
�� Preliminaries�

De�nition ������ A game is a pair �S� ��� where S is a set and � is a binary relation on
S that is well�founded� The elements of S are called the con�gurations of the game� and
the relation � is called the evolution relation�

Here� �well�founded� means that for every � �� A � S there exists a � A such that x�a
holds for no x � A� Using the axiom of dependent choices� this is equivalent to saying that
there is no �in	nite� sequence �an� of elements of S such that an���an for every natural
number n� The relation a�b reads �con	guration a can be reached from con	guration b��
and the well�foundedness means that any play must stop�

De�nition ������ A pointed game is a triple �S� �� x�� where �S� �� is a game and x� is
an element of S called the initial con�guration� A play in a pointed game �S� �� x�� is a
�necessarily �nite� sequence �an� that starts with the initial con�guration a� � x� and
obeys the rules of the game an���an for every n� The length of the play is the number
of terms in the sequence minus one �that is� the index of the last term� or the number of
moves�� We say that a play is won by player A i� its length is odd� won by player B i� its
length is even�

We can consider a pointed game as a game by just forgetting about the initial con	g�
uration
 we then speak of the underlying game of a pointed game� We can also extend a
game S to a pointed game by adding a new con	guration � and extending the evolution
relation by decreeing that a�� for every a � S�

De�nition ������ An isomorphism �S� ��� �S�� ��� of games is a bijective map f 
S � S�

such that a�b i� f�a��f�b�� An isomorphism of pointed games is an isomorphism of the
underlying games that preserves the initial con�guration�

Actually� isomorphism is a too strong notion� and it is not very interesting� We shall
later on de	ne for pointed games a more interesting notion� that of equivalence�

De�nition ������ If �S� �� is a game� and x � S is a con�guration of S� then we de�ne
the extension �or the extent� of x as the set ext�x� � fy � S 
 y�xg of con�gurations that
can be reached from x� A game �S� �� is said to be extensional i� two con�gurations with
the same extension are equal�

Theorem ���	
 well�founded induction�� Let �S� �� be a game� E � fext�x� 
 x � Sg
the set of the extensions of the elements of S� and A a set or a class� Let G
S�AE � A be
a function� Then there exists a unique function F 
S � A such that F �x� � G�x� F j ext�x��
for each x � S� In other words� it is permissible to de�ne a function on S in terms not
only of x but also of the �	previously calculated
� values of F on the extension of x�

We now use this theorem to de	ne a few important functions by well�founded induc�
tion


De�nition ������ Given a game �S� ��� we de�ne�
�i� The rank of x � S as the smallest ordinal number greater than the rank of every y � S

such that y�x�
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�ii� The Grundy function of x � S as the smallest ordinal number not equal to the Grundy
function of any y � S such that y�x�

�iii� The equivalent set of x � S as the set whose elements are the equivalent sets of the
y � S such that y�x�

We correspondingly de�ne the rank �resp� the Grundy function� resp� the equivalent
set� of a pointed game as the rank �resp� the Grundy function� resp� the equivalent set� of
the initial con�guration�

De�nition ���
�� Two pointed games are said to be equivalent i� their equivalent sets
are equal� A property on games is said to be invariant under equivalence i� any game
equivalent to a game which has the property also has the property �similarily for a function
on games��

The rank of a pointed game� and its Grundy function �and of course its equivalent
set� are invariant under equivalence� since they are de	ned only in terms of the extension
of x�

De�nition ������ Let X be a set� Then we de�ne a pointed game �S� �� x��� called the
game of X in the following way� S is the transitive closure of fXg �that is� S is the set
consisting of X� of the elements of X� of the elements of the elements of X� and so on�� �
is the relation belonging relation � restricted to S� and x� � X�

Proposition ������ Let X be a set� Then the game of X is� up to isomorphism� the
unique extensional pointed game that has X for equivalent set� In particular� equivalent
extensional games are isomorphic�

We shall therefore identify a pointed game with its equivalent set� and a set with its
game� We then have the de	nition of the rank �resp� the Grundy function� of a set as the
smallest ordinal that is greater than �resp� not equal to� the rank �resp� Grundy function�
of any element of the set�

Proposition ������� Let � be an ordinal� Then the rank and the Grundy function of �
are both equal to ��

� Obvious by induction on �� since the elements of � are precisely the ordinals less
than �� �

�



�� Plays and winning strategies�

De�nition ������ Let �S� �� be a game� Then a terminal con�guration is a con�guration x
with empty extent� in other words such that there exists no y � S with y�x� A con�guration
which is not terminal is called nonterminal�

De�nition ������ Let �S� �� be a game� Then a strategy is a function f 
S � S � f�g
�where �� read as 	forfeit
� is not an element in S� such that for every x � S either
f�x� � � or f�x��x� If �S� �� x�� is a pointed game and f� g are strategies of S� then we
de�ne a play hf j gi in the following way�
� a� � x��
� If an is de�ned and n is even� then we let an�� � f�an� except if f�an� � � in which
case an�� is not de�ned�

� If an is de�ned and n is odd� then we let an�� � g�an� except if g�an� � � in which
case an�� is not de�ned�
We say that f is a winning strategy for player A i� the play hf j gi is won by player A

for every strategy g� We say that g is a winning strategy for player B i� the play hf j gi is
won by player B for every strategy f � �Recall that the play is said to be won by player A
or B according as its length is respectively odd or even��

De�nition ������ If �S� �� is a game� we de�ne the kernel of S as the set of con�gurations
x � S whose Grundy function is 
� Correspondingly� a pointed game �S� �� x�� is said to
be in the kernel i� its initial con�guration x� is in the kernel of �S� ��� And a set is said
to be in the kernel i� its �pointed� game is�

Lemma ������ Let �S� �� be a game� Then we have x � N i� extx 	 N � �� In other
words� a con�guration is in the kernel i� it leads only to con�gurations that are not in the
kernel� Correspondingly� a set is in the kernel i� none of its elements are �and this de�nes
	the kernel
��

� If x � N then the Grundy function of x is 
� and therefore any y in the extent of
x has Grundy function greater than 
� which means that it is not in the kernel� so that
extx 	 N � �� Conversely� if extx 	 N � �� then any y in the extent of x has Grundy
function greater than 
� so that the smallest ordinal which is not the Grundy function of
a y � extx is 
� and therefore x is in the kernel� �

Theorem ���	�� Let �S� �� x�� be a pointed game� and N its kernel� Let f be a strategy
for S such that f�x� � N whenever x �� N � Then f is a winning strategy for A �resp� for
B� according as x� �� N �resp� x� � N�� Moreover� there exists such an f � Therefore� in
any pointed game� at least one player has a winning strategy� Furthermore� both cannot
have a winning strategy�

� Assume x� �� N � and let g be any strategy� Put �an� � hf j gi� We prove by
induction that an �� N i� n is even� Indeed� we have a� � x� �� N � If n is even and
an is de	ned� then an �� N � and therefore an�� � f�an� is de	ned �is not forfeit�� and
an�� � N � On the other hand� if n is odd and an is de	ned� then an � N � and therefore
either g�an� � � and we are done� or else an�� � g�an��an� in which case an�� �� N by
lemma ������ This concludes the induction� Now consider the last n such that an is de	ned
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�the length of the play� 
 then n cannot be even for else an �� N and f�an� � N �is not
forfeit�� So n is odd and the play is won by player A� This shows that f is a winning
strategy for player A� The situation where x� � N is exactly similar�

To show that such an f exists� we let f�x� � � if x � N � and we have 	nished when
we have proven that for any x �� N there exists y such that y�x and y � N 
 but this
is a consequence of the lemma ������ Finally� if both players A and B had a winning
strategy� call them f and g� then hf j gi would be won both by player A and by player B�
a contradiction� �

�� Operations on games�

De�nition ������ Let �S� �� and �S�� ��� be two games� Then we de�ne the product
�resp� the normal product� resp� the sum� of �S� �� and �S�� ��� as the game having the
con�guration space S � S� and the relation ��� where �y� y������x� x�� i� y�x and �resp�
inclusive or� resp� exclusive or� y���x�� We de�ne the product �resp� the normal product�
resp� the sum� of pointed games by taking the initial con�guration to be �x�� x

�
��� where

x� and x�� are the initial con�gurations of the pointed games one started with�

In other words� to play the product game� each player plays exactly one move on each
of the two games� To play the normal product game� each player plays one move on the
game of his choice� or� if he wishes� one move on each� To play the sum game� each player
plays one move on the game of his choice �but not both��

Note that these operations are compatible with isomorphism of games� isomorphism
of pointed games� and equivalence of pointed games� As concerns the latter� in fact


De�nition �������� Let X and X � be two sets� Then we de�ne their game product �resp�
their game normal product� resp� their game sum� as the set� written X 
X � �resp� X yX ��
resp� X �X �� whose elements are precisely the x 
 x� with x � X and x� � X � �resp� the
xyX �� the X yx� and the xyx� with x � X and x� � X �� resp� the xyX � with x � X and the
X y x� with x� � X ��� In other words� it is the equivalent set of the product �resp� normal
product� resp� sum� of the games of X and X ��

Also note that the operations we de	ned on �pointed� games are commutative and
associative up to isomorphism� hence in particular up to equivalence� and therefore the
operations we de	ned on sets are commutative and associative �up to nothing���

De�nition ������ If ��� � � � � �k are ordinals� we de�ne the game of Nim starting from
the con�guration ���� � � � � �k� as the game whose space of con�gurations is the set of
���� � � � � �k� where each �i is less or equal to �i� and where the evolution relation is given
as follows� ���� � � � � �k������ � � � � �k� i� �i � �i for all i except exactly one for which �i 	 �i�
In other words� the game of Nim starting from the con�guration ���� � � � � �k� is the sum
of the games of the ordinals ��� � � � � �k� Its equivalent set is therefore �� � � � � � �k�

De�nition ������ We de�ne ��� � � ���k �where ��� � � � � �k are ordinals� as the Grundy
function of the game of Nim �� � � � � ��k� In other words� ���� is inductively de�ned as
the smallest ordinal not equal to ���� for � 	 �� nor to ���� for �� 	 ���

Proposition ������ The operation � on ordinals is commutative and associative �in
the sense that �� � � �������� � � ����k � ��� � � ���k � ����� � ����k����k� � � ���� The
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ordinal 
 acts as a unit element� For any ordinal � we have ��� � 
� For any ordinals
�� �� there exists a unique ordinal � such that ��� � ��

� Commutativity and associativity come from the facts that corresponding properties
on the sum of games� That 
 is a unit element is trivial� We then prove by induction on �
that ��� � 
� Indeed� assume this is true for � 	 �� Then for any � 	 �� the ordinal ���
must be di�erent from ��� � 
� and so also ��� �� 
� which then shows that ��� � 
�
This concludes the induction� Finally� if �� � are ordinals� we have ������� � �� and
conversely� if ��� � � then � � ������� � ���� which proves the last statement� �

In other words� the operation � makes the class of all ordinals into an F� �vector space�

Theorem ���	�� Let X and X � be two sets� and � and �� their Grundy functions� Then
the Grundy function of the game sum X �X � of X and X � is �����

� By well�founded induction� we can assume this is true with either X or X � replaced
by one its elements� We must now show two things� First� if x � X �resp� if x� � X �� then
the Grundy function of x � X � �resp� of X � x�� is not equal to ����� Indeed� if we let
� �� � �resp� �� �� ��� be the Grundy function of x �resp� x�� then that of x�X � �resp� of
X � x�� is ���� �resp� ����� by the induction hypothesis� and by proposition ����� �the
last statement�� this cannot be equal to ����� Second� if � 	 ����� we must show that
there exists x � X such that � is the Grundy function of x � X �� or that there exists
x� � X � such that � is the Grundy function of X � x�� But if � 	 ����� then by the
de	nition of ���� there exists � 	 � such that � � ���� or �� 	 �� such that � � �����
In the 	rst case� we can 	nd �by the de	nition of the Grundy function� an x � X whose
Grundy funciton is � and then the Grundy function of x�X �� by the induction hypothesis�
is ����� hence the result� The second case is similar� This concludes the proof� �

Note in particular that the Grundy function of X �X � depends only on the Grundy
functions of X and X �� However� whether X � X � is in the kernel �that is� whether its
Grundy function is zero� does not depend only on whether X and X � are�

Criterion ������ �Recall that a set S is called transitive when any element of an element
of S is an element of S�� Suppose that S is transitive and so is every element of S� then
S is an ordinal� Equivalently� if �S� �� x�� is a pointed game in which the relation � is
transitive� then its equivalent set is an ordinal�

Proposition ���
�� If ��� � � � � �k are ordinals� then their game normal product is an
ordinal�

� This is a simple consequence of criterion ������ �

Recall ������ We de�ne �� y � � � y �k �where ��� � � � � �k are ordinals� as the game normal
product of ��� � � � � �k� In other words� � y �� is inductively de�ned as the smallest ordinal
not equal to � y��� nor to � y��� nor to � y�� for � 	 � and �� 	 ��� More generally� when
X�� � � � � Xk are sets� we will write X� y � � � yXk for their game normal product�

Proposition ������ The operation y on ordinals is commutative and associative �in the
sense that �� � � ��� y��� y � � �� y�k � �� y � � � y�k � �� y �� � � y ��k�� y�k� � � ���� The ordinal

�




 acts as a unit element� If �� �� and �� �� are ordinals and we have � 
 � and �� 
 ��

with one at least of these inequalities strict� then � y �� 	 � y ���

� Commutativity and associativity come from the facts that corresponding properties
on the norma products of games� That 
 is a unit element is trivial� The last statement is
an immediate consequence of the de	nition �� y �� is precisely the set of such � y ���� �

In a way� the y operation is a much better kind of sum on ordinals than the ordinary
sum�

We might hope for a result analogous to theorem ������ unfortunately� the Grundy
function of X yX � does not depend only on the Grundy functions of X and X �� However�
we have the following result 


Proposition ������� Let X and X � be sets� Then X y X � is in the kernel i� X and X �

both are�

� By well�founded induction� If X and X � are in the kernel� then for any element x
of X and x� of X �� the sets x and x� are not in the kernel� and therefore �by induction�
neither are any of the sets x yX �� X y x�� x y x�� So no element of X yX � is in the kernel�
and X yX � is in the kernel� On the other hand� if X is not in the kernel� there is an x � X

that is in the kernel� and then either X � is in the kernel� in which case x y X � is too �by
induction�� or else there is x� � X � that is in the kernel� in which case x y x� is too �by
induction�� and so in any case there is an element of X yX � that is in the kernel� so that
X yX � is not� �

The game product� on the other hand� is much less interesting� Though it is true that
� 
 � is an ordinal when � and � are ordinals � in fact� it is precisely the smaller of �
and �� yet there is no �known� simple way of calculating either the Grundy function or
the kernel of the game product of two sets�
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�� The Conway product�

De�nition ������ Let X�X � be two sets� Then we de�ne their Conway product X �X �

by well�founded induction in the following way� X �X � is the set whose elements are the
�x�X ��� �X � x��� �x�x�� with x � X and x� � X �� If ��� � � � � �k are ordinals� then we
de�ne ��� � � ���k as the Grundy function of the set �� � � � � � �k� In other words� ����

is the smallest ordinal not equal to �������������������� for all � 	 � and �� 	 ���

Proposition ������ The operation � on ordinals is commutative and associative �in the
sense that �� � � �������� � � ����k � ��� � � ���k � ����� � ����k����k� � � ���� The ordi�
nal � acts as a unit element� and the ordinal 
 is absorbing� The operation � is distributive
over the operation �� We have ���� � 
 i� � � 
 or �� � 
�

� Commutativity and associativity come from the facts that corresponding properties
on the sum of games� That 
�� � 
 for any � is trivial from the de	nition� We prove
by induction on � that ��� � �
 by de	nition� ��� is the smallest ordinal not equal to

�������
��� that is� �� for all � 	 �� so it is � which concludes the induction�

We now note that if � �� � �not necessarily � 	 �� and �� �� �� then we have
���� �� �������������������� �indeed� this is part of the de	nition if � 	 � and
�� 	 ��� but since in this expression � and � play symmetric roles �because of the properties
we already know of the operation ��� and similarily for �� and ��� this is true in all cases��

Let us now prove distributivity
 we prove ���������� � ��������������� and by
induction we may suppose that this is true if any one of �� ��� ��� is replaced by a smaller
ordinal� Now if � 	 ���������� then there exist � 	 � and �� 	 ������ such that � �
��������������������������� Now because �� 	 ������� there exists� say� a �� 	 �� such
that �� � ������� Then� using the induction hypothesis to expand the expression of �� and
also the fact that ��������������� � 
� we see that � � �����������������������������
Now since � 	 � and �� 	 ��� we must have �������������������� �� ������� and
by regularity of the operation � we conclude that � �� �������������� �for any � 	

������������ Conversely� suppose � 	 ��������������� Then we have� say � � ����������
for some ordinal �� 	 ����� which can then be written �������������������� for some
� 	 � and �� 	 ��� Now by letting �� � ������� we see �this is the reverse calculation as
previously� that � � ��������������������������� Since � �� � and �� �� ������� by the
previous comment� we have � �� ����������� So we have proven that any ordinal less than
one of the two ordinals ���������� and �������������� cannot be equal to the other one
� evidently this shows that the two ordinals in question are equal� and this concludes the
induction and the proof of distributivity�

If � � 
 or �� � 
 then we already know that ���� � 
� Conversely� if � 
 
 and
�� 
 
 then ���� must be not equal to �
��������
���
�
� � 
� �

Theorem ������ For every ordinal � 
 
� there exists a unique ordinal � such that
��� � �� In other words� the operations � and � make the class of all ordinals into a
�eld of characteristic ��

� Suppose on the contrary that there is an ordinal other than zero which has no
��inverse� and let � be the smallest such ordinal� Now let � be an ordinal such that the
set of all ordinals less than � �which is none other than � itself�� contains � �and therefore
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any ordinal � 
 ��� contains the ��inverse of every ordinal 
 	 � 	 �� and is closed under
the two operations � and �� Such an ordinal � exists
 indeed� it can be constructed as
follows� Let �� be the least upper bound of � and the ��inverse of every ordinal 
 	 � 	 ��
let �� be the least upper bound of the ���� and the ���� for �� �� 	 ��� and �� be the least
upper bound of the ���� and the ���� for �� �� 	 ��� and so on� Then the limit �the least
upper bound� of the nondecreasing sequence ��� ��� � � � of ordinals is the desired ordinal ��

Now if 
 	 � 	 � then there exists an ordinal � 	 � such that ��� � �� I claim that
��� � �� Indeed� were this not the case� we would have � � ������� 	 �� since ��� 	 �

and � 	 �� and this is a contradiction� Now for any ordinal �� 	 �� we have ���� 	 �

and ���� 	 �� therefore ������������� 	 �� and therefore ������������������� � �

�because otherwise we would have ��� � ������������������������������������� 	
�� and we have proven the contrary�� In particular� we have shown that for 
 	 � 	 �

and �� 	 � we have ������������������� �� �� But on the other hand if � � 
� this is
also true because � is supposed to have no ��inverse� Hence this is true for all � 	 � and
�� 	 �� By de	nition of ���� this shows that ��� 
 �� But since ��� cannot be zero�
we have ��� � �� a contradiction to the fact that � was reputed to have no ��inverse� �

We shall write ��i for the ordinal �� � � ���� with � appearing i times �here� i is a
natural number� and� of course� we put ��� � ��� We also call ���i the ��inverse of ��i�

Theorem ������ For every ordinal numbers ��� � � � � �n�� �where n � �� there exists
an ordinal � such that �������� � � ���n����

��n������n � 
� In other words� the
operations � and � make the class of all ordinals into an algebraically closed �eld of
characteristic ��

� Call an ordinal � �algebraically stable� i� it is closed under the operations �� �
and taking the inverse� and� moreover� whenever ��� � � � � �n�� 	 � and � are such that
�������� � � ����n � 
 then necessarily � 	 �� In other words� � is a sub	eld of the
class of ordinals that is relatively algebraically closed� Now note that for any ordinal �
there is an algebraically stable ordinal � such that � 	 �� The reasoning is similar to that
used in theorem �����
 start with �� � � � �� and call �n�� the least upper bound of all
the ����� of all ����� of all ����� with �� �� 	 �n� and of all roots of all algebraic equations
with all coe�cients 	 �n� and take for � the least upper bound of the �n �this makes sense
since an algebraic equation has only 	nitely many solutions��

Now consider �������� � � ����n � 
 an algebraic equation which we want to solve�
and let � be an algebraically stable ordinal greater than all the �i� Then we must have
�������� � � ����n �� 
� for otherwise � 	 � �because � is algebraically stable�� a
contradiction� Then by de	nition of �� there exists an i and a � 	 �i��

�i such that
��� � � ���� � � ����n � 
� Suppose for the moment that i �� n� Now since � 	 �i��

�i�
by the de	nition of �� there exist � 	 �i and �

� 	 ��i such that � � ����i��i��
�������

Then keep using the de	nition of �� starting with �� 	 ��i this time� and we 	nally 	nd
that � can be written as a polynomial in � with coe�cients 	 �� and therefore that 
 can
be written as a polynomial in � with coe�cients 	 �� and leading coe�cient �� But this
is absurd�

There remains the case where i � n� In other words� there exists � 	 ��n such that
��� � � ���n����

��n����� � 
� But by using repeatedly the de	nition of � on � 	 ��n�

�



we 	nd that there are ��� � � � � �n 	 � such that � � ���� � � ���n���
n��� � � ������ � � ���n�

�where the terms we haven�t written are the usual symmetric polynomials of the �i�� Now
putting this value of � in the equation we found above� we 	nd that a polynomial in �� with
all coe�cients 	 �� is zero� and therefore the polynomial must be identically zero� which
means that �� � ��� � � ���n� and so on up to �n�� � ��� � � ���n� But it is well known
that this means that ��� � � � � �n are the roots of the equation �������� � � ����n � 
�
Therefore� it does have solutions� QED� �

The 	eld thus obtained is called the Conway 	eld� One of its interests is the following
analogue to theorem �����


Theorem ���	�� Let X and X � be two sets� and � and �� their Grundy functions� Then
the Grundy function of the game sum X �X � of X and X � is �����

� By well�founded induction� we can assume this is true with either X or X � replaced
by one its elements� We must now show two things� First� if x � X and x� � X �� then
the Grundy function of �x � X �� � �X � x�� � �x � x�� is not equal to ����� Indeed�
if we let � �� � �resp� �� �� ��� be the Grundy function of x �resp� x�� then that of
x�X � �resp� of X � x�� resp� of x� x�� is ���� �resp� ����� resp� ����� by the induction
hypothesis� and by theorem ������ the Grundy function of �x�X ��� �X � x��� �x� x��
is �������������������� � ����������������������� But since ��� �� 
 �because
� �� �� and ����� �� 
 �becuase �� �� ���� we have ������������� �� 
 and therefore
�������������������� cannot be equal to ����� Second� if � 	 ����� we must show
that there exist x � X and x� � X � such that the Grundy function of �x � X �� � �X �
x��� �x�x�� is �� But if � 	 ����� then by the de	nition of ���� there exists � 	 � and
�� 	 �� such that � � ��������������������� Now we can 	nd �by the de	nition of the
Grundy function� an x � X whose Grundy function is � and an x� � X � whose Grundy
function is ��� By the induction hypothesis� the Grundy function of x�X � is ����� that
of X �x� is ����� and that of x�x� is ����� And by theorem ������ the Grundy function
of �x�X ��� �X � x��� �x� x�� is then �� This concludes the proof� �

�



	� Reduced game sums�

De�nition �	���� Let X�X � be two sets� Then we de�ne the reduced game sum of X and
X �� written X�X � as the symmetric di�erence of fx�X � 
 x � Xg and fX�x� 
 x� � X �g
�that is� its elements are those sets which can be written x�X � with x � X� or X�x� with
x� � X �� but not both��

Proposition �	���� The reduced game sum is commutative and associative� The set �
acts as a unit element� and moreover X�X � � for every set X� Furthermore� the Grundy
function of X�X � is ���� where � is the Grundy function of X and �� that of X ��

� Commutativity and associativity are easy by induction by making use of the corre�
sponding properties of the symmetric di�erence� That ��X � X�� � X and X�X � �

for every set X is trivial from the de	nitions�

We now prove the assertion concerning the Grundy function� by induction� Any
element of X�X � can be written x�X �� say� so its Grundy function is ���� where � is
the Grundy function of x� and this is not equal to ���� since � �� �� This shows that
the Grundy function of X�X � is at less or equal to ����� Now if � 	 ���� then we
can write � � ����� say� where � 	 �� Now � is the Grundy function of an x � X� and
then the Grundy function of x�X � is ���� � �� There are two cases
 either x�X � is an
element of X�X �� in which case its Grundy function is not �� Or there exists x� � X � such
that x�X � � X�x�� in which case by making use of the properties already proven� we
have X�X � � x�x�� so the Grundy function of X�X � is that of x�x�� viz� ���� where
�� is the Grundy function of x�� and since ���� �� ���� �because �� �� ���� the Grundy
function of X�X � is not equal to ���� � � in that case also� So the Grundy function of
X�X � is at least equal to ����� and 	nally it is equal to it� which proves the statement�
�

De�nition �	���� Let X�X � be two sets� Then we de�ne their reduced Conway product
X�X � by induction in the following way� X�X � is the set whose elements are the
�x�X ����X�x����x�x�� with x � X and x� � X ��

Theorem �	���� Let X and X � be two sets� and � and �� their Grundy functions� Then
the Grundy function of the game sum X�X � of X and X � is �����

� Repeat exactly the proof of theorem ������ replacing � by �� � by �� and the
reference to theorem ����� by one to proposition ������ �

�




�� Turning games�

De�nition ������ Let � be an ordinal� Then we write �� for the set of functions from
� � f� 
 � 	 �g to � � f
� �g with 	nite support �that is� which are equal to zero except
on a �nite number of ��� We well order �� lexicographically� in other words� we put f 	 g

i� f and g di�er� and the largest � for which f��� �� g��� satis�es f��� 	 g���� with
this order� �� is isomorphic �as a well�ordered set� to the ordinal ��� For � 	 �� we shall
identify �� with a subset �indeed� an initial segment� of ��� namely those functions with
support in �� Moreover� we de�ne an operation � on �� in the following way� �f�g����
is 
 i� f��� � g���� and � otherwise� Finally� for � 	 �� we de�ne an element e� of �� by
e���� � � i� � � �� 
 otherwise�

De�nition ������ Let M be a subset of �� not containing 
 � we call such a set a
system of moves� Then we de�ne the turning game associated to M as the game whose
con�guration space is �� and whose evolution relation is given by f�g i� g 	 f and
f�g �M� Note thatM is determined by the game as the set of those f for which f�
� so
it makes sense to talk of the system of moves of a given turning game�

Think an element of �� as representing an ��sequence of coins� all but a 	nite number
of which are on tails� M tells us which sets of coins a player is allowed to turn� subject to
the constraint that the right�most coin turned must change from heads to tails�

Proposition ������ Let M be a system of moves� Then in the turning game ���� ��
associated to M� for every f� f � � ��� the con�guration f�f � is the reduced sum of f and
f � �in other words� the set of the pointed game ���� �� f�f �� is precisely the reduced game
sum of that of ���� �� f� and that of ���� �� f ����

� We have �f�f ���g i� f�g�f � � M and g 	 �f�f ��� Now if g 	 �f�f ��� for the
greatest � for which g��� and �f�f ����� di�er we have g��� � 
 and �f�f ����� � �� the
latter means that exactly one of f��� and f ���� is � and the other one is 
� and therefore
exactly one of �g�f �� 	 f and �f�g� 	 f � holds� Conversely� if exactly one of �g�f �� 	
f and �g�f� 	 f � holds then one sees easily that g 	 �f�f ��� Now this proves that
�f�f ���g i� exactly one of f��g�f �� and f ���f�g� holds� We now proceed by induction
with respect to the canonical order of ��� and we write Xh for the set of the pointed
game ���� �� h�� What we have just shown is that ext�f�f �� is the symmetric di�erence of
fh�f �
h � ext�f�g and ff�h
h � ext�f ��g� Using the induction hypothesis� we then see
that Xf�f � is the symmetric di�erence of fx�Xf � 
x � Xfg and fXf�x

�
x� � Xf �g� and
this is precisely Xf�Xf � � hence the desired result� �

Corollary ������ Let M be a system of moves� Then in the game ���� �� associated to
M� for every f� f � � ��� the Grundy function of f�f � is ����� where � is the Grundy
function of f and �� that of f ��

� This follows immediately from propositions ����� and ����� �the last statement�� �

De�nition ���	�� LetM be a system of moves on an ordinal �� Then for each � 	 � we
writeM� � and we call the ��stratum ofM� the set of the g � �� � �� such that g�e� �M�
In other words� M� consists of those g � �� such that e��g� Note that conversely if for

��



each � 	 � we are given a subset M� of �� �in any way whatsoever�� then there exists a
unique system of moves M on � such that M� is the ��stratum of M�

Sophistication ������ Let � be an ordinal� The operation� endows �� with the structure
of an F� �vector space� Now consider M a system of moves on �� Corollary �
��� tells us
that the function taking an element of �� to its Grundy function is a linear map of F� �
vector spaces �from �� to the class of ordinals�� In particular� it is uniquely determined by
its values on the canonical basis �e�� of �

�� where e� is de�ned by e���� � � i� � � �� 

otherwise� if we write 
��� for the Grundy function of e� � then the Grundy function of f is

����� � � ��
��k�� where ��� � � � � �k are the distinct � 	 � such that f��� � �� Moreover�

��� can be computed as follows� it is the smallest ordinal that is not as above� where
f ranges the elements of the set M�� We shall �somewhat abusively� call 
 the Grundy
function of M�

For example� let M be the set of those f � �� such that f��� � � for exactly two
� 	 �� In other words� the game consists of turning exactly two coins� the right�most of
which must change from heads to tails� Then for any �� the set of elements of e��M that
are less than e� is precisely the set of the e� such that � 	 �� and so 
��� is the smallest
ordinal unequal to 
��� for � 	 �� Therefore 
��� � � for all � 	 �� This game is related
to the game of Nim
 when f � ��� then f��� indicates the parity of the set of Nim piles
with � stones�

��
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