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Abstract

The sequence starts with a(1) = 1; to extend it one writes the sequence so far as XY k, where
X and Y are strings of integers, Y is nonempty, and k is as large as possible: then the next
term is k. The sequence begins 1, 1, 2, 1, 1, 2, 2, 2, 3, 1, 1, 2, 1, 1, 2, 2, 2, 3, 2, . . . A 4
appears for the first time at position 220, but a 5 does not appear until about position 1010

23.323...
.

The main result of the paper is a proof that the sequence is unbounded. We also present results
from extensive numerical investigations of the sequence and certain derived sequences, culminating
with a heuristic argument that t (for t = 5, 6, . . .) appears for the first time at about position
2 ↑ (2 ↑ (3 ↑ (4 ↑ (5 ↑ . . . ↑ ((t− 2) ↑ (t− 1)))))), where ↑ denotes exponentiation. The final section
discusses generalizations.

1. Introduction

This paper introduces an integer sequence A = a(1), a(2), a(3), . . . with some remarkable properties.
Define the curling number C(U) of a string U = u(1), u(2), . . . , u(n) over some alphabet Ω to be
the largest integer k ≥ 1 such that

U = X Y Y . . . Y︸ ︷︷ ︸
k copies

= XY k , (1)

where X and Y are strings over Ω and Y is nonempty. Our sequence is defined by

a(1) = 1, a(n + 1) = C(a(1), . . . , a(n)) for n ≥ 1 . (2)

Then a(2) = C(1) = 1, since we can only take X to be the empty string ∅, Y = 1 and k = 1;
a(3) = C(1, 1) = 2, by taking X = ∅, Y = 1, k = 2; a(4) = C(1, 1, 2) = 1, by taking X = 1, 1,
Y = 2, k = 1 (as this example shows, there may be more than one choice for Y ); and so on. The
first 220 terms of A are shown in Tables 1 and 2.
To avoid any possible confusion, for example with the “Say What You See” sequence studied

in [3], we emphasize that the curling number does not depend on the decimal representation of its
arguments. For example, if U = (8, 9, 10, 11, 11, 11), C(U) = 3.
In Section 2 we describe the recursive structure of the sequence, in particular explaining the

block structure visible in Tables 1 and 2. The proof that this structure is valid is postponed to
Section 3, where we give the main results of the paper, Theorems 4 and 5. Corollary 7 shows that
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1 1 2
1 1 2 2 2 3
1 1 2
1 1 2 2 2 3 2
1 1 2
1 1 2 2 2 3
1 1 2
1 1 2 2 2 3 2 2 2 3 2 2 2 3 3 2
1 1 2
1 1 2 2 2 3
1 1 2
1 1 2 2 2 3 2
1 1 2
1 1 2 2 2 3
1 1 2
1 1 2 2 2 3 2 2 2 3 2 2 2 3 3 2 2 2 3 2

Table 1: The first 98 terms of the sequence. In the notation to be introduced in Section 2,

the successive glue strings S
(1)
1 , S

(1)
2 , . . . , S

(1)
5 are underlined and the strings T

(1)
2 , T

(1)
3 , . . . , T

(1)
6 are

shown in bold-face.

the sequence is unbounded. In Section 4 we give empirical estimates for the lengths of the blocks
in the recursive structure, culminating in the estimate that t ≥ 2 appears in the sequence for the
first time roughly at about position

22
34
···
t−1

(3)

These estimates are based on examination of the first two million terms of the sequence A and the
higher-order sequences A(2), A(3) and A(4) introduced in Section 2.
The last section is devoted to comments and generalizations. §5.1 discusses a certain plausible

“Finiteness Conjecture” that arises from studying curling numbers. §5.2 introduces a transforma-
tion on integer sequences based on curling numbers, and gives several examples. Finally, §5.3 briefly
mentions some generalizations of our sequence, including a broad class of extensions suggested by
J. Taylor [9].
Although the sequence A grows very slowly, there are certainly familiar sequences with an even

slower growth rate, such as the inverse Ackermann function [1], the Davenport-Schinzel sequences
[7], or the inverse to Harvey Friedman’s sequence [4]. Nevertheless, we think the combination
of slow growth, an unusual definition, and a remarkable recursive structure makes the sequence
noteworthy.
The sequence was invented by one of us (D.C.G.) while composing problems for the Dutch

magazine Pythagoras. It now appears as sequence A90822 in [8].

Notation

If Ω is a set, Ωn denotes the strings of length n from Ω, Ω+ is the set of all non-empty finite strings
from Ω, and Ω∗ is the set of all finite or infinite strings from Ω, including the empty string ∅.
Strings will usually be denoted by uppercase letters. The elements of a string may or may not be
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1 1 2
1 1 2 2 2 3
1 1 2
1 1 2 2 2 3 2
1 1 2
1 1 2 2 2 3
1 1 2
1 1 2 2 2 3 2 2 2 3 2 2 2 3 3 2
1 1 2
1 1 2 2 2 3
1 1 2
1 1 2 2 2 3 2
1 1 2
1 1 2 2 2 3
1 1 2
1 1 2 2 2 3 2 2 2 3 2 2 2 3 3 2 2 3 2 2 2 3 2 2 2 3 3 2

2 2 3 2 2 2 3 2 2 2 3 3 3 3 4

Table 2: Terms 99 through 220 of the sequence, up to the point where the first 4 appears (S
(1)
6 is

underlined, T
(1)
7 is shown in bold-face).

separated by commas, and a string may or may not be enclosed in parentheses. A sequence is an
infinite string. The length of U ∈ Ω∗ (which may be ∞) will be denoted by l(U).
Products in Ω∗ represent concatenation: if U ∈ Ω+, V ∈ Ω∗ then UV means U followed by V .

U = u(1), . . . , u(i) is said to be a substring of V = v(1), . . . , v(j) if there is an r, 0 ≤ r ≤ j− i, such
that u(k) = v(k+ r) for k = 1, . . . , i; that is, if the elements of U occur consecutively in V . We say
V contains U to indicate that U is a substring of V . Terms such as prefix, suffix, etc., have their
usual meanings — see [2] for formal definitions. On the other hand, U is said to be a subsequence
of V if U can be obtained by deleting certain, not necessarily consecutive, terms from V .1

Usually Ω will be either the positive integers P = {1, 2, 3, . . .} or Pm = {m,m + 1,m + 2, . . .}
for some integer m ≥ 1.

2. The recursive structure

In this section we describe how the sequence A is built up recursively from “blocks” that are doubled
at each step and are joined together by “glue.” When the glue strings are concatenated together
they form a sequence A(2) which has a similar structure: it is built up recursively from blocks that
are repeated three times at each step and are joined together by “second-order glue.” When the
second-order glue strings are concatenated together they form a sequence A(3) which in turn has
a similar structure, but now the blocks are repeated four-fold at each step, and so on. The proof
that this description is correct will be given in the next section.
To make the description more precise we introduce some further notation. The sequence A is

constructed from strings B
(1)
n and S

(1)
n , n ≥ 1, which we call “blocks” and “glue,” respectively. The

1This usage conflicts slightly with our convention that “sequence” means an infinite string. However, “sub-
sequence” will rarely be used in this paper.
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initial block is B
(1)
1 = 1; the second block is B

(1)
2 = B

(1)
1 B

(1)
1 S

(1)
1 = 1 1 2, where S

(1)
1 = 2; the third

block is

B
(1)
3 = B

(1)
2 B

(1)
2 S

(1)
2

= 1 1 2 1 1 2 2 2 3 ,

where S
(1)
2 = 2 2 3, and so on, the n-th block for n ≥ 2 being

B(1)n = B
(1)
n−1B

(1)
n−1S

(1)
n−1 . (4)

Then for all n ≥ 1, A begins with B(1)n (and hence A = lim
n→∞B

(1)
n ).

That is, for all n ≥ 2, A begins with two copies of B(1)n−1 followed by a “glue” string S(1)n−1 that
contains no 1’s. S

(1)
n−1 is terminated by the first 1 that follows the initial B

(1)
n−1B

(1)
n−1. Table 1 shows

B
(1)
1 through B

(1)
6 (the first row is B

(1)
2 , the first two rows are B

(1)
3 , . . ., and the whole table forms

B
(1)
6 ), and Tables 1 and 2 together form B

(1)
7 . The glue strings S

(1)
1 , S

(1)
2 , . . . , S

(1)
6 are underlined.

By iterating (4) we see that B
(1)
n can be written as

B(1)n = B
(1)
n−1B

(1)
n−2 . . . B

(1)
1 B

(1)
1 S

(1)
1 S

(1)
2 . . . S

(1)
n−1 . (5)

The terminating string S
(1)
1 S

(1)
2 . . . S

(1)
n−1 (denoted by T

(1)
n in Section 3) is shown in bold-face in

Tables 1 and 2 for n = 2, . . . , 7.

In Section 4 we state some conjectures about the lengths of the blocks B
(1)
n and the glue strings

S
(1)
n−1. If these conjectures are correct, l(S

(1)
n−1) is much less than l(B

(1)
n−1), and consequently l(B

(1)
n )

is roughly twice l(B
(1)
n−1).

The above analysis thus reduces the study of A to the study of the glue strings S
(1)
n .

We define the “second-order sequence” A(2) = a(2)(1), a(2)(2), a(2)(3), . . . to be the concatenation

S
(1)
1 S

(1)
2 S

(1)
3 . . . ∈ P∗2 of the glue strings. It follows easily from the definition that A(2) can also be

defined by

a(2)(1) = 2 ,

a(2)(n+ 1) = C(2)(a(2)(1), a(2)(2), . . . , a(2)(n)) for n ≥ 1 , (6)

where we define
C(m)(U) = max{m, C(U)} (7)

for m ≥ 1. That is, if C(U) = k is less than m it is “promoted” to m (we will say more about
“promotion” at the end of Section 3). Of course C(1) = C.
The initial terms of A(2) are shown in Table 3, and the reader can verify that they may indeed

be obtained by starting with 2 and repeatedly applying the map C(2).
It is remarkable that A(2) has a similar structure to A, only now the blocks are repeated three

times. That is, if we define B
(2)
1 = 2, then for all n ≥ 2, A(2) begins with a block

B(2)n = B
(2)
n−1B

(2)
n−1B

(2)
n−1S

(2)
n−1 , (8)

consisting of three copies of B
(2)
n−1 followed by a “second-order glue” string S

(2)
n−1 ∈ P∗3 that contains

no 1’s or 2’s and is terminated by the first number< 3 that follows the initial B
(2)
n−1B

(2)
n−1B

(2)
n−1. Table
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2 2 2 3
2 2 2 3
2 2 2 3 3
2 2 2 3
2 2 2 3
2 2 2 3 3
2 2 2 3
2 2 2 3
2 2 2 3 3 3 3 4
2 2 2 3
2 2 2 3
2 2 2 3 3
2 2 2 3
2 2 2 3
2 2 2 3 3
2 2 2 3
2 2 2 3
2 2 2 3 3 3 3 4
2 2 2 3
2 2 2 3
2 2 2 3 3
2 2 2 3
2 2 2 3
2 2 2 3 3
2 2 2 3
2 2 2 3
2 2 2 3 3 3 3 4 3

Table 3: The first 126 terms of the second-order sequence A(2) (the successive glue strings

S
(2)
1 , S

(2)
2 , S

(2)
3 , S

(2)
4 are underlined; the strings T

(2)
2 , T

(2)
3 , T

(2)
4 , T

(2)
5 are shown in bold-face).

3 shows B
(2)
5 (as well as B

(2)
1 through B

(2)
4 ). The glue strings S

(2)
1 , S

(2)
2 , S

(2)
3 , S

(2)
4 are underlined.

B
(2)
n ends with the string S

(2)
1 S

(2)
2 . . . S

(2)
n−1 (denoted by T

(2)
n in Section 3); these strings are shown

in bold-face in Table 3 for n = 2, . . . , 5.
Again we have a conjectured estimate (see Section 4) for the lengths of the glue, which implies

that l(B
(2)
n ) is roughly three times l(B

(2)
n−1).

This analysis reduces the study of A(2) to the study of the second-order glue strings S
(2)
n , and

these, when concatenated, form the third-order sequence A(3), which in turn has a similar structure.
And so on — the general structure is described in the next section.

3. The main theorems

In order to state the main theorems, we begin with several formal definitions. For m ≥ 1, the
mth-order sequence A(m) = a(m)(1), a(m)(2), a(m)(3), . . . ∈ P∗m is defined by

a(m)(1) = m,
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a(m)(i+ 1) = C(m)(a(m)(1), . . . , a(m)(i)) for i ≥ 1 . (9)

Note that A(1) is our sequence A. Theorem 4 will show that A(m+1) is the concatenation of the
glue strings for A(m).

For m ≥ 1, n ≥ 1, the blocks B(m)n ∈ P
∗
m and the glue strings S

(m)
n ∈ P

∗
m+1 are defined

recursively, and independently of the A(m). Corollary 7 will show that all the strings B
(m)
n , S

(m)
n

and T
(m)
n (defined below) are in fact finite, but at this point we do not know that, and the definitions

must allow for the possibility that some of these strings may be infinite.
The recursion for the blocks is

B
(m)
1 = m, (10)

and, for n ≥ 1,
B
(m)
n+1 =

{
(B
(m)
n )m+1S

(m)
n if l(B

(m)
n ) <∞ ,

B
(m)
n if l(B

(m)
n ) =∞ ,

(11)

where S
(m)
n will be constructed from B

(m)
n . If l(B

(m)
n ) = ∞, S(m)i = ∅ for i ≥ n. If l(B(m)n ) < ∞,

consider the sequence s
(m)
n (1), s

(m)
n (2), s

(m)
n (3), . . . ∈ P∗m defined by

s(m)n (1) = C(m)((B(m)n )m+1) ,
s(m)n (i+ 1) = C(m)((B(m)n )m+1s(m)n (1) . . . s(m)n (i)) for i ≥ 1 . (12)

Clearly s
(m)
n (1) ≥ m+ 1. If there is an integer i ≥ 1 such that s(m)n (i+ 1) < m+ 1, set

S(m)n = s(m)n (1), s
(m)
n (2), . . . , s

(m)
n (i) ∈ P+m+1 , (13)

but if no such i exists set
S(m)n = s(m)n (1), s

(m)
n (2), . . . ∈ P∗m+1 . (14)

In the latter case S
(m)
n and B

(m)
n+1 are infinite.

The T
(m)
n are defined as follows. For n ≥ 1, if S(m)1 , . . . , S(m)n are finite we set

T
(m)
n+1 = S

(m)
1 . . . S(m)n ∈ P∗m+1 , (15)

while if S
(m)
1 , . . . , S

(m)
n−1 are finite but S

(m)
n is infinite, we still use (15) and define

T
(m)
i = T

(m)
n+1 (16)

for i ≥ n + 2. In the latter case all the T (m)i for i ≥ n + 1 are infinite. Note that T (m)1 is always
undefined.
The lengths of these strings (which may be infinite) are denoted by

β(m)(n) = l(B(m)n ) , (17)

σ(m)(n) = l(S(m)n ) , (18)

τ (m)(n) = l(T (m)n ) . (19)

We also let B(m) = b(m)(1), b(m)(2), b(m)(3), . . . = limn→∞B
(m)
n . This is well defined since each

B
(m)
n starts with B

(m)
n−1.

We will require three lemmas for the proof of the main theorems.
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Lemma 1. For m ≥ 1, if A(m) contains a string U t+1 ∈ P+m for some t ≥ m, then U ∈ P+t .

Proof. If t = m the claim is trivially true by definition of A(m), so we may assume t ≥ m + 1.
Suppose on the contrary that U /∈ P+t . Then we may write U = GiH for G,H ∈ P∗m and some i
with 1 ≤ i ≤ t− 1. Then A contains GiH GiH . . . GiH (t+ 1 copies). But the final i is preceded
by t copies of iHG, so the final i must be at least t, by definition of A(m), a contradiction.

Lemma 2. For m ≥ 1, n ≥ 2, (a) T (m)n is a suffix of B
(m)
n , and (b) there is no other occurrence

of T
(m)
n as a substring of B

(m)
n .

Proof. Fix m ≥ 1. It follows by iterating (11) that

B
(m)
n+1 = (B(m)n )

m(B
(m)
n−1)

m · · · (B(m)1 )mB(m)1 S(m)1 S(m)2 . . . S
(m)
n−1S

(m)
n

= (B(m)n )
m(B

(m)
n−1)

m · · · (B(m)1 )mB(m)1 T (m)n+1 , (20)

provided all of S
(m)
1 S

(m)
2 . . . S

(m)
n are finite. If S

(m)
1 S

(m)
2 . . . S

(m)
n−1 are finite but S

(m)
n is infinite, (20)

is still true, but

B
(m)
i = B

(m)
n+1, T

(m)
i = T

(m)
n+1 (21)

for i ≥ n+2. Assertion (a) follows at once. To show (b) we use induction on n. The base case, n = 2,
is true because T

(m)
2 = m+1 and B

(m)
2 = (mm+1,m+1). Suppose first that all the S

(m)
n are finite.

If T
(m)
n+1 also occurs in B

(m)
n+1 other than as a suffix, it must be a substring of a block B

(m)
j in (20),

for some j with 2 ≤ j ≤ n, for otherwise it would contain the m at the beginning of a block. Write
B
(m)
j = UT

(m)
n+1V = UT

(m)
j S

(m)
j · · ·S(m)n V for some U ∈ P+m and V ∈ P∗m. But l(S(m)j · · ·S(m)n ) > 0,

so T
(m)
j occurs as a non-suffix in B

(m)
j , a contradiction to the induction hypothesis. Only a minor

modification to the argument is needed in the case that some S
(m)
n is infinite. We omit the details.

It follows from the above proof that in (20), for any r with 1 ≤ r ≤ m + 1, (B(m)n )r contains
exactly r copies of T

(m)
n , each one occurring at the end of a B

(m)
n . The copies are disjoint.

Lemma 3. For m ≥ 1, n ≥ 2, suppose that k = b(m)(i) ≥ m+1 with 1 ≤ i ≤ β(m)(n). Then there
exists a Y such that b(m)(1), . . . , b(m)(i − 1) = XY k. Moreover, let Y satisfy this condition with
l(Y) minimal and suppose m ∈ Y . Then Y = B(m)j for some j with 1 ≤ j ≤ n− 1.

Proof. We fix m ≥ 1, and will prove the result for all n by induction. The base case n = 2 is
immediate. If B

(m)
n is infinite then the result also holds for n+ 1, by (11), so we may assume that

B
(m)
n is finite. Then B

(m)
n+1 = (B

(m)
n )(m+1)S

(m)
n , by (11). We will show that the result holds for all

positions β(m)(n) < i ≤ β(m)(n+ 1).
If i is a position in (B

(m)
n )m+1, we may write i = rβ(m)(n)+ s ≤ (m+1)β(m)(n), for 1 ≤ r ≤ m,

1 ≤ s ≤ β(m)(n). Then b(m)(i) = b(m)(s) and by induction we know that in the first B(m)n we can

write b(m)(1), . . . , b(m)(s − 1) = XY k, and if the minimal Y contains an m then it equals B(m)j for
some j with 1 ≤ j ≤ n − 1. Therefore this Y (and no shorter string) can also be used at position
i, and thus the statement holds.

If i = (m+ 1)β(m)(n) + 1 then the part preceding i is (B
(m)
n )m+1, and from (12) we have

k = b(m)(i) = s(m)n (1) = C(m)((B(m)n )m+1) ≥ m+ 1 .
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So certainly one Y exists with b(m)(1), . . . , b(m)(i− 1) = XY k. We must show that if the minimal
Y satisfying this property contains an m, then that Y = B

(m)
j for some j ≤ n. If Y contains an m,

then it contains T
(m)
n as a substring, since the last m in B

(m)
n+1 occurs before the T

(m)
n in the last

copy of B
(m)
n . Therefore the string Y k contains at least k ≥ m+ 1 copies of T (m)n . It follows from

Lemma 2 that k = m+ 1 and Y = B
(m)
n .

If i > (m+ 1)β(m)(n) + 1 we see by the definition of S
(m)
n that again a Y exists. If Y contains

an m, then it must properly contain the T
(m)
n in the final copy of B

(m)
n . But in the last Y the copy

of T
(m)
n is followed by an integer larger than m, whereas in the earlier k − 1 copies it was followed

by the first element of B
(m)
n , which is m. This is a contradiction, and shows that in this case Y

cannot contain an m.
Note that by definition of S

(m)
n−1 the Y k for the first element of S

(m)
n goes back further than

B
(m)
n , and thus contains an m. Therefore we see that the situation described in the penultimate
paragraph of the above proof is indeed the case and we may conclude that

s(m)n (1) = m+ 1 for all m ≥ 1, n ≥ 1 . (22)

At this point we can already see that the concatenation of the glue strings is equal to the next
A sequence:

Theorem 4. For m ≥ 1, n ≥ 2, T (m)n is a prefix of A(m+1), or is all of A(m+1) if T
(m)
n is infinite.

Proof. Again we fix m and use induction on n. For n = 2 the result is trivial. If T
(m)
n is infinite

then clearly the result holds for T
(m)
n+1, so assume that T

(m)
n is finite.

Write (B
(m)
n )m+1 = UT

(m)
n for some U ∈ P+m . We know that S(m)n begins with m+1 = s

(m)
n (1) =

C(m)(UT (m)n ) = C(m+1)(UT (m)n ) = C(m+1)(T (m)n ). The last equality holds because dropping the U
can only decrease the value, but it is already equal to its minimal value of m+1. By the induction

hypothesis, T
(m)
n is a prefix of A(m+1), and therefore T

(m)
n s

(m)
n (1) is a prefix of A(m+1). For i ≥ 1,

as long as s
(m)
n (i) ≥ m+ 1, we have

s(m)n (i+ 1) = C(m)(UT (m)n s(m)n (1) . . . s
(m)
n (i))

= C(m+1)(UT (m)n s(m)n (1) . . . s
(m)
n (i))

= C(m+1)(T (m)n s(m)n (1) . . . s
(m)
n (i)) .

The second equality holds because s
(m)
n (i) ≥ m + 1. The third equality holds because Y k for

s
(m)
n (i+1) goes back no further than the beginning of T

(m)
n , as we saw in the proof of the previous

lemma. Hence T
(m)
n+1 = T

(m)
n S

(m)
n is a prefix of A(m+1), as required.

Theorem 5. For m ≥ 1, the sequences A(m) and B(m) coincide.

Proof. Fix m ≥ 1. We will show by induction on n that, for n ≥ 1, B(m)n is a prefix of A(m) or is

all of A(m) if B
(m)
n is infinite. This will establish the theorem.

The cases n = 1 and n = 2 are immediate, since B
(m)
1 = m, B

(m)
2 = (mm+1,m+ 1). So assume

the truth of the induction hypothesis up to and including some n ≥ 2.
If B

(m)
n is infinite the result follows from (11), so we may assume that B

(m)
n and hence T

(m)
n are

finite. We wish to show that B
(m)
n+1 = (B

(m)
n )m+1S

(m)
n is a prefix of A(m). If this is not true, the

8



discrepancy between B
(m)
n+1 and A

(m) occurs in the substring (B
(m)
n )m+1, by the definition of S

(m)
n .

Let i ≥ β(m)(n) + 1 be the first position in (B(m)n )m+1 at which a(m)(i) �= b(m)(i). Our goal is to
show that the existence of i leads to a contradiction.
If we write i = jβ(m)(n) + r with 1 ≤ j ≤ m and 1 ≤ r ≤ β(m)(n), then i is also minimal with

respect to the condition that a(m)(i) �= b(m)(i) = b(m)(r) = a(m)(r). Let a(m)(1), . . . , a(m)(i− 1) =
XY k with k maximal and l(Y ) minimal. Then a(m)(i) = max{m,k}.
We consider two cases, depending on whether or not a(m)(i) is at the beginning of one of the

B
(m)
n blocks, i.e. whether r = 1 or r ≥ 2.
First, suppose r = 1; then we need to prove that a(m)(i) = a(m)(1) = m. This follows by

definition of S
(m)
n−1 if j = 1, so assume j ≥ 2, and that k = a(m)(i) ≥ m + 1. Using (20) we may

write a(m)(1), . . . , a(m)(i− 1) = (B(m)n )j = (B(m)n )j−1UmT (m)n for some U ∈ P∗m. If T (m)n is a proper

suffix of Y k then m ∈ Y , which implies that T (m)n is a proper suffix of Y and therefore (B
(m)
n )j

contains at least m + 1 copies of T
(m)
n , contradicting Lemma 2. On the other hand, if Y k were a

suffix of T
(m)
n , this would contradict the fact that S

(m)
n−1 is followed by an element ≤ m.

Second, suppose that r ≥ 2. Let L = a(m)(1), . . . , a(m)(r − 1) and write L = X∗Y k∗∗ with k∗
maximal and l(Y∗) minimal. Then a(m)(r) =max{m,k∗}. By the definition of i, a(m)(i) > a(m)(r) ≥
m. Hence a(m)(i) = k ≥ m+1. To have a(m)(i) > a(m)(r), L must be a suffix of Y k, so m ∈ Y and
therefore, by Lemma 1, k is at most m+ 1 and therefore is equal to m+ 1. Hence k∗ ≤ m.
The situation, then, is that (B

(m)
n )jL is a prefix of A(m). We know that in the next position,

position i, we can achieve a(m)(i) = m simply by using Y∗, where Y k∗∗ is a suffix of L. We are
supposing that we can in fact achieve a(m)(i) = m+1 by allowing L to be a suffix of Y m+1. Noting

that T
(m)
n is a suffix of (B

(m)
n )j , by (20), we distinguish two cases, depending on the relationship

between T
(m)
n L and Y m+1.

(i) Suppose that T
(m)
n L is a suffix of Y m+1. We knowm ∈ Y andm �∈ T (m)n , so Y m+1 contains at

least m disjoint copies of T
(m)
n . Hence j = m, and there are exactly m disjoint copies, by Lemma 2.

This means that each copy of T
(m)
n straddles the end of one copy of Y and the beginning of the

next (if not, T
(m)
n is wholly contained in Y , and so there are m+ 1 copies of T

(m)
n in the sequence

before position i, which is a contradiction since there are only m copies, one in each of the m copies

of B
(m)
n and none so far in the next copy of B

(m)
n that we are building), and hence that Y is a

proper suffix of T
(m)
n L. Write T

(m)
n = VW where W is the intersection of T

(m)
n and the last (or

(m + 1)-st) copy of Y , and write B
(m)
n = UT

(m)
n , using (20). If m ≥ 2 it is easy to complete the

proof. We have Y = WL = WUV , so L = UV and therefore i > l(Y m+1) = (m + 1)l(WUV ) =
(m+ 1)l(UV W ) = (m+ 1)β(m)(n), contradicting the definition of i.

Suppose then that m = 1. Again L is a proper suffix of Y and Y is a proper suffix of T
(1)
n L.

Write Y = WL, and let s ≥ 2 be the first element of Y . Let this element s in the second copy of
Y be preceded by s copies of some string Y ′ with l(Y ′) minimal.
Suppose that Y ′ does not contain a 1. Since Y does contain a 1 (L starts with a 1), Y ′s is a

suffix of the first copy of Y , and hence also of the second copy of Y . This contradicts the minimality
of l(Y ), since then l(Y ′) < l(Y ).
So we may assume that 1 ∈ Y ′, hence by Lemma 3 we know that

Y ′ = B(1)j

for some j < n. T
(1)
j is a suffix of Y 2 and since L starts with a 1, T

(1)
j is also a suffix of L.

Furthermore, B
(1)
j is a suffix of Y

2 and since L is a prefix of B
(1)
n , B

(1)
j is also a suffix of L. Suppose

9



B
(1)
j = L. Then WL is a suffix of Y ′Y ′ = LL (look at the first copy of Y = WL and remember
Y ′Y ′ begins with a 1) and hence W is a suffix of L. But then W 2 is a suffix of T (1)n , contradicting
the fact that L starts with a 1.
So we may assume that B

(1)
j is a strict suffix of L. But now l(Y ) > l(L) ≥ 2l(B(1)j ). (Indeed, if

l(L) < 2l(B
(1)
j ), then we know that L is a prefix of B

(1)
n , by definition, B

(1)
j B

(1)
j is also a prefix of

B
(1)
n , and so L is a strict prefix of B

(1)
j B

(1)
j ; but L has T

(1)
j as a suffix, so by Lemma 2, L = B

(1)
j ,

a contradiction.) But now (B
(1)
j )

2 is a suffix of Y , contradicting the minimality of Y .

(ii) Suppose on the other hand that Y m+1 is a suffix of T
(m)
n L. Since no Y is contained in T

(m)
n

(remember that m ∈ Y ), Y m is a suffix of L and the first element, t, of Y is in T (m)n with t ≥ m+1.
Therefore the first element of the second Y is also t and since (B

(m)
n )jL is a prefix of A(m), Y

ends with U t for some U . Hence U t is a suffix of L, which contradicts the fact that k∗ = m. This
completes the proof. .

Corollary 6. The sequence A(m) contains every integer ≥ m.

Proof. From Theorem 4 we know that, for m ≥ 2, n ≥ 2, T (m)n is a prefix of A(m), so, for a given
m, either

A(m) = S
(m−1)
1 S

(m−1)
2 . . . S(m−1)n

if some S
(m−1)
n is infinite, or

A(m) = S
(m−1)
1 S

(m−1)
2 S

(m−1)
3 . . .

if all S
(m−1)
n are finite. Also, by Theorem 5, B

(m−1)
n+1 is a prefix of A(m−1), so from (11), A(m−1)

contains in succession
S
(m−1)
1 , S

(m−1)
2 , . . . , S(m−1)n

if some S
(m−1)
n is infinite, or

S
(m−1)
1 , S

(m−1)
2 , S

(m−1)
3 , . . .

if all S
(m−1)
n are finite. In either case (and this is the key point), A(m) is a subsequence of A(m−1).

Repeating this argument shows that every A(j) is a subsequence of A(m) if j ≥ m.
Since A(j) begins with j, A(m) contains every integer j ≥ m.

Corollary 7. The strings B
(m)
n , S

(m)
n , and T

(m)
n have finite length.

Proof. The first occurrence of an integer in A(m) is necessarily followed by an m. Since we saw in

the previous corollary that A(m) contains infinitely many different integers, it follows that all S
(m)
n

are finite. This implies that B
(m)
n and T

(m)
n are also finite.

Promotion

In the definition of A(m), (9), let us say that a(m)(i) = k is promoted if either i = 1 or
C(a(m)(1), . . . , a(m)(i−1)) < m. If we know which elements in A(m+1) are promoted, we can recover
A(m) from A(m+1). To make this precise, we define the strings D

(m)
i ∈ P+m by D(m)0 = m and, for

i > 0,

D
(m)
i =

⎧⎨
⎩ D

(m)
i−1a

(m+1)(i) if a(m+1)(i) is not promoted ,(
D
(m)
i−1
)m+1

a(m+1)(i) if a(m+1)(i) is promoted .
(23)
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Since D
(m)
i starts with D

(m)
i−1 , we can define the limiting sequence D

(m) = limi→∞D
(m)
i . Then it

can be shown that:

Theorem 8. For all m ≥ 1, the sequences A(m) and D(m) coincide.
We omit the proof, which involves arguments similar to those used to prove Theorems 4 and

5. The main difference is that this proof does not require the finiteness of the glue strings S
(m)
n .

Furthermore, the glue strings now by definition unite to form the next A-sequence, but on the other
hand it becomes more difficult to show that they are indeed substrings of A(m) itself.

4. Estimates for the rate of growth

In this section we take an experimental approach, and record a series of observations about the
sequence. These observations appear to be correct, but we have been unable to prove them. In §4.1
we study the lengths of the glue strings S

(m)
n . Although these lengths are somewhat irregular, it

appears that they can be “smoothed” so as to become much more regular “ruler” sequences. In §4.2
we describe a “tabular” construction for the higher-order sequences A(2), A(3), . . . which leads to a
recurrence relating the ρ(m)(n), β(m)(n) and σ(m)(n). Sections 4.3, 4.4 and 4.5 contain estimates
for β(m)(n), ρ(m)(n) and τ (m)(n). Finally, in §4.6 we use these estimates to determine where each
number t ≥ 1 appears for the first time in our sequence A.

4.1. Ruler sequences and smoothing

It appears that the sequence σ(m) = σ(m)(1), σ(m)(2), σ(m)(3), . . . giving the lengths of the glue

strings S
(m)
n is essentially a “ruler” sequence, meaning that σ(m)(n) essentially depends only on the

(m+ 1)-adic valuation of n.
For positive integers m,n, define the m-adic valuation of n, |n|m, to be the highest power of m

dividing n. The classical example of a ruler sequence is the sequence r = r(1), r(2), r(3), . . . given
by

r(n) = |n|2 + 1 . (24)

The first 32 terms are

1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5
1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 6

where the new record entries, shown in bold-face, occur at powers of 2. For much more about this
sequence, including an extensive bibliography, see entry A1511 in [8].
The initial values of σ(1), . . . , σ(4) are shown in Table 4, and the record entries in σ(1), . . . , σ(10)

in Table 5. Let π(m)(j) (j ≥ 0) denote the j-th record in σ(m).

11



n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

σ(1)(n) 1 3 1 9 4 24 1 3 1 9 4 67 1 3 1 9

σ(2)(n) 1 1 3 1 1 3 1 1 9 1 1 3 1 1 3 1

σ(3)(n) 1 1 1 3 1 1 1 3 1 1 1 3 1 1 1 10

σ(4)(n) 1 1 1 1 3 1 1 1 1 3 1 1 1 1 3 1

n 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

σ(1)(n) 4 24 1 3 1 9 4 196 3 1 9 4 24 1 3 1

σ(2)(n) 1 9 1 1 3 1 1 3 1 1 32 1 1 3 1 1

σ(3)(n) 1 1 1 3 1 1 1 3 1 1 1 3 1 1 1 10

σ(4)(n) 1 1 1 11 1 1 1 1 3 1 1 1 1 3 1 1

n 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

σ(1)(n) 9 4 68 3 1 9 4 24 1 3 1 9 4 581 3 1

Table 4: Values of σ(1)(n) for n ≤ 48 and σ(2)(n), σ(3)(n), σ(4)(n), for n ≤ 32, with record entries
shown in bold-face.

m \ j 0 1 2 3 4 5 6 7 8 9

1 1 3 9 24 67 196 581 1731 5180 15534
2 1 3 9 32 119 463 1837 7332 29307 117203
3 1 3 10 42 200 983 4892 24434 122141
4 1 3 11 55 315 1872 11205 67195
5 1 3 12 70 471 3273 22883
6 1 3 13 87 673 5355 42805
7 1 3 14 106 927 8309 74740
8 1 3 15 127 1239 12351 123463
9 1 3 16 150 1615 17721
10 1 3 17 175 2061 24683

Table 5: Values of π(m)(j), the j-th record in sequence σ(m). The smoothed record values ρ(m)(j)
are obtained by reducing the italicized entries by 1. The next three terms in the first row are
46578 , 139713 , 419116 , and the next term in the m = 2 row is 468785. The missing entries have
not been calculated, although we predict that the entries on or below the diagonal m = j are given
by (37) and the entries just above this diagonal by (38).
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As can be seen from Table 4, σ(1) is not quite as regular as the ruler sequence r. However:

Observation 9. If the sequence σ(1) is “smoothed” by replacing every instance of 4 by the pair of
numbers 3, 1, every 9 by 8, 1, every 25 by 24, 1, and so on, σ(1) becomes a ruler sequence r(1) given
by

r(1)(n) = ρ(1)(|n|2) , (25)

in which the first 64 terms are

1 3 1 8 1 3 1 24 1 3 1 8 1 3 1 67
1 3 1 8 1 3 1 24 1 3 1 8 1 3 1 195
1 3 1 8 1 3 1 24 1 3 1 8 1 3 1 67
1 3 1 8 1 3 1 24 1 3 1 8 1 3 1 580

and where the record values (shown in bold-face) ρ(1)(0), ρ(1)(1), . . . are

1, 3, 8, 24, 67, 195, 580, 1730, 5179, 15533, 46578, 139712, 419115, . . . . (26)

The numbers i in σ(1) that are to be replaced by i− 1, 1 to get r(1) are

4, 9, 25, 68, 196, 581, 1731, 5180, 15534, 46579, 139713, 419116, . . . , (27)

The numbers that need to be smoothed, given in (27), are one greater than the numbers in
(26), except that 2 is missing. The records in the smoothed sequence r(1), (26), either agree with
or are one less than the terms in the first row of Table 5.
The sequences σ(m) for m ≥ 2 appear to need less smoothing than σ(1) to make them into ruler

sequences. In the range of our tables, σ(2) needs to be smoothed by replacing every 32 by 31, 1,
and every 7332 by 7331, 1; σ(3) by replacing every 200 by 199, 1; σ(4) by replacing every 1872 by
1871, 1; and so on. If r(m) denotes the smoothed version of σ(m) and ρ(m)(j) the j-th record in the
smoothed version (see Table 5) then we have, for all m ≥ 1, n ≥ 1,

r(m)(n) = ρ(m)(|n|m+1) . (28)

The lengths β(m)(n) of the blocks are given by (from (11), (17))

β(m)(1) = 1 ,

β(m)(n+ 1) = (m+ 1)β(m)(n) + σ(m)(n), n ≥ 1 . (29)

The initial values of β(1)(n), . . . , β(6)(n) are shown in Table 6.

m \ n 1 2 3 4 5 6 7 8

1 1 3 9 19 47 98 220 441
2 1 4 13 42 127 382 1149 3448
3 1 5 21 85 343 1373 5493 21973
4 1 6 31 156 781 3908 19541 97706
5 1 7 43 259 1555 9331 55989 335935
6 1 8 57 400 2801 19608 137257 960802

Table 6: Lengths β(m)(n) of the blocks B
(m)
n .
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4.2. The tabular construction

The appearance of ruler sequences can be partially explained if we present the construction of the
higher-order sequences A(2), A(3), . . ., in a tabular format. In this construction we keep track not
only of the actual value A(m)(n) = max{m,k} (cf. (9)) but also whether the promotion rule was
invoked (if k < m we indicate this by drawing a circle around the entry) and the length of the
shortest Y that was used to compute k if k ≥ m (shown as a subscript; if the promotion rule was
invoked the subscript is 0). This tabular construction will also suggest a relationalship among the
ρ(m)(n), β(m)(n) and σ(m)(n).

We will construct A(2) as an example. We start by making a small table of the glue strings S
(2)
n

for n ≤ 10 — see Table 7. (We already saw S(2)1 , . . . , S(2)4 in Table 3.)

n S
(2)
n

1 3
2 3
3 3 3 4
4 3
5 3
6 3 3 4
7 3
8 3
9 3 3 4 3 3 3 3 4 4
10 3

Table 7: The first few glue strings S
(2)
n .

We know from Section 3 that A(2) = lim
n→∞B

(2)
n = lim

n→∞T
(1)
n and that B

(2)
n+1 = (B

(2)
n )3S

(2)
n .

Table 8 shows the beginning of the construction of A(2).
The aim is to produce a version of A(2) in which terms that are obtained by promotion are

circled, and where the subscript on each term is either 0 for a circled term or else gives the length
of the shortest Y that can be used to compute that term. Most of the work is done by a few simple
rules. However, the rules occasionally give the wrong answer and a few corrections may need to be
made by hand at the end of each round. It is the presence of these adjustments that makes our
sequence hard to analyze.

We start with B
(2)
1 = 2©0. The rules for going from B(2)n to B(2)n+1 are as follows:

(i) Write B
(2)
n as a single string, and construct a three-rowed array in which each row is a copy of

B
(2)
n , omitting all circles from the third row. This three-rowed array (after S

(2)
n is appended in step

(iii)) will form B
(2)
n+1 when read as a single string. (When constructing A

(m) we make m copies of

B
(m)
n and omit the circles from the m-th copy.)
(ii) The subscripts in rows 2 and 3 are the same as in row 1, except that terms in row 3 that are

under circled terms in row 2 have their subscripts changed to l(B
(2)
n ).

(iii) Append S
(2)
n to the end of row 3. The first term of S

(2)
n receives the subscript l(B

(2)
n ). The

subscripts on the remaining terms of S
(2)
n must be computed separately—they can be obtained

from the tabular construction of A(m+1).
(iv) Finally, a few circles in row 2 may need to be omitted and their subscripts recomputed, as well
as the subscripts on the same terms in row 3.
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In Table 8 rules (i)–(iii) give the correct answers for B
(2)
2 and B

(2)
3 . But in B

(2)
4 four terms

(marked with asterisks in Table 8) must be corrected. The first entry in row 2 of B
(2)
4 is 2©0.

However, row 1 ends with 3 3 = S
(2)
1 S

(2)
2 = Y

2, with a Y of length 1, so that 2 did not need to be

promoted and we must change 2©0 to 21. The fifth entry in row 2 of B(2)4 is 2©0. But it is preceded
by

3 2 2 2 3 3 2 2 2 3 = S
(2)
1 B

(2)
2 S

(2)
2 B

(2)
2 = Y 2 ,

with a Y of length 5, so we must change 2©0 to 25. The corresponding entries in row 3, presently
both equal to 213, also get changed to 21 and 25 respectively.

B
(2)
1 = 2©0
B
(2)
2 = 2©0

2©0
21 31

B
(2)
3 = 2©0 2©0 21 31

2©0 2©0 21 31
24 24 21 31 34

B
(2)
4 = 2©0 2©0 21 31 2©0 2©0 21 31 24 24 21 31 34

2©∗0 2©0 21 31 2©∗0 2©0 21 31 24 24 21 31 34
2∗13 213 21 31 2

∗
13 213 21 31 24 24 21 31 34 313 31 41

Table 8: Tabular construction of A(2).

When we extend Table 8 to B
(2)
10 , we find that in all only ten circles need to be removed. After

B
(2)
4 , the next changes are at B

(2)
7 , where two circles get removed because of the splittings S

(2)
4 S

(2)
5

= 3 3 = Y 2, with a Y of length 1, and S
(2)
4 B

(2)
5 S

(2)
5 B

(2)
5 = Y 2 with a Y of length 128. But not

all instances of such splittings cause circles in the table to be removed, and not all circle-removals
arise in this way. It seems difficult to explain exactly where corrections to the table are required.
However, the corrections are rare, and still fewer corrections are needed for larger values of m.

Since A(2) is also lim
n→∞T

(1)
n , we can read off the lengths of the glue strings S

(1)
n from the table.

Look at the lengths of the strings (in B
(2)
4 ) between one circle and the next: these are 1, 3, 1, 9, 4, 24,

. . .. exactly the values of σ(1)(1), σ(1)(2), . . . (cf. Table 4). If we do not make the corrections needed
in step (iv), we instead get the smoothed lengths 1, 3, 1, 8, 1, 3, 1, 24, . . .. These observations

lead to our conjectured recurrence. For example, note that the string in B
(2)
4 from the last circled

entry to the end has length 24 (which is ρ(1)(3)) and is made up of the last string in B
(2)
3 (length

8, which is ρ(1)(2)) plus the whole of B
(2)
3 (length 13, which is β

(2)(3)), plus S
(2)
3 (length 3, which

is σ(2)(3)). More generally, we have:

Observation 10. For m ≥ 1,

ρ(m)(0) = 1 ,

ρ(m)(n + 1) = ρ(m)(n) + β(m+1)(n+ 1) + σ(m+1)(n+ 1) n ≥ 0 . (30)

This recurrence is supported by all the data, although we do not have a proof.
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4.3. Estimates for the lengths β(m)(n) of the blocks

We take (29) as our starting point. Form ≥ 1, σ(m)(n) and r(m)(n) coincide for 1 ≤ n ≤ (m+1)2−1,
and are given by

σ(m)(n) = r(m)(n) =

{
1 if m+ 1 does not divide n ,
3 if m+ 1 divides n .

(31)

By iterating (29) and using (31) we find:

Lemma 11. For m ≥ 1 and 1 ≤ n ≤ (m+ 1)2 − 1,

β(m)(n) =
(m+ 1)n − 1

m
+ 2

(m+ 1)n−1 − (m+ 1)v
(m+ 1)m+1 − 1 , (32)

where v ∈ {0, 1, . . . ,m} is given by n− 1 ≡ v mod m+ 1.

In particular, we have

β(m)(n) =
(m+ 1)n − 1

m
(33)

for m ≥ 1, 1 ≤ n ≤ m+ 1, and

β(m)(n) =
(m+ 1)n + 2(m+ 1)n−m−1 − 2(m+ 1)n−m−2 − 1

m
(34)

for m ≥ 1, m+2 ≤ n ≤ 2m+2. Equation (33) explains the values in the lower half of Table 6, (34)
explains the values in the “wedge” m + 2 ≤ n ≤ 2m + 2, and (32) the values in the whole region
bounded by the “parabola” n ≤ (m+ 1)2 − 1.
The right-hand side of (32) is also a good approximation to β(m)(n) for fixed m ≥ 2 and

n ≥ (m + 1)2. The case m = 1 is special, because of the the greater differences between σ(m)(n)
and r(m)(n) when m = 1. However, σ(1)(n) is well-approximated by

β(1)(n) ≈ ε1 2n−1 , (35)

where ε1 = 3.48669886 . . ..
For our applications, the approximation

β(m)(n) ≈ εm (m+ 1)n−1 for m ≥ 1, n ≥ 1 (36)

(consistent with (32)–(35)) will be adequate, where εm is a constant on the order of 1.

4.4. Estimates for the records ρ(m)(n)

We now apply (30) to estimate the ρ(m)(n). Again using the fact that there is a simple formula for
σ(m)(n) for n ≤ m+ 2, we find that

ρ(m)(n) =
(m+ 2)n+1 + (n + 1)m(m+ 1)− 1

(m+ 1)2
(37)

for 0 ≤ n ≤ m+ 1, and

ρ(m)(n) =
(m+ 2)n+1 + 2(m+ 1)(m+ 2)n−m−2 + (n+ 3)m(m+ 1)− 1

(m+ 1)2
(38)
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for m+ 2 ≤ n ≤ 2m+ 3. Equation (37) matches the smoothed values in the lower half of Table 5,
and (38) matches the values in the “wedge” m+ 2 ≤ n ≤ 2m+ 3.
Equation (38) is in fact a good estimate of ρ(m)(n) for allm and n. An even better approximation

(which is exact in the next “wedge” of the table) is obtained by adding 2(m+1)(m+ 2)n−2m−4 to
the numerator.
The greatest differences between the exact values π(m)(n) and the smoothed values ρ(m)(n)

occur in the first row of Table 5. The ratio of terms π(m)(n + 1)/π(m)(n) in row m of that table
rapidly approaches m+ 2, and for fixed m we find that

π(m)(n) ≈ λm(m+ 2)n , (39)

where approximate values of λm are:

m : 1 2 3 4 5 6 7 · · ·
λm : .778 .447 .312 .240 .194 .163 .140 · · ·

Curve-fitting suggests that

λm ≈ .956m + 2.11
(m+ 1)2

which we approximate by

λm ≈ m+ 2

(m+ 1)2
, (40)

leading to
π(m)(n) ≈ (m+ 2)(m+ 1)n−2 (41)

for m fixed and n large.
Since the leading terms in (37) and (38) agree with (41), we will take (41) as our approximation

to both π(m)(n) and ρ(m)(n) for all m and n.

4.5. An estimate for τ (m)(n)

From equations (15), (19) we have

τ (m)(n+ 1) =

n∑
i=1

σ(m)(i), n ≥ 1 . (42)

To simplify the analysis (we are only seeking a crude estimate in this section) we suppose we

have reached the end of block B
(m)
n in A(m), where n = (m+ 1)µ + 1 for some μ ≥ 1. This block

ends with the string T
(m)
n of length τ (m)(n).

Of the (m + 1)µ strings S
(m)
i , 1 ≤ i ≤ (m + 1)µ, that appear in T (m)n , a fraction m

m+1 have

|i|m+1 = 0 and contribute π(m)(0) to the sum; a fraction m
(m+1)2 have |i|m+1 = 1 and contribute

π(m)(1); and so on. Therefore, from (42),

τ (m)((m+ 1)µ + 1) = (m+ 1)µ
µ−1∑
i=0

m

(m+ 1)i+1
π(m)(i) + π(m)(μ) ,

where the last term accounts for the final glue string S
(m)
n−1. Using (41) this becomes

τ (m)((m+ 1)µ + 1) ≈ (m+ 2)µ
(
1 +

1

(m+ 1)2

)
. (43)

We summarize the discussion in the last two sections in the following:
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Observation 12. After smoothing (cf. Observation 9), the sequence σ(m) = σ(m)(1), σ(m)(2), . . .
of the lengths of the glue strings in A(m) is a ruler sequence (25), (28), where the record values are
given by (37) and (38) (exact, for n ≤ 2m+3) and (41) (approximate, for all m and n). Equation
(43) gives an estimate for τ (m)(n).

4.6. The first occurrence of t

We use the above estimates to determine where a number t ≥ 1 appears for the first time in A. We
already know from Tables 1 and 2 that a 1 appears at position 1, a 2 at position 3, a 3 at position
9, and a 4 at position 220, so we may assume t ≥ 5.
For fixed t let x(m) be the position where t appears for the first time in the sequence A(m), for

1 ≤ m ≤ t. We will successively estimate x(t), x(t− 1), . . . , x(1), working backwards from
A(t) = t, t, . . . , t︸ ︷︷ ︸

t+1 copies

, t+ 1, . . . ,

where t appears as the leading term, and t+ 1 appears for the first time at position t+ 2. A more
detailed analysis of the beginning of A(t), omitted here, shows that t+ 2 appears for the first time
at position

(t+ 1)t+2 + 2t− 1
t

. (44)

For example, 3 appears in A at position 9, 4 in A(2) at position 42, and 5 in A(3) at position 343.
Thus x(t) = 1, x(t− 1) = t+ 1, and

x(t− 2) = (t− 1)
t + 2t− 5
t− 2 . (45)

We first consider the case t = 5. Since x(3) = 343, a 5 appears in A(2) for the first time at the

end of block B
(2)
i , where i is such that τ

(2)(i) = 343. That is, i is determined (see (42) and Table 4)
by the equation

τ (2)(i) = 1 + 1 + 3 + 1 + 1 + 9 + · · ·︸ ︷︷ ︸
i−1 terms

= 343 .

By direct calculation, i = 80, and again by direct calculation from (29), a 5 appears in A(2) at
position

x(2) = β(2)(80) = 77709404388415370160829246932345692180 ,

which is 1037.890.... So 5 appears in A = A(1) at the end of block B
(1)
i , where i is such that

τ (1)(i) = x(2). Setting m = 1 in (43) we get

τ (1)(2µ + 1) =
5

4
· 3µ = x(2) ,

hence μ = 79.211 . . ., i = 279.211.... Setting m = 1, n = 279.211... in (35) we finally obtain

x(1) = ε12
279.211... = 1010

23.323...
.

Consider now a general value of t ≥ 6. To find x(t− 3), we must solve (from (45))

τ (t−3)(i) =
(t− 1)t + 2t− 5

t− 2 .
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Setting i = (t− 2)µ + 1 and using (43) we get

(t− 1)µ
(
1 +

1

(t− 2)2
)
=
(t− 1)t + 2t− 5

t− 2 ,

hence μ ≈ t− 1, and so

x(t− 3) = β(3)((t− 2)µ + 1) = ε3(t− 2)(t−2)t−1 .

The ε3 may be ignored, since it can be absorbed into the tower of exponentials. The next iteration
gives

x(t− 4) = (t− 3)(t−3)(t−2)
t−1

and eventually we obtain

x(1) = 22
34
···
t−1

(46)

We formalize this as our final

Observation 13. The number t ≥ 5 appears for the first time in the sequence A at about position
(46).

5. Comments and generalizations

5.1. The Finiteness Conjecture

The proof of Theorem 5 would have been simpler if we had known in advance that the glue strings

S
(m)
n were finite. This would follow from the following:

Finiteness Conjecture. For integers m ≥ 2 and r ≥ 1, let x(1), x(2), . . . , x(r) be a string from
P
+
m. Let x(n+ 1) = C(x(1), x(2), . . . , x(n)) for n ≥ r. Then for some n ≥ r + 1, x(n) < m.
In other words, there is no finite starting string from P

r
m which extends under repeated appli-

cation of the map C to an infinite sequence from P
∗
m. Sooner or later a term less than m must

appear.
Although this conjecture seems very plausible, we have not been able to find a proof. If one

tries to construct a starting string which extends for a long time without dropping below m one
quickly runs into difficulties. Let m1 and m2 be respectively the smallest and largest values in the
starting string. Then no number outside the range [m1,m2] — or in fact any number not in the
starting string — may appear in the resulting sequence, for such a number is immediately followed
by a 1, terminating the sequence. So if the sequence is infinite it must be bounded.
As an experiment we considered all 2n starting strings of length n ≤ 26 consisting just of 2’s

and 3’s, and calculated the lengths of the resulting strings until just before the appearance of the
first 1. The maximum and average lengths are shown in Table 9. The average length seems to
approach n+ constant, but the maximum length is harder to understand, and it would be nice to
have more data. Does the maximum length continue to grow linearly, or are there further jumps
of ever-increasing size? We do not know.
Table 10 shows the starting strings of lengths 2, 4, 6, 8 and 11 and the strings of (record) lengths

4, 8, 14, 66 and 123 that they produce. These five starting strings are unique.
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n Max. Ave.

1 1 1
2 4 2.75
3 5 3.75
4 8 5.125
5 9 6.2187
6 14 7.5
7 15 8.5703
8 66 10.2734
9 68 11.3828
10 70 12.5293
11 123 13.6099
12 124 14.6658
13 125 15.6683
14 132 16.6957
15 133 17.7047
16 134 18.7168
17 135 19.7206
18 136 20.7278
19 138 21.7304
20 139 22.7341
21 140 23.7353
22 142 24.7372
23 143 25.7379
24 144 26.7388
25 145 27.7391
26 146 28.7396

Table 9: Maximum and average length of string produced by any starting sequence of n 2’s and
3’s, stopping when first 1 is reached.

5.2. The curling number transform

Given a sequence of integers b = b(1), b(2), . . . we may define a new sequence c = c(1), c(2), . . ., the
curling number transform of b, by

c(n) = C(b(1), . . . , b(n)), for n ≥ 1 . (47)

Our sequence A is defined by the properties that the initial term is 1 and the transformed
sequence is the original sequence shifted one place to the left.
It is interesting to apply this transformation to other sequences, particularly those for which

the definition involves properties of substrings. For example, the binary Thue-Morse sequence

0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0
1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 . . .

(A10060 in [8]) has the property that it contains no cubes UUU as substrings (see [2], [5], [6], [8]
for further information). Its curling number transform, which naturally contains only 1’s and 2’s,
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n = 2 Starting string 2 2 produces length 4:
2 2 2 3

n = 4 Starting string 2 3 2 3 produces length 8:
2 3 2 3 2 2 2 3

n = 6 Starting string 2 2 2 3 2 2 produces length 14:
2 2 2 3 2 2 2 3 2 2 2 3 3 2

n = 8 Starting string 2 3 2 2 2 3 2 3 produces length 66:
2 3 2 2 2 3 2 3 2 2 2 3 2 2 2 3 2 2 3 2 2 2 3 2 2 2 3 2 3 2
2 2 3 2 2 2 3 2 2 3 2 2 2 3 2 2 2 3 2 3 2 2 2 3 2 2 2 3 2 2
3 2 2 3 3 2

n = 11 Starting string 2 2 3 2 3 2 2 2 3 2 2 produces length 123:
2 2 3 2 3 2 2 2 3 2 2 2 3 2 2 3 2 2 2 3 2 2 2 3 2 3 2 2 2 3
2 2 2 3 2 2 3 2 2 2 3 2 2 2 3 2 3 2 2 2 3 2 2 2 3 2 2 3 2 2
2 3 2 3 2 2 2 3 2 2 2 3 2 2 3 2 2 2 3 2 2 2 3 2 3 2 2 2 3 2
2 2 3 2 2 3 2 2 2 3 2 2 2 3 2 3 2 2 2 3 2 2 2 3 2 2 3 2 3 2 2 2 3

Table 10: Starting strings of n 2’s and 3’s which extend under the map C for a record number of
steps before reaching a 1. Each entry also shows the final string (until just before the first 1 is
reached).

is
1 1 2 1 1 2 2 1 2 1 2 2 1 2 2 1
2 2 2 1 2 2 2 2 2 1 2 2 1 2 2 1 . . .

(A93914). There are many examples of ternary sequences which contain no squares, and of course
their curling number transforms are simply the all-ones sequence 1. However, the lexicographically
earliest sequence from P

∗ whose transform is 1 is the ruler sequence r mentioned in Section 4.4.
We give one further example. The Kolakoski sequence is a sequences of 1’s and 2’s defined by

b(1) = 1, b(n) = length of n-th run:

1 2 2 1 1 2 1 2 2 1 2 2 1 1 2 1
1 2 2 1 2 1 1 2 1 2 2 1 1 2 1 1 . . .

(A2 in [8]). This also contains no cubes. The transformed sequence is

1 1 2 1 2 1 1 2 2 1 2 2 2 2 1 1
2 2 2 1 1 2 2 1 2 2 2 1 2 1 1 2 . . .

(A93921).
We leave it to the interested reader to investigate the properties of the above two sequences and

of the other new sequences mentioned in the following section.

5.3. Generalizations

In this final section we briefly mention a few of the possible generalizations of the sequence A.
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(i) The recurrence (2) may be replaced by a(1) = 1, a(n + 1) = f(C(a(1), . . . , a(n))) for n ≥ 1, for
any suitable function f . For example, f(x) = floor(x/2) produces

0 0 1 0 0 1 1 1 1 2 0 0 1 0 0 1
1 1 1 2 1 0 0 1 0 0 1 1 1 1 2 0 . . .

(A91970), which presumably has an even slower rate of growth than A.

(ii) a(1) = a(2) = 1, a(n + 2) = C(a(1), . . . , a(n)) for n ≥ 1 produces
1 1 1 2 3 1 1 1 2 3 1 2 2 1 2 1
1 2 2 1 2 1 1 2 2 2 2 3 4 1 1 1 . . .

(A94006). This has the property that its curling number transform is the same sequence shifted
two places to the left.

(iii) A greedy version of A(2). Let g(1) = 2. For n ≥ 1, let k = C(g(1), . . . , g(n)). If k > 1,
g(n+ 1) = k (as in A(2)), but if k = 1, choose g(n+ 1) so that C(g(1), . . . , g(n + 1)) is maximized.
If there is more than one choice for g(n+1), pick the smallest. The resulting sequence (A94321) is:

2 2 2 3 3 2 2 2 3 3 2 2 2 3 2 2
2 3 2 2 2 3 3 2 2 2 3 2 2 2 3 2 . . .

(iv) A two-dimensional version of A. Define t(i, j), i ≥ 1, j ≥ 1, as follows: t(i, 1) = t(1, i) = a(i).
For i, j ≥ 1, t(i + 1, j + 1) = max{k1, k2}, where k1 = C(t(i + 1, 1), t(i + 1, 2), . . . , t(i + 1, j)),
k2 = C(t(1, j + 1), t(2, j + 1), . . . , t(i, j + 1)) — see Table 11 (A94781). The first two rows (or
columns) give A and the third row (or column) is A(2).

1 1 2 1 1 2 2 2 3 1 1 2 1 1 . . .
1 1 2 1 1 2 2 2 3 1 1 2 1 1 . . .
2 2 2 3 2 2 2 3 2 2 2 3 3 2 . . .
1 1 3 1 1 3 3 2 1 1 2 1 1 2 . . .
1 1 2 1 1 2 2 2 3 1 2 1 1 2 . . .
2 2 2 3 2 1 1 2 1 2 3 2 2 3 . . .
. . . . . . . . . . . . . . . . .

Table 11: A two-dimensional version of the sequence.

(v) J. Taylor [9] has suggested two broad generalizations of the original recurrence. Let ∼ be an
equivalence relation on strings of integers of each fixed length. Write

a(1)a(2) . . . a(n) = XY1Y2 . . . Yk , (48)

where the Yi are nonempty strings with Y1 ∼ Y2 ∼ · · · ∼ Yk and k is maximal; then a(n + 1) =
k. Choosing ∼ to be the identity relation gives A. Taylor has contributed several interesting
generalizations of A to [8] obtained from other equivalence relations. For example, if two strings
are equivalent if one is a permutation of the other, the resulting sequence is

1 1 2 1 1 2 2 2 3 1 1 2 1 1 2 2
2 3 2 2 2 3 2 2 2 3 3 2 2 4 1 1 . . .
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(A91976), which agrees with A for the first 19 terms. But after

1 1 2 1 1 2 2 2 3 1 1 2 1 1 2 2 2 3 2

the next term is now 2, not 1, since we can take U = 1 1 2 1 1, Y1 = 2 2 2 3 1 1 2, Y2 = 1 1 2 2 2 3 2,
where Y2 is a permutation of Y1.
(vii) More generally, Taylor suggests using a partial order ≺ on integer strings of all lengths (not
just strings of the same length), and requiring the Yi in (48) to be nonempty and satisfy Y1 ≺ Y2 ≺
· · · ≺ Yk where k is maximal. For further examples of Taylor’s sequences the reader is referred to
the entries A91975 and A92331–A92335 in [8].
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