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A connection is developed between polynomials invariant under abelian per-
mutation of their variables and minimal zero sequences in a finite abelian
group. This connection is exploited to count the number of minimal invariant
polynomials for various abelian groups.

1. INTRODUCTION

Invariant theory has a long and beautiful history, with early work by
Hilbert [9] and Noether [12]. Classically, it is concerned with with polyno-
mials over R or C, invariant over certain permutations of its variables. For
an introduction to this subject, see any of [4, 11, 13].

Let G be a finite abelian group, assumed without loss to be G = Zn1 ⊕
Zn2 ⊕· · ·⊕Znk

. We fix a polynomial P in the variables xg, for each g ∈ G.
We let h ∈ G act on the variables via h : xg → xh+g, and therefore on
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P in the natural way. Our goal is to find and count P invariant under
all |G| such actions, and minimal in the ring of polynomials. It is enough
to find minimal P invariant under the k actions1 e1 = (−1, 0, . . . , 0), e2 =
(0,−1, . . . , 0), . . . , ek = (0, 0, . . . ,−1). This extends the work of Strom [14],
who focused on the case k = 1.

Switching gears, we now define a minimal zero sequence in a finite abelian
group G. A sequence is a multiset of elements of G. A zero sequence is
a multiset whose sum is zero in G. A minimal zero sequence is a zero
sequence minimal with respect to set inclusion. For example, four zero
sequences in the group Z7 are {4, 3}, {6, 6, 2}, {0}, {4, 4, 3, 2, 1}. However,
only the first three examples are minimal zero sequences.

Our main result connects these two questions.

Theorem 1.1. The number of minimal polynomials P invariant under
G is equal to the number of minimal zero sequences of G.

Minimal zero sequences of finite abelian groups have been extensively
studied (for example, [2, 7, 8, 10, 15]). In [6] is described an efficient al-
gorithm for counting minimal zero sequences for a finite abelian group.
Applying this algorithm we are able to extend the table found in [14] sub-
stantially. The results are found in Table 1.2

Space does not permit us to include much more of this table; it is
available (together with the software used to generate it) up to Z64 at
http://www.trinity.edu/vadim/research.html
However, we can report that the rightmost column that counts the total
number of minimal invariant polynomials (which ends in 974, 1494) contin-
ues as 2135, 3913, 4038, 7936, 8247, 12967, 17476, 29162, 28065, 49609, 59358,
83420, 97243, 164967, 152548, . . . .

Also, we can report the total number of minimal invariant polynomials
for some groups of the form Zm ⊕ Zn in Table 2.

2. PROOF OF MAIN THEOREM

Our general approach is to change variables so that all minimal invariant
polynomials under the new variables will become minimal invariant mono-
mials. After this change, the group action on the original variables acts on
the new variables as scalar multiplication. This makes it easier to identify
and count the minimal invariant monomials, and gives a correspondence
between minimal invariant monomials and minimal zero sequences.

1The actions are chosen to be the negatives of the standard basis for technical reasons,
to be evident later. These elements generate G.

2These results, through other methods, were also found by A. Elashvili and V.
Tsiskaridze [5]. Their unpublished data matches ours, and equally continues to Z64.
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TABLE 1.

Number of minimal invariant polynomials, by degree.

G 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Total

Z1 1 1

Z2 1 1 2

Z3 1 1 2 4

Z4 1 2 2 2 7

Z5 1 2 4 4 4 15

Z6 1 3 6 6 2 2 20

Z7 1 3 8 12 12 6 6 48

Z8 1 4 10 18 16 8 4 4 65

Z9 1 4 14 26 32 18 12 6 6 119

Z10 1 5 16 36 48 32 12 8 4 4 166

Z11 1 5 20 50 82 70 50 30 20 10 10 348

Z12 1 6 24 64 104 84 36 20 12 8 4 4 367

Z13 1 6 28 84 168 180 132 84 60 36 24 12 12 827

Z14 1 7 32 104 216 242 162 96 42 30 18 12 6 6 974

Z15 1 7 38 130 306 388 264 120 88 56 40 24 16 8 8 1494

TABLE 2.

Number of minimal invariant polynomials for G = Zm ⊕ Zn.

Z2 Z3 Z4 Z5 Z6 Z7

Z2 5 20 39 166 253 974

Z3 20 69 367 1494 2642 12967

Z4 39 367 1107 8247 19463 97243

Z5 166 1494 8247 31029 164967 508162

Z6 253 2642 19463 164967 390861 4694718

Z7 974 12967 97243 508162 4694718 9540473

For all m ∈ N, we set εm = e
2π
√−1
m , where e is the usual transcendental

2.718 . . .. We will need two well-known (for example, [1] or [3]) properties
of these constants εm.

Proposition 2.1. Let εm be as above. Then

1.(εm)k = 1 if and only if m divides k.

2.Let j ∈ Z. Then
m−1∑
k=0

(εm)jk =
{

m, if m divides j;
0, otherwise.
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Recall that G = Zn1 ⊕ Zn2 ⊕ · · · ⊕ Znk
. Henceforth, for g ∈ G, we use

(g)i ∈ Z to denote the projection of g onto the ith coordinate. For each
h ∈ G, we define a new variable yh, a linear combination of the xg’s, as

yh =
∑

g∈G

(
k∏

i=1

(εni
)(g)i(h)i

)
xg

Naturally, we can write the xg’s as linear combinations of the yh’s, as
below.

Lemma 2.1. For all g ∈ G we have

xg =
1
|G|

∑

h∈G




k∏

j=1

(εnj
)(h)j(nj−(g)j)


 yh

Proof. We substitute for yh into the right hand side to get:

1
|G|

∑
h∈G

(
k∏

j=1

(εnj )
(h)j(nj−(g)j)

)
∑

g′∈G

(
k∏

i=1

(εni)
(g′)i(h)i

)
xg′ =

1
|G|

∑
g′∈G

xg′
∑

h∈G

(
k∏

i=1

(εni)
(h)ini

)(
k∏

i=1

(εni)
(h)i((g

′)i−(g)i)

)
=

1
|G|

∑
g′∈G

xg′
∑

h∈G

(
k∏

i=1

(εni)
(h)i((g

′)i−(g)i)

)
= 1

|G|
∑

g′∈G

xg′

{ |G|, if g = g′;
0, otherwise.

}

The main reason for this change of variables is that the k actions per-
muting the variables act on the new variables as scalar multiplication.

Lemma 2.2. ej : yh → (εnj )
(h)j yh.

Proof. We have ej ◦ yh =
∑

g∈G

(
k∏

i=1

(εni)
(g)i(h)i

)
xg+ej =

=
∑

(g+ej)∈G

(
k∏

i=1

(εni)
(g+ej−ej)i(h)i

)
xg+ej =

∑
g∈G

(
k∏

i=1

(εni)
(g−ej)i(h)i

)
xg =

= yh(εnj )
−(ej)j(h)j = yh(εnj )

(h)j .

An immediate consequence of the above is that ej : ya
h → (εnj )

a(h)j ya
h.

More generally, we can calculate the effect of ej on an arbitrary monomial.

Lemma 2.3. For constant α, ej : α
∏

h∈G

yah

h →
(

(εnj )
∑

h∈G

ah(h)j
)

α
∏

h∈G

yah

h .
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Consider an invariant polynomial P in the xg’s. Apply the invertible
linear change of variables to get a polynomial Q in the yh’s. We must
also have Q invariant under the k actions. Furthermore, P is minimal if
and only if Q is a monomial such that any nonconstant monomial properly
dividing Q is not invariant.

By the previous discussion, an invariant polynomial P must correspond
to a minimal monomial Q. Furthermore, since Q is invariant, we must
have

∑
h∈G

ah(h)j ≡ 0 (mod nj) for each j. Combining these j requirements,

we get
∑

h∈G

ahh = 0, where 0 is the zero element in G. Therefore, we can

consider the ah as multiplicities for each element h ∈ G, and since the
sum is zero we have a zero sequence. A nonconstant monomial Q′ properly
dividing Q would have corresponding a′h, with a′h ≤ ah and not all equal. In
that case, this Q′ would correspond to a zero sequence properly contained
in the previous zero sequence.
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