for a model of the resulting enlarged theory�
If it fails to �nd one it deletes current clause C from its theory and returns
false� If it does �nd a model� it updates the current model to the one just
found� con�rms the current clause as part of its current theory and returns
true �

Here is a �owchart of all that� M is the current model and T the current
theory� M& is the new model� if such be found� of T plus the current clause C�

T � T�C

M � M�

Return
false

Return
true

T � T�C

��
��
�

HH
HH

H

HHHHH

����� Found M�

��
��
�

HH
HH

H

HHHHH

����� add new

��
��
�

HH
HH

H

HHHHH

����� C true in M

��
��
�

HH
HH

H

HHHHH

����� add old� �

�

��

�

�

�

�

�

�

��

ENTER

EXIT EXIT

N

Y

Y

N

Y

N

Y

N

�� CHAPTER �� REFERENCE GUIDE

The upshot is that FINDER can be used to test arbitrary clauses for truth in a
model of a given theory� and can also be caused to update the theory and model
dynamically as things progress� Note that the theory grows monotonically�
there is no way to delete clauses once they have been added�

If you are not concerned to keep �ne control over when FINDER is to add
clauses and when not� you may use the simpler call

is�true	C
"

whose only parameter is the string containing the clause to be tested� FINDER
treats this like a call to true�in�model� assuming that add�old and add�new

are both true if only a few clauses have so far been tested� and both false if
a lot have already been tested� The boundary between a few and a lot is by
default ��� and may be set by means of the setting option test�after �

Several further functions are provided in order to make certain operations
easier� A call of

theory�size	

simply returns the number of clauses in the current theory� You may� for
instance� want to stop adding further clauses to the theory when it gets bigger
than some limit� There are no parameters� and the value returned is an integer�

Secondly� the statements

fprint�the�model	f
"

fprint�the�job	f
"

cause FINDER to print respectively its current model and its current job� The
model is printed in whatever format was speci�ed in the input �le� In either
case� a verbosity level of full is assumed� The parameter is a pointer of type
FILE and may be stdout or stderr if you wish� These functions do not return
a value� To suppress the imposition of full verbosity� omit the ��the��

Finally� the parent program may add more FINDER input� in the standard
format� at any time� The usual way to do this is to read a �le and transfer its
contents line by line� though other devices are possible� The call is

finder�input	s
"

where s is a null	terminated character string of any length� It is recommended
that this function be used with care� unless you are sure that you really un	
derstand how FINDER handles its input� since the results may be a little
unpredictable� This is particularly the case if you change the cardinality of

���� NON�STANDARD INPUT ��

sorts� add new sorts or add new function symbols� The current model may
get corrupted in the process� It would be more normal to use finder�input
only to change settings� print modes and the like� If you have changed sorts
or added functions you should refresh FINDER by adding

re�init�finder	
" �� Note no parameter ��

At any time after FINDER has been initialized and a current theory de�ned�
it may simply be run to generate all models in its space as usual by means of
the call

go	�
"

�� CHAPTER �� REFERENCE GUIDE

Chapter �

How it Works

Part of the design philosophy of FINDER is that the details of the actual search
algorithm it uses are unimportant� so another algorithm could be implemented
and slipped into its place with no signi�cant change to FINDER�s functionality�
In order to understand some of the setting options and other features� however�
a little knowledge of the inner workings of FINDER is necessary�

The outer algorithm is as follows�

FINDER�

get job description

lower DONE flag

GO� first sort �

end FINDER

GO � sort X ��

for each possible cardinality c of X do

set the cardinality of X to c

if there is a next sort X�� then

GO � X�� �

else

if not DONE then

set up index

SEARCH� set of possible models �

end if

end if

end for

end GO

There are some external �global� variables used by the various bits of FINDER
to communicate with each other� A boolean �ag DONE is used to indicate that

��

�� CHAPTER �� HOW IT WORKS

some termination condition has been recognized� For example� the maximum
number of models may have been reached� There is also an index used to
translate between the many data structures representing a model and the sim	
ple vector of values generated by the searcher� In addition� there is the job
description which is quite complex� as it includes details of all the sorts� func	
tions� clauses and settings� The �ag that stops the search may be raised at
any time during the search� Getting the job description and setting up the
index are of course somewhat complex operations which are not detailed here�

Before the SEARCH algorithm can be presented� it is necessary to explain
some terminology and in order to do this it is necessary to examine the struc	
ture of a tree search as solution to a constraint satisfaction problem�

Let us �x attention for the moment on a concrete problem� Suppose� as
ever� that we are enumerating totally ordered semigroups� We have decided
ahead of time that the domain consists of four elements called a� b� c and d

and that they come in that �increasing� order� The postulates are

x � y � x � z � y � z

x � y � z � x � z � y

�x � y� � z x � �y � z�

The corresponding FINDER input �le reads

sort element � enum� a� b� c� d� �

function �� element�element �� element ��

clause �

x � y� x � z � y � z �� false�

x � y� z � x � z � y �� false�

x � y � z � x � 	y � z
�

�

end

A typical model �one of the ��� that FINDER produces� is

Model ���

� � a b c d

�������������

a � a a a a

b � a a b b

c � a b c d

d � a b c d

��

This simple problem will serve to illustrate most of the features of FINDER�s
search algorithm�

The matrix for the semigroup operator consists of �� cells corresponding
to the pairs of elements� Each cell needs a value� and there are � possible
values for each� Consequently� the search space consists of ��� or �������������
possible matrices� The idea is to generate a candidate matrix and test it for
satisfaction of the postulates� If it passes the test it is printed out� if it fails it is
changed somewhat to get rid of the detected badness� giving a new candidate
which is tested in turn� The ways that postulates have been found to fail are
stored in a database so that they can be avoided in future� In order to de�ne
the search tree� the cells are arranged in an order thus�

� � � �

� � � �

� �� �� ��

�� �� �� ��

a

b

c

d

a b c d

The search controller works with this one	dimensional vector of cells� not with
the more complex data structures of the model such as the two	dimensional
array corresponding to the star operation� The mapping between the vector
and the model is done via the index�

Since the domain is �nite� each clause can be regarded as a set of ground
clauses got by plugging in values for the variables� That is� the associativity
postulate� for instance� amounts to �� ground equations

�a � a� � a a � �a � a�

�a � a� � b a � �a � b�

�a � a� � c a � �a � c�

�a � a� � d a � �a � d�

�a � b� � a a � �b � a�

�a � b� � b a � �b � b�

�a � b� � c a � �b � c�

and so forth� The search controller does not know about the star� so for its
purposes we should express all this in terms of a binary relation between cells

�� CHAPTER �� HOW IT WORKS

and their values� It also does not know about a� b� c and d� it just thinks of
the values as value '�� value '� and so on� Let us write P x

y where cell x has
value y� so for example P ��

� means that cell �� has value �� which translates
via the index into d � a b�

Now suppose �as actually happens in the sample case� FINDER constructs
a candidate model which has these values in these cells�

a b

b

b

a

b

c

d

a b c d

It does not matter what values it has put in the other cells� Now one of the
ground postulates is false of this structure� Speci�cally

�a � d� � d 	 a � �d � d�

Evidently this failure is not a global property of the whole candidate model�
but only of the four cells involved� What we can tell the search controller as a
result of discovering this badness is that

P �
� �
P �

� �
P 	
� �
P ��

�

That is to say� any failure of a postulate translates into a negative clause with
as many �ground� literals as there are cells involved in the failure� Such a
clause is what will here be called a �negative� constraint� The corresponding
set of cell	value pairs is called a refutation� following terminology of Pritchard�
A refutation of cardinality n is called an n	refutation� So the associativity
failure in the above example is a �	refutation� FINDER actually works directly
with refutations� recording them in such a form that the relevant ones can
be accessed and applied very rapidly� and does not explicitly formulate the
corresponding clauses� The presentation in terms of clause	form constraints
and inferences is given here only in order to lay out the logic of the search
clearly�

There are also of course some understood positive clauses� saying that each
cell has a value�

P �
� � P �

� � P �
� � P �

�

��

and similarly for all the other cells� These are essentially contributed by a pre	
processing routine which takes what FINDER knows to be impossible values
out of the list of available ones for each cell� The tree traversal is driven by
choosing exactly one literal from each positive clause �a value for each cell��
assuming that literal as a new unit clause� resolving with it against the con	
straints to give smaller constraints and backtracking if ever the empty clause
results� On backtracking� of course� all of the temporary smaller constraints
must be deleted again� If one of the �smaller constraints� gets to be a unit
clause� saying just that some value is not available for some cell� then it too
can be used in a resolution step to reduce the number of disjuncts in one of
the positive clauses� All the clauses considered on this view of the search logic
are thus either positive ones or negative ones� and all of the primary inferences
consist of applying a single literal to a clause of the opposite polarity in order
to shorten it by one� These unit	resolution inferences are termed constraint

strengthening and space reduction respectively in ���� where it is also pointed
out that we may regard the search as tracing out a tableau	style logical proof�

For reasons of e
ciency� n	refutations for small values of n are treated dif	
ferently from those for large values� For a clause giving n	refutations for �ap	
proximately� n � � it is most e
cient to generate all of the ground instances�
and all of the refutations to which these can possibly give rise� in advance of
the search� FINDER does this� along the way removing any refutation sub	
sumed by one of its subsets� in a second preprocessing stage� Short refutations
are thus written into its description of the search space� so that any candidate
model generated is bound to satisfy them� If all clauses in a problem are of low
weight� of course� no testing is necessary since all candidate models are actual
models� It is not e
cient to preprocess large refutations because there are so
many of them and usually a rather small subset is su
cient to determine the
models� �Lazy constraint generation�� whereby such refutations are discovered
by generate	and	test methods� is therefore the technique of choice for them�

The SEARCH algorithm� to traverse a search space S� thus reads as follows�
Note that S is empty if one of its cells has the null set of possible values�

SEARCH� space S ��

initialize refutation database

remove impossible values from S

if S is nonempty then

record small refutations in database

GENERATE� S �

end if

end SEARCH

This calls a recursive procedure GENERATE to traverse the tree� GENERATE calls
a test procedure with each candidate vector in that part of search space S

�� CHAPTER �� HOW IT WORKS

which has values for certain cells already �xed but allows the values for the
remaining cells to vary� In a somewhat simpli�ed form� it reads

GENERATE� space S ��

if every cell in S has a value then

TEST � vector of values �

else

choose some n�th cell for splitting

for each possible value v of n�th cell do

set n�th vector value to v

remove incompatible values from S

if S is nonempty then

GENERATE � S �

end if

un�set n�th vector value and re�set S

end for

end if

end GENERATE

This must be complicated a little to allow for the addition of newly discovered
constraints to the refutation database� It also needs to keep checking the DONE
�ag to see whether it should stop� Moreover� it has to keep track of such
details as how far to backtrack when a new refutation is encountered� These
complications are not the present subject� It should� however� be noted that
the choice of cell for splitting is made on the basis of the number of possible
values remaining for it� A cell with few possible values is preferred to one with
many� in order to reduce furcation of the search tree�

The TEST routine is fairly simple� It must �rst decode the vector put
forward by the search controller� since this is just a list of the assigned values
in their change order and has yet to be translated into testable data structures�
If the candidate model passes the test� naturally� it should be accepted�

TEST� vector V ��

use index to translate V into possible model

for each clause C of testable weight do

for each assignment of values to variables in C do

compute values of all subformulas in C

if antecedents of C true and consequents false then

record cells used in evaluation as a refutation

RETURN �bad�

end if

end for

end for

print out the model

RETURN �good�

end TEST

��

If during the search the database of known refutations gets too big �where
the meaning of �too big� is stipulated by means of the stack size and stack
margin setting in the input� then FINDER divides the search space into two or
more disjoint subspaces and searches them separately� discarding the refutation
database and repeating the entire preprocessing routine with each one� There is
obvious ine
ciency in thus repeating work� but the empirical evidence suggests
that this is outweighed by the bene�ts of refreshing the database and keeping
it compact�

It often happens that the search has to backtrack before the vector of values
is complete� because the empty clause has been derived �that is� because there
is no possible value left for some cell�� In terms of the constraints� what has
caused this! There must be constraints

P i
� � X�
���

P i
n � Xn

where cell i is the one with no remaining value� where there are n$ � initially
possible values for it� and where each Xj is a �possibly empty� disjunction of
negative literals each of which is false of the partial vector so far constructed�
In that case� we can apply a rule of negative hyper	resolution using the positive
clause

P i
� � � � � � P i

n

as the nucleus� This leaves a totally new constraint

X� � � � � � Xn

which records at any rate one reason why the search had to backtrack at
that point� This is a secondary constraint� It can be added to the refutation
database in exactly the same way as are the primary ones corresponding to
failures of input clauses� The result will be that never again will we back	
track for that reason� Because FINDER never� backtracks twice for the same
reason� it is enormously more e
cient than the penny	plain transferred refuta	
tions searcher� We should expect this� since the time complexity of constraint
satisfaction problems is typically dominated by the backtracking behaviour�
The sample results in x��� bear it out�

Although primary refutations are limited in size to the weights of the input
clauses� secondary refutations are not� As a concrete example� during the
search for �	element ordered semigroups� FINDER comes across the primary
�	refutation noted above�

� � � �

�Well� hardly ever�

�� CHAPTER �� HOW IT WORKS

The least signi�cant cell involved is '�� and this refutation prevents it from
getting value '� as long as the other three cells involved have value '�� But
in virtue of the �order� postulates we already know about the �	refutations

� �

� �

� �

Putting these four refutations together �using negative hyper	resolution� if we
wish to think in terms of clauses� we get the secondary refutation

� � �� �

This is of greater cardinality than any primary refutation could be in this
particular job� Moreover� since secondary refutations can be used to generate
further secondary refutations� very large refutations can build up quite quickly�
The bigger a refutation is the less information it carries� for taking account of
a refutation divides the number of possible vectors in the search space by a
factor of P

P�� where P is the product of the numbers of possible values in the
cells involved� Evidently the eect on the size of the search space diminishes
logarithmically with increasing cardinality of refutations� But the amount
of work a refutation causes is roughly in direct proportion to its cardinality�
Hence too many large refutations clog the database with uninformative junk
which does little but make work� Fortunately� there is a device to mitigate this
eect�

Faced with a refutation of excessive size� FINDER could simply refuse to
store it� This� however� would be to reject too much of the information it
carries� Instead� what it does is to diminish the refutation by removing from
it the most signi�cant cell	value pairs �where �signi�cant� means �chosen high
in the search tree�� Then the refutation is stored with a marker to say that
it should be discarded when the search backs up to the point where one of
the removed values is changed� Until then it is treated just like any normal
refutation� In terms of the search construed as construction of a logical tableau�
this is easily expressed as inserting the new clause not at the root of the tree
but only at that of some more or less local branch� This treatment of over	
large refutations can result in redundant work� for the same refutation may
be discovered again after it has been discarded� but empirical evidence shows

��

that such extra work is outweighed by the e
ciency gains from keeping out
monstrous refutations� The logical correctness of the procedure is obvious�

Since for any given set of clauses the number of primary refutations is
polynomial in the size of the domain of values� as is the time taken to �nd
them all� and the time taken to apply them in constructing a candidate vector�
provided no backtracking happens� the time taken per model found would
also be polynomially bounded were it not for secondary refutations� Typical
FINDER problems are NP complete on this measure� so the number and size
of secondary refutations must eventually dominate in most cases� Hence all
techniques designed to improve e
ciency bring at most temporary relief� Over
the thirteen years or so since the �transferred refutations� algorithm was �rst
implemented� many experiments have been made with devices for keeping the
combinatorial explosion within bounds for a while� Most of these were rather
inconclusive� but two ideas have proved really valuable� One is the cutting
down of over	large refutations as outlined above� The other is the �divide
and conquer� step triggered when the number of entries in the database of
refutations exceeds a certain �gure� Each of these involves a cost in repeated
work which has to be balanced against the bene�ts gained� The settings for
parameters to achieve this balance can only be determined experimentally in
the case of any particular type of problem�

�� CHAPTER �� HOW IT WORKS

Chapter �

Sample Applications

��� Problem solving

This section consists of sample problems suitable for FINDER� each with a
FINDER input �le representing the problem and with the results of running
FINDER on that input� It is hoped that the examples given here will serve as
both illustrations and templates�

There is no good benchmark set for search programs of FINDER�s type�
A ludicrous amount of the literature on constraint satisfaction problems is
concerned almost exclusively with the Queens Problem �see x������� This is
a highly atypical case� as the observations here attest� Moreover� its com	
putational interest is slight� its mathematical and philosophical signi�cance
negligible� and its practical import zero�� Nonetheless� it is the standard case
and so has to be treated in this section� Much more worthwhile problems arise
in the theory of quasigroups and other group	like objects� These deserve a
section to themselves� and so their discussion is postponed for a few pages�
Perhaps the best benchmark I know� and certainly one which has been used
intensively during the development of FINDER� is that of enumerating ordered
semigroups� It �nds a place here� The rest of the examples are included not
so much to demonstrate FINDER�s performance as to illustrate its use�

In seeking suitable problems for FINDER I found a useful source in the
collections of puzzles sold commercially in newsagencies� One issue of such a
magazine provided FINDER with several challenges� including the �Squaring
Up� puzzle detailed here� These puzzle	book problems are not deep� but they
are of interest as the sort of logical exercise human beings enjoy�

�The other problem which gets discussed is graph colouring� which is a much better
example because some real problems� in scheduling for instance� can be reduced to it� Graph
colouring in general is still not an ideal testbed for algorithms� however� since the cases
treated usually turn out to be trivial�

��

�� CHAPTER �� SAMPLE APPLICATIONS

����� Jobs

This is a staple of automated reasoning� It is not di
cult� but shows the
general technique for representing such problems in FINDER�s format� The
version given here is lifted directly from ���� where it is given a sustained
treatment as a sample problem for automated deduction�

Problem description

There are four people� Roberta� Thelma� Steve and Pete�
Among them� they hold eight dierent jobs�
Each holds exactly two jobs�
The jobs are� chef� guard� nurse� telephone operator� police o
cer� teacher�
waiter and boxer�

The job of nurse is held by a male�
The husband of the chef is the telephone operator�
Roberta is not a boxer�
Pete has no education past �th grade�
Roberta� the chef� and the police o
cer went gol�ng together�

Who holds which jobs!

FINDER input

sort �

person

enum� Roberta� Thelma� Steve� Pete�

job

enum� chef� guard� nurse� telephone�operator�

police�officer� teacher� waiter� boxer�

�

function �

male� person �� bool

print� none

female� person �� bool

print� none

job�� person �� job

injective

���� PROBLEM SOLVING ��

job�� person �� job

injective

is�a� person�job �� bool

print� none

husband� person �� person �

partial

injective

print� none

cut

�

educated� person �� bool �

print� none

cut

�

�

clause � These are common notions�

male	x
 � 	female	x
 � false
�

E�	husband	x

 �� female	x
�

E�	husband	x

 �� male	husband	x

�

female	Roberta
�

female	Thelma
�

male	Steve
�

male	Pete
�

x is�a waiter �� male	x
�

x is�a nurse �� educated	x
�

x is�a police�officer �� educated	x
�

x is�a teacher �� educated	x
�

x is�a job�	x
�

x is�a job�	x
�

x is�a y �� y � job�	x
� y � job�	x
�

job�	x
 � job�	x
�

job�	x
 � job�	y
 �� false�

�

�� CHAPTER �� SAMPLE APPLICATIONS

clause � These are specific conditions�

x is�a nurse �� male	x
�

x is�a chef �� husband	x
 is�a telephone�operator�

Roberta is�a boxer �� false�

educated	Pete
 �� false�

Roberta is�a chef �� false�

Roberta is�a police�officer �� false�

x is�a chef� x is�a police�officer �� false�

�

end

Results and comments

The results are of no signi�cance� but several comments are in order�

� Persons and jobs are of dierent types� This has several hidden conse	
quences such as that no person can be a job� The enumeration order
within each type is unimportant in this case�

� The representation given is by no means the most e
cient� More function
symbols are used than are necessary� only one sex need be primitive� as
the other de�nable as its negation� and the relation is�a is redundant
in principle� On the other hand� editorial freedom has been exercised
in stipulating that degree of education is an all	or	nothing aair for this
problem� rather than one involving arithmetic on grades�

� The order in which the function symbols come is signi�cant� The ones
which get trivially �xed come �rst�

� The cut speci�cations on husband and educated are to rule out multiple
solutions diering only in marital or educational respects� in which we
have no interest�

� The common notions should be fairly self	evident� To be male is� by
stipulation� to fail to be female� It is necessary to the solution that
waiters are male �female ones are �waitresses��� For no deep reason
at all� one�s ��rst� job is the one earlier in the list of jobs than one�s
�second��

� The golf is irrelevant� the point of that clue is just that Roberta� the
chef and the police o
cer are all dierent people�

���� PROBLEM SOLVING ��

����� Squaring Up

This neat puzzle is taken from page �� of ���� It is nontrivial for some search
algorithms� though others� including that of FINDER� �nd it quite easy�

Problem description

The large square in the diagram is divided into �� smaller squares� one of
which is blank� The remaining �� squares each contain one of the letters A to
L or one of the numbers � to ��� From the clues given below� can you insert
the letters and numbers into their correct squares!

� There is only one number in horizon�

tal row I� the letter two squares below

it is the A�

� Squares IVa and IVb contain respec�

tively a letter and a number corre�

sponding to that letter�s alphabetical

position� For instance� they could be

A and 	� B and
� and so on�

� Square Va is the only corner square

to contain a number� the number in Vc

has twice its value�

� There are three odd single�digit num�

bers in row III and one even number�

� The blank square has a � immedi�

ately above it and an � immediately

below� and letters to its right and left�

one of which is the J�

� Squares Ib and IIId contain respec�

tively a letter and the number corre�

sponding to that letter�s alphabetical

position�

� Square IIb contains the 	 and square

IVe the B�

� The � is somewhere in column c but

not in row I�

	 The F and the 		 are in adjacent

squares in the same horizontal row� the

former being to the right of the latter�

�
 The L is two squares directly above

the �� but not in column e�

�� The I is two rows above the �� but

not in the same column�

�� The 	 is immediately above the �

and the � immediately below the E�

�� The H is somewhere to the left of

the K in the same horizontal row and

the C is in a higher row than the G�

V

IV

III

II

I

a b c d e

�� CHAPTER �� SAMPLE APPLICATIONS

FINDER input

sort �

row enum� I� II� III� IV� V�

column enum� a� b� c� d� e�

symbol enum� #�$� Blank

%�&� %�&� %�&� %�&�%�&�%�&�

%�&� %�&� %�&� %��&� %��&� %��&� Numbers

%A&� %B&� %C&� %D&�%E&�%F&�

%G&� %H&� %I&� %J&�%K&�%L&� Letters

�

function �

even� symbol �� bool print� none

double� symbol �� symbol � partial� print�none �

num� symbol �� bool print�none

lett� symbol �� bool print�none

grid� row�column �� symbol � bijective� no�priority �

row�of� symbol �� row � print�none� no�priority �

column�of� symbol �� column print�none

�

constant � Skolem constants

E� symbol print�none

O�� symbol print�none

O�� symbol print�none

O�� symbol print�none

�

clause �

E�	double	#�$

 �� false�

double	%�&
 � %�&� double	%�&
 � %�&� double	%�&
 � %�&�

double	%�&
 � %�&� double	%�&
 � %��&�double	%�&
 � %��&�

E�	double	x

 �� x � %�&�

num	#�$
 � false�

x � #�$ �� num	x
 � 	x � %A&
�

lett	x
 � 	x � %��&
�

even	x
 �� num	x
� even	%�&
 �� false�

even	x
� even	x��
 �� false�

num	x��
 �� even	x��
� even	x��
�

row�of	grid	x�y

 � x� column�of	grid	x�y

 � y�

grid	row�of	x
�column�of	x

 � x�

�

���� PROBLEM SOLVING ��

clause �

num	grid	I�column�of	%A&

�

num	grid	I�x

 �� x � column�of	%A&
�

row�of	%A&
 � III�

num	grid	IV�b

�

grid	IV�a
 � grid	IV�b
����

num	grid	V�a

�

lett	grid	I�a

�

lett	grid	I�e

�

lett	grid	V�e

�

num	grid	V�c

�

grid	V�c
 � double	grid	V�a

�

even	E
� row�of	E
 � III�

even	O�
 �� false� row�of	O�
 � III�

even	O�
 �� false� row�of	O�
 � III�

even	O�
 �� false� row�of	O�
 � III�

num	O�
� O� � O�� O� � O�� O� � %��&�

row�of	%�&
 � row�of	#�$
���

column�of	%�&
 � column�of	#�$
�

row�of	%�&
�� � row�of	#�$
�

column�of	%�&
 � column�of	#�$
�

column�of	#�$
 � a�

column�of	#�$
 � x�� �� lett	grid	row�of	#�$
�x

�

lett	grid	row�of	#�$
�column�of	#�$
��

�

true �� column�of	#�$
�� � column�of	%J&
�

column�of	#�$
 � column�of	%J&
���

row�of	%J&
 � row�of	#�$
�

num	grid	III�d

�

grid	I�b
 � grid	III�d
����

grid	II�b
 � %��&�

grid	IV�e
 � %B&�

column�of	%�&
 � c�

row�of	%�&
 � I�

row�of	%F&
 � row�of	%��&
�

column�of	%F&
 � column�of	%��&
���

�� CHAPTER �� SAMPLE APPLICATIONS

column�of	%L&
 � e�

row�of	%�&
 � row�of	%L&
���

column�of	%L&
 � column�of	%�&
�

row�of	%�&
 � row�of	%I&
���

column�of	%�&
 � column�of	%I&
 �� false�

row�of	%�&
 � row�of	%�&
���

column�of	%�&
 � column�of	%�&
�

row�of	%�&
 � row�of	%E&
���

column�of	%�&
 � column�of	%E&
�

row�of	%H&
 � row�of	%K&
�

column�of	%H&
 � column�of	%K&
�

row�of	%C&
 � row�of	%G&
�

�

end

Results and comments

This is the most complicated FINDER �le in this section� Note that the
straightforward numerals are not available for an enumerated sort other than
int so the simple device of quotation has been used to get some new names�
Together with the bracketed dash for the blank� this helps to show that the set
of legal identi�ers is quite generous� We have to tell FINDER what an even
number in the range �� � � �� is� and also what it is to double such a number�
These bits of common knowledge are not parts of the clues as stated� however�
so they have been separated out into their own clause section� The �grid�
is the square of smaller squares to be �lled in� This is one case where it is
natural to use pre�x rather than in�x notation� Note that it is a bijection�
even though it is dyadic� The extra functions for the row and column of a
symbol are in principle redundant� though they make the clauses easier to
read and assist a little with the search� The Skolem constants E �the even
number� and O�� � �O� �the three single	digit odd ones� are for clue ��

The solution is generated in a second or so on a SPARC	�� though this
time should not be regarded as more than a very rough result since it depends
heavily on the details of the presentation� With some �ne tuning of functions
and clauses it may be reduced� If less care is taken over de�ning �double� and
the like then the search can take much longer� Note that FINDER proves
there is only one solution within the search space� Hence it is a useful tool
for the composer of puzzles who is concerned that there should be exactly one
solution and no redundant clues�

���� PROBLEM SOLVING ��

����� Queens

Problem description

This problem comes in two versions� One problem is to �nd an arrangement of
n queens on an n � n chessboard such that no queen attacks any other along
rank� �le or diagonal� The second form of the problem is to enumerate all
the ways of so positioning the n queens� The FINDER input below is for this
second form of the problem��

The positioning of the queens is represented as a function assigning to each
rank a �le where the queen on that rank is placed� By making this function
bijective� we assure that no two queens stand a rook�s move apart� Clauses
are then needed to stipulate that each queen covers its two diagonals�

FINDER input

sort �

rank cardinality � ��

file cardinality � ��

�

function queen� rank �� file

bijective

clause � Note� r is a rank� x is an integer�

E�	r�x
�

queen	r
�x � queen	r�x
 �� x � ��

E�	r�x
�

queen	r
 � queen	r�x
�x �� x � ��

�

setting �

primary

verbosity models� none

�

end

�There is no clear reason to apply any search algorithm to the �rst form of the problem�
since analytical solutions for all n have been known since early this century� and in any case
methods such as simulated annealing can generate solutions for millions of queens in short
order whereas search methods cannot� See �	�
 for these observations�

�� CHAPTER �� SAMPLE APPLICATIONS

Results and comments

The �rst thing to note on running FINDER with this input is that in gen	
erating the �� solutions it does not test anything else� This is because all
the constraints are binary ones and so get incorporated before the tree search
starts� Problems in which all of the primary constraints are binary are a little
unusual� but they do arise� What makes the Queens decidedly peculiar is that
processing secondary constraints actually slows down the search� With the
above settings� FINDER generates all solutions to the problem of �� queens
in �� seconds on a SPARC	�� With the word primary commented out� it take
�� seconds� Another curiosity is that FINDER � was faster on this problem
than FINDER �� although the latter is more e
cient in terms of the size of
its search tree� At least in small cases of the Queens Problem� the decrease in
the number of branches �about a factor of � in these small cases� is insu
cient
to compensate for the greater time �about a factor of �� taken to explore each
branch�

Here are some results for the problem of n queens� giving timings with the
default settings and also with the setting primary �

FINDER � FINDER � FINDER �
number of number of time time time
queens solutions �default� �primary� �primary�
� �� ��� ��� ���
� ��� ��� ��� ���
�� ��� ��� ��� ���
�� ���� ���� ���� ���
�� ����� ���� ���� ����
�� ����� ����� ����� �����

An interesting feature is that the time taken per solution found does not
appear to depend much on the size of the problem� provided secondary refu	
tations are suppressed� With a large number of queens� in fact� there are so
many solutions� packed so densely into the search space� that the time taken
to generate them is dominated by the number of solutions while the time
taken to �nd just one solution remains small� This is another reason why the
Queens Problem is unsuitable as a benchmark� Nonetheless� it is a staple of
the literature� so there is some interest in observing FINDER�s approach to it�

���� PROBLEM SOLVING ��

����� Heap Arithmetic

Nobody in their right mind would really look for a solution to this problem by
tree search methods� Any term	rewriting system should be able to solve it al	
most instantly� and generally any quasi	deductive system capable of equational
reasoning should �nd it easy� It is included here to illustrate some features of
FINDER� and because it is like a dog walking on its hind legs�

Problem description

Members of some primitive tribes are supposed to use a counting system some	
thing like �One� two� three� Heap� where the characteristic of Heap is that it
is its own successor �heap many bualo and another bualo add up to heap
many bualo�� It seems likely that this tale tells us more about anthropology
and the vagaries of radical translation than it does about any conceptual lack
on the part of the �primitives�� but that aside the notion of a terminus a quo

for the natural number system is one that makes a kind of sense�

Except that Heap is its own successor� all is as Dedekind and Peano said it
was� Natural addition� multiplication� exponentiation and the like can be given
their usual recursive de�nitions� This contrasts with other �nitizations such
as modular arithmetic� where in general exponentiation is not well de�ned�
Also naturally de�ned in Heap arithmetic but not in modular arithmetic is the
numerical total order as the ancestral of the relation every number bears to
itself and its successor� The problem is to derive the table for exponentiation
from the recursive axioms�

FINDER input

sort number

enum� zero�one�two�three�four�five�six�seven�eight�Heap�

function �

succ� number �� number ��

plus� number�number �� number ��

times� number�number �� number ��

power� number�number �� number ��

�

�� CHAPTER �� SAMPLE APPLICATIONS

clause �

succ	Heap
 � Heap�

x � Heap �� x � succ	x
�

x � y �� succ	x
 � y� succ	x
 � y�

x plus zero � x�

x plus succ	y
 � succ	x plus y
�

x times zero � zero�

x times succ	y
 � 	x times y
 plus x�

x power zero � one�

x power succ	y
 � 	x power y
 times x�

�

setting �

pre�test� �

verbosity stats� full

�

end of input�

Results and comments

The clauses for the successor function say with a minimum of fuss that the
successor of x is the next number after x� except in the special case of Heap�
The other clauses are precisely the standard recursive axioms� FINDER cannot
carry out recursive inferences� so it must �ll in the tables for the four functions
�that is� �n� $ n values� with n choices for each� for Heap arithmetic with n

numbers� guided simply by the constraints� The search space na()vely consists
of ����� possible structures� though of course the constraints leave only one
possibility�

The pre�test setting is important� The recursion axioms are of weight ��
and so would not normally be pre	processed� By means of the setting we force
FINDER to discover all of the primary constraints before starting to search�
If we left pre�test set to its default value of � the program would have to
�nd the required constraints by generate	and	test� This would slow it down
dramatically� In fact� since the recursive de�nition builds up the tables from
the zero cases� it pays to have the test try low values for variables before high
ones�the opposite of its normal strategy� This may be achieved by means

���� PROBLEM SOLVING ��

of the reverse�test setting� With that setting but without any pre�test

speci�cation� FINDER takes about �� seconds to solve the problem for the
case of Heap � and �� seconds for Heap �� Here� then� is an example
where lazy constraint generation is a bad idea�

It is worth examining the statistics printed at the end of the run as a result
of the input speci�ed above�

Subspaces prepared� �

Subspaces preprocessed� �

Subspaces searched� �

Solutions found� �

Back subsumptions� ���

Back subs by units� ���

Pre�test refutations� �����

Total database entries� �����

Branching� �� ���

Preprocess time� ����

Search time� ����

The clauses gave rise to ����� ground instances of the constraints� plus ���
more which turned out to be back subsumed by unit clauses �that is� were
detected to contain impossible values�� The preprocessing of these constraints
took a little over � seconds on a SPARC	�� When the search started� naturally�
there were always cells capable of only one value� so no nontrivial branching
occurred at all� no secondary constraints were added to the database and no
backtracks were recorded� Since the program went straight to the solution�
only a fraction of a second was required for the �search��

�� CHAPTER �� SAMPLE APPLICATIONS

����� Ordered semigroups

This problem has been used as an example in several places in the sections
above� since it is so simple and clear� It forms a good benchmark for back	
tracking search programs� since it scales easily to any size and is fairly well
immune to trickery� FINDER�s sister program MaGIC is geared exclusively to
enumerating ordered algebraic structures rather closely related to these� so the
search algorithm they share was developed with such applications in mind�

Problem description

Enumerate the totally ordered semigroups with n elements� Only the number
of such algebras need be printed when this problem is used as a benchmark�
The postulates are as follows�

x � y � x � z � y � z

x � y � z � x � z � y

x � �y � z� �x � y� � z

FINDER input

sort element

cardinality � �

function �� element�element �� element ��

clause �

x � z � y � z �� x � y�

z � x � z � y �� x � y�

	x � y
 � z � x � 	y � z
�

�

setting �

verbosity �

models� none

stats� full

�

�

end

���� PROBLEM SOLVING ��

Results and comments

The cardinality of � is for illustration only� Here are the results of running
FINDER on the above input with dierent choices of cardinality� The times
given were obtained on a SPARC	� with a �� MHz clock and plenty of memory�

number of number of bad ones other time in FINDER �
elements solutions tested backtracks seconds time
� � � �
� � � �
� �� �� � ��� ���
� ��� ��� �� ��� ���
� ���� ���� ��� ��� ���
� ����� ���� ���� ����� �����
� ������ ����� ����� ������ ������

FINDER splits the order � search space into � subspaces and the order � one
into ��� in all smaller cases it searches only one subspace� Note that once again
FINDER � was faster� at least on small cases of this problem� than FINDER ��
This seems to be because the search ratio �backtracks�models� is quite low� so
that e
ciency savings are hard to come by� Note that as the problems increase
in size so FINDER � begins to catch up�

It will be evident that each successively larger problem is an order of mag	
nitude harder than its predecessor� Hence for any model generator� some
case of this problem will be on the performance limit� making it a worthwhile
benchmark�

�� CHAPTER �� SAMPLE APPLICATIONS

��� Quasigroup problems

A quasigroup consists of a set on which is de�ned a dyadic operation� The op	
eration is cancellative in both left and right argument places� or� in FINDER�s
jargon� is both left bijective and right bijective� This means that the Cay	
ley matrix for the quasigroup operation is a Latin square� each row and each
column is a permutation of the elements� Quasigroups give rise to some inter	
esting and di
cult problems for search programs like FINDER� In this section�
we brie�y examine two such problems�

The simpler of the two is to �nd models of the equation �ba�b�b a� This
equation recieves a sustained investigation in ��� where several open problems
are noted� The existence of idempotent models of given sizes is particularly
in doubt� Prior to ����� it was known that there exist idempotent models of
every �nite cardinality with the known exceptions of �� �� � and � and with
�� possible exceptions of which the largest was ��� and the smallest �� ���
��� ��� ��� �� and ��� The order � problem was solved �negatively� by Jian
Zhang in ���� and the order �� and �� problems �also negatively� by Masayuki
Fujita in ����� The order ��� �� and �� problems were solved �negatively� by
Mark Stickel in ����%�� All of these results have been con�rmed by FINDER
and independently by Mark Wallace using the constraint logic programming
system ECLIPSE� At the time of writing� the order �� problem is still open�
though maybe not for long�

Here is the FINDER input for the sample problem �QG� of ��� and ������

sort int cardinality � ��

setting verbosity stats� full

function �

cycle� int �� int print� none

o� int�int �� int �

row�bijective

column�bijective

change�order �rb

�

�

clause �

cycle	�
 � ��

cycle	x
 �� E�	x��
�

true �� cycle	x
� cycle	x��
�

cycle	x
 �� cycle	x��
�� � cycle	x
�

���� QUASIGROUP PROBLEMS ��

E�	y��
� x � y� cycle	x��
 � cycle	y��
 �� cycle	x
�

x �� x o � � x� cycle	x
�

cycle	x
 �� x o � � x���

x o x � x�

y o x o y o y � x� 	�

y o 	x o y
 o y � x� 	�

y o 	x o y o y
 � x� 	�

�

end

There are several points to explain here� The function cycle is there to help
avoid searching too many isomorphic subspaces� The clauses for it force the
condition that in the column x � � the cycles of the permutation occupy con	
tiguous sections of the numbering and occur in monotone decreasing order of
length� The dot� of course� is the quasigroup operation� In addition to equation
��� which directly represents the de�ning condition for the problem� equations
��� and ��� have been added� Each is equivalent to equation ��� in the set of
quasigroups� and together they help by adding more primary constraints� The
change order �rbmakes things happen a little faster� though it is not essential�

The order �� problem shown above is rather trivial for FINDER � though it
was beyond the reach of FINDER �� This is a striking example of the greater
e
ciency of the new search algorithm� Several further equations have been
investigated using FINDER and other general	purpose search programs� They
include

�x � y� � �y � x� x

�x � y� � �y � x� y

�x � y� � y x � �x � y�

��x � y� � x� � y x

�x � �x � y�� � y x

In all cases except the last� either FINDER or one of the other programs
mentioned above has obtained solutions to open problems� Details are in �����

The second quasigroup example is related� though slightly dierent in style�
Two quasigroups given by operations � and � on the same set of elements are
said to be orthogonal if a � b x � y and a � b x � y cannot both happen
unless a x and b y� In other words� orthogonality is equivalent to the
existence of �row� and �column� functions R and C such that for all elements
a and b

R�a� b� � C�a� b� a

R�a� b� � C�a� b� b

�� CHAPTER �� SAMPLE APPLICATIONS

or equivalently� for all elements a and b

R�a � b� a � b� a

C�a � b� a � b� b

It is easily seen that in such a case R and C also determine an orthogonal pair
of quasigroups over the same base set�

A quasigroup operation � over a set S gives rise to six quasigroup operations
over S known as its conjugates� They may be denoted by subscripting as
follows� These equations are all equivalent to a � b c�

a ���� b c

a ���� c b

b ���� a c

b ���� c a

c ���� a b

c ���� b a

A quasigroup which is orthogonal to its �ijk�	conjugate is said to yield an
�ijk�	conjugate orthogonal Latin square or �ijk�	COLS� If idempotent� it is an
�ijk�	COILS� One of order v is an �ijk�	COLS�v� or �ijk�	COILS�v�� Interest
attaches to the question of whether there exists an �ijk�	COILS�v� in various
cases �see ���� for details��

FINDER has been used� for example� to search for �����	COILS�v�� In
setting up this problem� we should �rst represent it in terms of the row and
column functions above�

R�a� b� � C�a� b� a

R�a� b� � C�a� b� b

R�a � b� a � b� a

C�a � b� a � b� b

a � b c c � b a

Applying the last of these equations to the second� we get

b � C�a� b� R�a� b�

hence by substituting in the �rst equation

�b � C�a� b�� � C�a� b� a

This equation turns out to be su
cient to force all of the rest to hold� A useful
equivalent is

C��x � y � y�� x� y�

���� QUASIGROUP PROBLEMS ��

so we may enter the following FINDER input �le to generate� for example� the
�����	COILS����

sort int cardinality � �

setting verbosity stats� full

function �

cycle� int �� int print� none

o� int�int �� int �

row�bijective

column�bijective

no�priority

�

�� int�int �� int �

row�bijective

column�bijective

print� none

�

�

clause �

cycle	�
 � ��

cycle	x
 �� E�	x��
�

true �� cycle	x
� cycle	x��
�

cycle	x
 �� cycle	x��
�� � cycle	x
�

E�	y��
� x � y� cycle	x��
 � cycle	y��
 �� cycle	x
�

x �� x o � � x� cycle	x
�

cycle	x
 �� x o � � x���

x o x � x�

x � x � x�

y o 	x � y
 o 	x � y
 � x�

	x o y o y
 � x � y�

�

end

�� CHAPTER �� SAMPLE APPLICATIONS

��� FINDER in deduction

Some of the more interesting applications of FINDER have been in the �eld
of automated deduction� It is straightforward to use a model generator for
what Bledsoe ��� calls �reasonableness checking�� and indeed this technique is
extremely powerful in combination with many types of theorem prover� See
��� and ���� for discussions of how useful it can be� Less obvious� but also of
interest� are some applications to standard resolution	based theorem proving
systems which have been the subject of recent experiments with FINDER �see
������ The present section is an outline of those experiments and some of the
results�

The idea of semantic resolution has been around almost as long as resolution
itself� Brie�y� the biggest problem in searching for proofs of di
cult theorems
by uni�cation and resolution is that there are just too many ways for the
rules of inference to apply� so the thread of proof gets lost amid a tangle of
irrelevancies� Techniques for cutting down the number of inferences made�
without compromising completeness� are therefore of great value in automated
proof discovery� Now suppose we have a modelM and can easily tell whether a
given clause is true in it� A simple theorem states that if there is a derivation of
the empty clause from a set of clauses by uni�cation� resolution and factoring
then there is such a derivation in which no two clauses both true in M are
ever resolved together� Resolution guided by a model in accordance with this
fact is called semantic resolution�� Evidently� a model generating program
such as FINDER can be used to generate structures appropriate to resolution
proof searches by treating subsets of the clauses derived as the theories to be
satis�ed� The use of FINDER as a tester was devised for just this purpose�

The theorem prover used in the experiments was OTTER� a high perfor	
mance resolution based prover developed by Bill McCune� building on earlier
work by Lusk� Overbeek and others� at Argonne National Laboratory� OTTER
is highly engineered� coded in C and has been in the public domain for some
time� It is widely regarded as the leading prover in its classs� especially for
problems with an algebraic �avour as opposed� for instance� to problems in set
theory or in analysis� Because of its strength in the area of algebra� it seems
quite appropriate as a mate for FINDER� and because it is one of the fastest
provers around� any improvement in its abilities due to FINDER counts as a
genuine advance in the �eld�

In simple terms� the algorithm used by OTTER is a straightforward imple	
mentation of the set of support method� The clauses are divided into a usable
list and a set of support �that is� into two disjoint subsets�� At the start� the

�Sometimes this is called model resolution� semantic resolution being what is here re�
garded as semantic hyper�resolution whereby in each inference one parent the nucleus� is
true in the guiding model while all other parents and the hyper�resolvant are false�

���� FINDER IN DEDUCTION ��

set of support must be non	empty while the usable list may optionally have
clauses in it or not� No two clauses from the initial usable list are ever resolved
together� When FINDER is used along with OTTER� it is usually best to put
all input clauses in the set of support initially�

The main algorithm is then a loop�

while the set of support is not empty do

pick a given clause g from the set of support

move g to the usable list

generate all resolvents from the usable list

which use g as one of their parents

for each such resolvent r do

if r is the empty clause then

report success

stop

else if r is not subsumed by another clause then

add r to the set of support

end if

end for

end while

There are many optional settings and choices of rules of inference such as
hyper	resolution� unit	resulting resolution� paramodulation and demodulation�
OTTER also incorporates a sophisticated indexing technique allowing sub	
sumption tests and the like to be carried out reasonably quickly� The great
strength of OTTER is that it remembers all the �non	redundant� clauses it
has generated� thus avoiding much repetition of labour� Its weaknesses are
�rstly that its inference speed is low� as it performs only tens of uni�cation
and resolution steps per second instead of the thousands done by some other
provers� and that it runs blindly� making all possible inferences from each
clause without regard to their relevance to the problem in hand� The virtue
of using FINDER in conjunction with OTTER is that semantic information�
about the meaning of clauses in relation to the particular goal� can be brought
to bear� The eects are sometimes very good� sometimes modestly worthwhile
and sometimes worse than useless� This should be expected in automated de	
duction� where there are no magic bullets and where no method suits every
problem�

Naturally enough� OTTER�s performance is easiest to improve where it is
worst to begin with� Its authors point out that it is not the theorem prover of
choice for propositional problems or for problems with many non	Horn clauses�
One problem which combines these properties is the pigeonhole problem of
showing that n$ � pigeons will not �t into n holes� This can be expressed in
propositional form� OTTER was given a simple input �le for the � pigeons

�� CHAPTER �� SAMPLE APPLICATIONS

problem� using none of its special settings but simply asking it to �nd a proof
by binary resolution� After one hour �#� on a SPARC	� it was nowhere near
a solution� A simple FINDER input �le was prepared� containing only the
information that each of the propositional variables was a function symbol of
type bool � Using information from FINDER� the hybrid system was able to
produce a proof in �� seconds� �

For these theorem	proving purposes� FINDER is used as a tester� as de	
tailed in x������ Refer to that section for an account� The basic algorithm of
OTTER is extended to incorporate FINDER� giving a hybrid system which
has been implemented as SCOTT �Semantically Constrained Otter��

init�finder �Finderfile�

while the set of support is not empty do

pick a given clause g from the set of support

if is�true �g� then

mark g as �safe�

else

mark g as �unsafe�

end if

move g to the usable list

generate all resolvents from the usable list

which use g as one of their parents

and have at least one �unsafe� parent

for each such resolvent r do

if r is the empty clause then

report success

stop

else if r is not subsumed by another clause then

add r to the set of support

end if

end for

end while

The number of clauses to be treated by attempting to generate models� before
FINDER gives up the search for a better theory and starts behaving just as a
tester� is �xed with the setting test�after option in the FINDER input
�le� That �le is called Finderfile in the above schematic algorithm� Also
in FINDER�s input �le must be the function symbols used by OTTER in the
proof� and there may be clauses helping to direct FINDER to a good model�

�Lest it be thought that this is an outstanding success for the method� it should be noted
that by making full use of the set of support strategy OTTER can solve the problem in
around �� seconds� actually taking fewer given clauses than SCOTT� FINDER alone solves
the problem in about ��	 second� Indeed� it reproduces this solution during one of the calls
of is true from SCOTT� so the loss of semantic information by SCOTT is still quite serious�

���� FINDER IN DEDUCTION ��

This gives us a point at which domain	speci�c expert knowledge can be applied
to help with the proof search without actually cheating by dictating lemmas
to the prover�

For instance� one set of problems on which OTTER is very good comes
from the pure implicational fragment of propositional logic� *Lukasiewicz gave
a single axiom for the classical pure implication calculus�

��p�q��r�� ��r�p���s�p��

He thus provided some serious theorem	proving work in deriving a more usual
set of axioms from this one using detachment �modus ponens� only� The
following four are well known to su
ce�

p�p

p� �q�p�

��p�q��p��p

�p�q�� ��q�r���p�r��

Of these� the �rst three are not too di
cult to derive� but the fourth is a
genuine problem� OTTER can derive theorems by condensed detachment �de	
tachment with uni�cation from axioms instead of axiom schemes� by using
hyper	resolution instead of plain binary resolution� Unaided� it proves the
fourth theorem in around ��� minutes on a SPARC	�� deriving some ��� mil	
lion formulas� most of which are subsumed by things derived earlier� Just over
������ are kept �added to the set of support�� With FINDER to help� given
a little knowledge of what models for implicational logics look like� the time
is reduced to under an hour� the clauses generated to ��� million and the kept
clauses to under ������� That is� the improvement is roughly by a factor of
two� This may not seem dramatic� but recall that OTTER�s performance was
previously the best ever recorded by any theorem prover�
 A similar degree of
improvement is found on a range of similar problems �for example� on the other
three *Lukasiewicz problems and on related problems arising in many	valued
logic�� On at least one problem reported in ����� SCOTT was over ���� times
faster than the most �naturally� con�gured OTTER and still over �� times
faster when OTTER�s settings were hand	tuned to a high degree�

While the completeness of SCOTT for binary resolution is a simple con	
sequence of well known results� its completeness for condensed detachment
problems is an open question� It is clear that SCOTT is incomplete for hyper	
resolution in general�

There are other ways of using semantic information gleaned from small
models which do not threaten completeness� For instance� it can be used as

�This is no longer the case� as the prover MGTP�N ��
 now appears to hold the records
for this class of problems� OTTER is still very competitive� however�

�� CHAPTER �� SAMPLE APPLICATIONS

a heuristic to guide the choice of a given clause� If we worked with several
small models each of which makes most of the derived clauses true and the
goal false� then we could prefer given clauses which are false in as many of the
models as possible� on the grounds that they have better chances of implying
the goal� Preliminary experiments using just one model are rather encourag	
ing� OTTER selects �given� clauses by weight� lightest �rst� SCOTT can be
instructed to test each �kept� clause in its current model and to add something
to the weight of each true clause� The eect of this is to cause false clauses to
be given in preference to true ones� The value of the �something� to be added
has at present to be set by hand� This �false preference strategy� has some	
times given improvements of around two orders of magnitude in time taken to
solve hard problems� but performance depends quite signi�cantly on how much
extra weight is added to the true clauses� Research into this phenomenon is
continuing�

In Conclusion

Although FINDER ��� is a large advance on the earlier versions� it must still
be regarded as little more than a prototype� It is intended that numerous
additions will be made before it is released again� Most obviously

� Function symbols of arbitrary arity must be allowed� The present re	
striction to dyadic functions is a nonsense�

� There should be a facility to de�ne functions in terms of each other�
De�nitions need not be merely abbreviatory� such functions of argument
x as �the sum of the f�x� y� such that P �x� y�� are easy to work with
and should be made available� It should also be possible to de�ne such
things as the transitive closure of a dyadic function� and the inverse of a
bijection�

� Many problems would be easier to represent if containment and other
Boolean relations were allowed among the sorts� This should be incor	
porated in future releases of FINDER�

None of these improvements is especially di
cult to code� but none is exactly
trivial either�

Much more interesting extensions to FINDER�s capabilities come in the
form of several research projects� In outline these are as follows�

� The current FINDER and its future releases will parallelize very neatly�
The program already has the capability to divide its search space into
several disjoint subspaces� and there is no reason why these should not be
searched simultaneously by parallel processes� Any process which �nishes
its subspace can ask for another� causing some active process to divide its
task into new fragments� thus keeping the load well balanced without any
particular programming eort� A parallel version of FINDER is under
development and should be available soon�

� FINDER is limited to discrete problems� where each variable takes one
of a �nite list of possible values� An interesting extension would be to

��

�� CHAPTER �� SAMPLE APPLICATIONS

allow �oating point values instead� taking FINDER in the direction of
scienti�c problems� The values would have to be discretized� of course�
but various techniques for numerical solution by successive approxima	
tion seem fairly obvious� There is a possibility here of a new kind of
solution to a new kind of problem� one involving perhaps hundreds of
variables related in complicated ways by thousands of constraints� Many
problems in the social and biological sciences would seem to be like this�
Searching for stable states of an economic system or of a mix of species
in a habitat� or for near	optimal production schedules in a factory� or
synchronization patterns of tra
c lights in a city centre come to mind
immediately as examples� These problems cannot usefully be formulated
for FINDER as it is� but they are essentially constraint satisfaction prob	
lems in many variables which do not require solutions accurate to ten
signi�cant �gures�

� As these notes have been at pains to stress� the search algorithm used
by FINDER is not supposed to be the best of which mankind is capable�
Entirely dierent methods� such as arc consistency and path consistency
algorithms� seem to be preferable to backtracking in the case of binary
constraints� It would be quite feasible� and interesting� to use them to
supplement of FINDER�s current method� Also interesting would be
a high	performance implementation of Pritchard�s SCD algorithm �see
���� for a brief account�� This performs as tree search� as does FINDER�s
algorithm� but one whose branch points correspond not to the choice of
values for a cell but to the choice of a refutation from the list of those
known� It can easily accommodate secondary constraints �see x�� though
to the best of my knowledge it has never been implemented in such a
way as to take advantage of them� There is fundamental research of an
empirical sort to be done here� The best of all worlds might be to give
FINDER many dierent search modules� using dierent algorithms� and
either choose the one that looks best for a given problem or let them
all run� perhaps in parallel� in competition or in co	operation with each
other�

� The application of FINDER to theorem proving outlined in x��� is only
one of many such potential uses for the program� The earlier program
KRIPKE� as described in ����� made heavy and essential use of models
of the kind produced by FINDER to achieve worthwhile results in auto	
mated deduction for non	classical logic� Much more work along similar
lines remains to be done� The research on semantic resolution using
FINDER or a similar program to generate the models dynamically is
also capable of considerable extension� It would be interesting to see
model generators applied to planning systems and the like� and of course
some real life case studies� perhaps from timetabling or other scheduling

���� FINDER IN DEDUCTION ��

problem areas� would be of great value�

The future� then� is non	empty� For the present� its users are urged to treat
FINDER as experimental software� Copying and modi�cation of the program�
within the copyright provisions� are not only allowed but encouraged� New
applications� suggestions for extension or improvement� experimental results
pertaining to the present program and constructive criticisms are always wel	
come� and of course if you feel like telling all your friends how absolutely
splendid FINDER is� how its author ought to have tenure and so forth� please
feel no inhibitions�

�� CHAPTER �� SAMPLE APPLICATIONS

Bibliography

��� M� Ballantyne " W� Bledsoe�
On Generating and Using Examples in Proof Discovery�
Machine Intelligence� �� ������� pp� �%���

��� F� Bennett�
Quasigroup Identities and Mendelsohn Designs�
Canadian Journal of Mathematics� �� ������� pp� ���%����

��� W� Bledsoe " R� Hodges�
A Survey of Automated Deduction�
H�E� Shrobe �ed�� Exploring Articial Intelligence�
Morgan Kaufmann� San Mateo CA� ����

��� R� Caferra " N� Zabel�
Extending Resolution for Model Construction�
Proceedings of Logics in AI �European Workshop JELIA �����
Springer	Verlag ����� LNAI ��� �J� van Eijck Ed��� pp����	����

��� A� Duncan " A� Gresty�
Logic Problems ���
Quality Puzzle Magazines� British European Associated Publishers�
London� �����

��� Esprit �����Medlar
Mechanizing Deduction in the Logics of Practical Reasoning
Progress Report PPR�� Imperial College� London� �����

��� M� Fujita� J� Slaney " F� Bennett�
Automatic Generation of Some Results in Finite Algebra�
Proceedings of the �	th International Conference on Articial
Intelligence� ����� pp� ��%���

��� R� Haralick " G� Elliott�
Increasing Tree Search E�ciency for Constraint Satisfaction Problems�
Articial Intelligence� �� ������� pp� ���%����

��

�� BIBLIOGRAPHY

��� R� Hasegawa� M� Koshimura " H� Fujita�
MGTP� A Parallel Theorem Prover Based on Lazy Model Generation�
Proceedings of the ��th International Conference on
Automated Deduction� ����� pp����%���

���� R� James� M� Newman " E� O�Brien�
The Groups of Order ����
Journal of Algebra� ��� ������� pp� ���%����

���� W� McCune�
OTTER ��� User	s Guide�
Technical Report ANL	����� Argonne National Laboratory� Argonne
Illinois� �����

���� B� Nadel�
Constraint Satisfaction Algorithms�
Computational Intelligence� � ������� pp� ���%����

���� P� Pritchard�
Algorithms for Finding Matrix Models of Propositional Calculi�
Journal of Automated Reasoning� � ������� pp� ���%����

���� G� Sang Ajang " F� Teer�
An E�cient Algorithm for Detection of Combined Occurrences�
Information Processing Letters� � ������� p� ���%����

���� J� Schumann " R� Letz�
PARTHEO� A High
Performance Theorem Prover�
Proceedings of the ��th International Conference on
Automated Deduction� ����� pp� ��%���

���� J� Slaney�
SCOTT� A Model
Guided Theorem Prover�
Proceedings of the �	th International Conference on Articial
Intelligence� ����� pp����%����

���� J� Slaney " G� Meglicki�
MaGIC ���� Notes and Guide�
Technical report TR	ARP	����� Automated Reasoning Project�
Australian National University� Canberra� �����

���� J� Slaney� M� Stickel " M� Fujita�
Automated Reasoning and Exhaustive Search� Quasigroup Existence

Problems�
forthcoming�

BIBLIOGRAPHY ��

���� R� Sosi+c " J� Gu�
��������� Queens in Under One Minute�
SIGART Bulletin � ������� pp� ��%���

���� P� Thistlewaite� M� McRobbie " R� Meyer�
Automated Theorem Proving in Non�Classical Logics�
Pitman� London� �����

���� L� Wos� R� Overbeek� E� Lusk " J� Boyle�
Automated Reasoning� Introduction and Applications�
Prentice	Hall� New Jersey� �����

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

