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��� INTRODUCTION

Random numbers are the nuts and bolts of simulation� Typically� all the randomness

required by the model is simulated by a random number generator whose output is

assumed to be a sequence of independent and identically distributed �IID� U��� �� ran	

dom variables �i�e�� continuous random variables distributed uniformly over the interval

��� ���� These random numbers are then transformed as needed to simulate random

variables from di
erent probability distributions� such as the normal� exponential� Pois	

son� binomial� geometric� discrete uniform� etc�� as well as multivariate distributions

and more complicated random objects� In general� the validity of the transformation

methods depends strongly on the IID U��� �� assumption� But this assumption is false�

since the random number generators are actually simple deterministic programs trying

to fool the user by producing a deterministic sequence that looks random�

What could be the impact of this on the simulation results� Despite this problem�

are there �safe generators� What about the generators commonly available in system

libraries and simulation packages� If they are not satisfactory� how can we build better

ones� Which ones should be used� and where is the code� These are some of the topics

addressed in this chapter�
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����� Pseudorandom Numbers

To draw the winning number for several million dollars in a lottery� people would gen	

erally not trust a computer� They would rather prefer a simple physical system that

they understand well� such as drawing balls from one or more container�s� to select the

successive digits of the number �as done� for example� by Loto Quebec each week in

Montreal�� Even this requires many precautions� The balls must have identical weights

and sizes� be well mixed� and be changed regularly to reduce the chances that some

numbers come out more frequently than others in the long run� Such a procedure is

clearly not practical for computer simulations� which often require millions and millions

of random numbers�

Several other physical devices to produce random noise have been proposed and ex	

periments have been conducted using these generators� These devices include gamma

ray counters� noise diodes� and so on ���� ���� Some of these devices have been commer	

cialized and can be purchased to produce random numbers on a computer� But they are

cumbersome and they may produce unsatisfactory outputs� as there may be signi�cant

correlation between the successive numbers� Marsaglia ���� applied a battery of statis	

tical tests to three such commercial devices recently and he reports that all three failed

the tests spectacularly�

As of today� the most convenient and most reliable way of generating the random

numbers for stochastic simulations appears to be via deterministic algorithms with a

solid mathematical basis� These algorithms produce a sequence of numbers which are

in fact not random at all� but seem to behave like independent random numbers� that

is� like a realization of a sequence of IID U��� �� random variables� Such a sequence is

called pseudorandom and the program that produces it is called a pseudorandom number

generator � In simulation contexts� the term random is used instead of pseudorandom �a

slight abuse of language� for simpli�cation� and we do so in this chapter� The following

de�nition is taken from L�Ecuyer ���� ����

De�nition � A �pseudo�random number generator is a structure G � �S� s�� T� U�G��

where S is a �nite set of states� s� � S is the initial state �or seed�� the mapping
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T � S � S is the transition function� U is a �nite set of output symbols� and G � S � U

is the output function�

The state of the generator is initially s� and evolves according to the recurrence sn �

T �sn���� for n � �� �� �� � � �� At step n� the generator outputs the number un � G�sn��

The un� n � �� are the observations� and are also called the random numbers produced

by the generator� Clearly� the sequence of states sn is eventually periodic� since the

state space S is �nite� Indeed� the generator must eventually revisit a state previously

seen� that is� sj � si for some j � i � �� From then on� one must have sj�n � si�n

and uj�n � ui�n for all n � �� The period length is the smallest integer � � � such

that for some integer � � � and for all n � � � s��n � sn� The smallest � with this

property is called the transient� Often� � � � and the sequence is then called purely

periodic� Note that the period length cannot exceed jSj� the cardinality of the state

space� Good generators typically have their � very close to jSj �otherwise� there is a

waste of computer memory��

����� Example� A Linear Congruential Generator

Example � The best	known and �still� most widely used types of generators are the

simple linear congruential generators �LCGs� ���� ��� ��� ���� The state at step n is an

integer xn and the transition function T is de�ned by the recurrence

xn � �axn�� � c� mod m� ���

where m � �� a � �� and c are integers called the modulus� the multiplier � and the

additive constant � respectively� Here� �mod m denotes the operation of taking the least

nonnegative residue modulo m� In other words� multiply xn�� by a� add c� divide the

result by m� and put xn equal to the remainder of the division� One can identify sn with

xn and the state space S is the set f�� � � � � m � �g� To produce values in the interval

��� ��� one can simply de�ne the output function G by un � G�xn� � xn�m�

When c � �� this generator is called a multiplicative linear congruential generator

�MLCG�� The maximal period length for the LCG is m in general� For the MLCG it
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cannot exceed m � �� since xn � � is an absorbing state that must be avoided� Two

popular values ofm arem � ����� andm � ���� But as discussed later� these values are

too small for the requirements of today�s simulations� LCGs with such small moduli are

still in widespread use� mainly because of their simplicity and ease of implementation�

but we believe that they should be discarded and replaced by more robust generators�

For a concrete illustration� let m � ��� � � � ����������� c � �� and a � ������

These parameters were originally proposed in ����� Take x� � ������ Then

x� � ������ ����� mod m � ����������

u� � ����������m � �������������

x� � ������ ��������� mod m � �����������

u� � �����������m � �������������

x� � ������ ���������� mod m � �����������

u� � �����������m � �������������

and so on�

����	 Seasoning the Sequence with External Randomness

In certain circumstances one may want to combine the deterministic sequence with

external physical noise� The simplest and most frequently used way of doing this in

simulation contexts is to select the seed s� randomly� If s� is drawn uniformly from S�

say by picking balls randomly from a container or by tossing fair coins� the generator

can be viewed as an extensor of randomness� It stretches a short� truly random seed into

a longer sequence of random	looking numbers� De�nition � can easily be generalized to

accommodate this possibility� Add to the structure a probability distribution � de�ned

on S and say that s� is selected from ��

In some contexts� one may want to rerandomize the state sn of the generator every

now and then� or to jump ahead from sn to sn�� for some random integer 	� For example�
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certain types of slot machines in casinos use a simple deterministic random number

generator� which keeps running at full speed �i�e�� computing its successive states� even

when there is nobody playing with the machine� Whenever a player hits the appropriate

button and some random numbers are needed to determine the winning combination

�e�g�� in the game of Keno� or to draw a hand of cards �e�g�� for poker machines�� the

generator provides the output corresponding to its current state� Each time the player

hits the button� he or she selects a 	� as just mentioned� This 	 is random �although

not uniformly distributed�� Since typical generators can advance by more than � million

states per second� hitting the button at the right time to get a speci�c state or predicting

the next output value from the previous ones is almost impossible�

One could go further and select not only the seed� but also some parameters of the

generator at random� For example� for a MLCG� one may select the multiplier a at

random from a given set of values �for a �xed m� or select the pairs �a�m� at random

from a given set� Certain classes of generators for cryptographic applications are de�ned

in a way that the parameters of the recurrence �e�g�� the modulus� are viewed as part of

the seed and must be generated randomly for the generator to be safe �in the sense of

unpredictability��

After observing that physical phenomena by themselves are bad sources of random

numbers and that the deterministic generators may produce sequences with too much

structure� Marsaglia ���� decided to combine the output of some random number gen	

erators with various sources of white and black noise� such as music� pictures� or noise

produced by physical devices� The combination was done by addition modulo � �bitwise

exclusive	or� between the successive bits of the generator�s output and of the binary

�les containing the noise� The result was used to produce a CD	ROM containing ���

billion random bits� which appear to behave as independent bits distributed uniformly

over the set f�� �g� Such a CD	ROM may be interesting but is no universal solution� Its

use cannot match the speed and convenience of a good generator� and some applications

require much more random numbers than provided on this disk�
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����� Design of Good Generators

How can one build a deterministic generator whose output looks totally random� Per	

haps a �rst idea is to write a computer program more or less at random that can also

modify its own code in an unpredictable way� However� experience shows that random

number generators should not be built at random �see Knuth ���� for more discussion

on this�� Building a good random number generator may look easy on the surface� but

it is not� It requires a good understanding of heavy mathematics�

The techniques used to evaluate the quality of random number generators can be

partitioned into two main classes� The structural analysis methods �sometimes called

theoretical tests� and the statistical methods �also called empirical tests�� An empirical

test views the generator as a black box� It observes the output and applies a statistical

test of hypothesis to catch up signi�cant statistical defects� An unlimited number of such

tests can be designed� Structural analysis� on the other hand� studies the mathematical

structure underlying the successsive values produced by the generator� most often over

its entire period length� For example� vectors of t successive output values of a LCG

can be viewed as points in the t	dimensional unit hypercube ��� ��t� It turns out that

all these points� over the entire period of the generator� form a regular lattice structure�

As a result� all the points lie in a limited number of equidistant parallel hyperplanes� in

each dimension t� Computing certain numerical �gures of merit for these lattices �e�g��

computing the distances between neighboring hyperplanes� is an example of structural

analysis� Statistical testing and structural analysis is discussed more extensively in

forthcoming sections� We emphasize that all these methods are in a sense heuristic�

None ever proves that a particular generator is perfectly random or fully reliable for

simulation� The best they can do is improve our con�dence in the generator�

����
 Overview of What Follows

We now give an overview of the remainder of this chapter� In the next section we por	

tray our ideal random number generator� The desired properties include uniformity�

independence� long period� rapid jump	ahead capability� ease of implementation� and
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e�ciency in terms of speed and space �memory size used�� In certain situations� unpre	

dictability is also an issue� We discuss the scope and signi�cance of structural analysis

as a guide to select families of generators and choose speci�c parameters� Section ���

covers generators based on linear recurrences� This includes the linear congruential�

multiple recursive� multiply	with	carry� Tausworthe� generalized feedback shift register

generators� all of which have several variants� and also di
erent types of combinations of

these� We study their structural properties at length� Section ��� is devoted to methods

based on nonlinear recurrences� such as inversive and quadratic congruential generators�

as well as other types of methods originating from the �eld of cryptology� Section ���

summarizes the ideas of statistical testing� In Section ��� we outline the speci�cations

of a modern uniform random number package and refers to available implementations�

We also discuss parallel generators brie�y�

��� DESIRED PROPERTIES

����� Unpredictability and �True� Randomness

From the user�s perspective� an ideal random number generator should be like a black box

producing a sequence that cannot be distinguished from a truly random one� In other

words� the goal is that given the output sequence �u�� u�� � � �� and an in�nite sequence

of IID U��� �� random variables� no statistical test �or computer program� could tell

which is which with probability larger than � �� An equivalent requirement is that after

observing any �nite number of output values� one cannot guess any given bit of any given

unobserved number better than by �ipping a fair coin� But this is an impossible dream�

The pseudorandom sequence can always be determined by observing it su�ciently� since

it is periodic� Similarly� for any periodic sequence� if enough computing time is allowed�

it is always possible to construct a statistical test that the sequence will fail spectacularly�

To dilute the goal we may limit the time of observation of the sequence and the

computing time for the test� This leads to the introduction of computational complexity

into the picture� More speci�cally� we now consider a family of generators� fGk� k �

�� �� � � �g� indexed by an integral parameter k equal to the number of bits required to
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represent the state of the generator� We assume that the time required to compute the

functions T and G is �at worst� polynomial in k� We also restrict our attention to the

class of statistical tests whose running time is polynomial in k� Since the period length

typically increases as �k� this precludes the tests that exhaust the period� A test is also

allowed to toss coins at random� so its outcome is really a random variable� We say that

the family fGkg is polynomial�time perfect if� for any polynomial time statistical test

trying to distinguish the output sequence of the generator from an in�nite sequence of

IID U��� �� random variables� the probability that the test makes the right guess does

not exceed ��� � e�k�� where 
 is a positive constant� An equivalent requirement is

that no polynomial	time algorithm can predict any given bit of un with probability of

success larger than ��� � e�k�� after observing u�� � � � � un��� for some 
 � �� This setup

is based on the idea that what cannot be computed in polynomial time is practically

impossible to compute if k is reasonably large� It was introduced in cryptology� where

unpredictability is a key issue �see ��� �� ��� ��� and other references given there��

Are e�cient polynomial	time perfect families of generators available� Actually� no	

body knows for sure whether or not such a family exists� But some generator families

are conjectured to be polynomial	time perfect� The one with apparently the best behav	

ior so far is the BBS� introduced by Blum� Blum� and Shub ���� explained in the next

example�

Example � The BBS generator of size k is de�ned as follows� The state space Sk is

the set of triplets �p� q� x� such that p and q are �k���	bit prime integers� p�� and q��

are both divisible by �� and x is a quadratic residue modulo m � pq� relatively prime to

m �i�e�� x can be expressed as x � y� mod m for some integer y that is not divisible by p

or q�� The initial state �seed� is chosen randomly from Sk� with the uniform distribution�

The state then evolves as follows� p and q remain unchanged and the successive values

of x follow the recurrence

xn � x�n�� mod m�

At each step� the generator outputs the 	k least signi�cant bits of xn �i�e�� un �

xn mod ��k�� where 	k � K log k for some constant K� The relevant conjecture here
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is that with probability at least � � e�k� for some 
 � �� factoring m �i�e�� �nding p

or q� given m� cannot be done in polynomial time �in k�� Under this conjecture� the

BBS generator has been proved polynomial	time perfect ��� ����� Now� a down	to	earth

question is� How large should be k to be safe in practice� Also� how small should be

K� Perhaps no one really knows� A k larger than a few thousands is probably pretty

safe but makes the generator too slow for general simulation use�

Most of the generators discussed in the remainder of this chapter are known not to be

polynomial	time perfect� However� they seem to have good enough statistical properties

for most reasonable simulation applications�

����� What Is a Random Sequence

The idea of a truly random sequence makes sense only in the �abstract� framework of

probability theory� Several authors �see� e�g�� ����� give de�nitions of a random sequence�

but these de�nitions require nonperiodic in�nite	length sequences� Whenever one selects

a generator with a �xed seed� as in De�nition �� one always obtains a deterministic

sequence of �nite length �the length of the period� which repeats itself inde�nitely�

Choosing such a random number generator then amounts to selecting a �nite	length

sequence� But among all sequences of length � of symbols from the set U � for given �

and �nite U � which ones are better than others� Let jU j be the cardinality of the set

U � If all the symbols are chosen uniformly and independently from U � each of the jU j�
possible sequences of symbols from U has the same probability of occurring� namely

jU j��� So it appears that no particular sequence �i�e�� no generator� is better than any

other� A pretty disconcerting conclusion! To get out of this dead end� one must take a

di
erent point of view�

Suppose that a starting index n is randomly selected� uniformly from the set f�� �� � � � �
�g� and consider the output vector �or subsequence� un � �un� � � � � un�t���� where t� ��

Now� un is a �truly� random vector� We would like un to be uniformly distributed �or

almost� over the set U t of all vectors of length t� This requires � � jU jt� since there are

at most � di
erent values of un in the sequence� For � � jU jt� the set " � fun� � �
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n � �g can cover only part of the set U t� Then one may ask " to be uniformly

spread over U t� For example� if U is a discretization of the unit interval ��� ��� such as

U � f�� ��m� ��m� � � � � �m� ���mg for some large integer m� and if the points of " are

evenly distributed over U t� they are also �pretty much� evenly distributed over the unit

hypercube ��� ��t�

Example 	 Suppose that U � f�� ������ ������ � � � � ������g and that the period of

the generator is � � ���� Here we have jU j � ��� and � � jU j�� In dimension �� the

pairs un � �un� un��� can be uniformly distributed over U�� and this happens if and

only if each pair of successive values of the form �i����� j������ for � � i� j � ��� occurs

exactly once over the period� In dimension t � �� we have jU jt � ���t points to cover

but can cover only ��� of those because of the limited period length of our generator� In

dimension �� for instance� we can cover only ��� points out of ���� We would like those

��� points that are covered to be very uniformly distributed over the unit cube ��� ����

An even distribution of " over U t� in all dimensions t� will be our basis for discrimi	

nating among generators� The rationale is that under these requirements� subsequences

of any t successive output values produced by the generator� from a random seed� should

behave much like random points in the unit hypercube� This captures both uniformity

and independence� If un � �un� � � � � un�t��� is generated according to the uniform dis	

tribution over ��� ��t� the components of un are independent and uniformly distributed

over ��� ��� This idea of looking at what happens when the seed is random� for a given

�nite sequence� is very similar to the scanning ensemble idea of Compagner ���� ����

except that we use the framework of probability theory instead�

The reader may have already noticed that under these requirements� " will not

look at all like a random set of points� because its distribution over U t is too even

�or superuniform� as some authors say ������� But what the foregoing model assumes

is that only a few points are selected at random from the set "� In this case� the

best one can do for these points to be distributed approximately as IID uniforms is to

take " superuniformly distributed over U t� For this to make some sense� � must be
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several orders of magnitude larger than the number of output values actually used by

the simulation�

To assess this even distribution of the points over the entire period� some �theoretical�

understanding of their structural properties is necessary� Generators whose structural

properties are well understood and precisely described may look less random� but those

that are more complicated and less understood are not necessarily better� They may

hide strong correlations or other important defects� One should avoid generators without

convincing theoretical support� As a basic requirement� the period length must be known

and huge� But this is not enough� Analyzing the equidistribution of the points as just

discussed� which is sometimes achieved by studying the lattice structure� usually gives

good insight on how the generator behaves� Empirical tests can be applied thereafter�

just to improve one�s con�dence�

����	 Discrepancy

A well	established class of measures of uniformity for �nite sequences of numbers are

based on the notion of discrepancy � This notion and most related results are well covered

by Niederreiter ������ We only recall the most basic ideas here�

Consider the N points un � �un� � � � � un�t���� for n � �� � � � � N � �� in dimension

t� formed by �overlapping� vectors of t successive output values of the generator� For

any hyper	rectangular box aligned with the axes� of the form R �
Qt

j����j� j�� with

� � �j � j � �� let I�R� be the number of points un falling into R� and V �R� �Qt
j���j � �j� be the volume of R� Let R be the set of all such regions R� and

D
	t

N � max

R�R
jV �R�� I�R��N j�

This quantity is called the t	dimensional �extreme� discrepancy of the set of points

fu�� � � � �uN��g� If we impose �j � � for all j� that is� we restrict R to those boxes

which have one corner at the origin� then the corresponding quantity is called the star

discrepancy � denoted by D
�	t

N � Other variants also exist� with richer R�
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A low discrepancy value means that the points are very evenly distributed in the

unit hypercube� To get superuniformity of the sequence over its entire period� one

might want to minimize the discrepancy D	t

� or D�	t


� for t � �� �� � � �� A major practical

di�culty with discrepancy is that it can be computed only for very special cases� For

LCGs� for example� it can be computed e�ciently in dimension t � �� but for larger

t� the computing cost then increases as O�N t�� In most cases� only �upper and lower�

bounds on the discrepancy are available� Often� these bounds are expressed as orders

of magnitude as a function of N � are de�ned for N � �� and or are averages over a

large �speci�c� class of generators �e�g�� over all full	period MLCGs with a given prime

modulus�� Discrepancy also depends on the rectangular orientation of the axes� in

contrast to other measures of uniformity� such as the distances between hyperplanes for

LCGs �see Section ������� On the other hand� it applies to all types of generators� not

only those based on linear recurrences�

We previously argued for superuniformity over the entire period� which means seeking

the lowest possible discrepancy� When a subsequence of length N is used �for N � ���

starting� say� at a random point along the entire sequence� the discrepancy of that sub	

sequence should behave �viewed as a random variable� as the discrepancy of a sequence

of IID U��� �� random variables� The latter is �roughly� of order O�N����� for both the

star and extreme discrepancies�

Niederreiter ����� shows that the discrepancy of full	period MLCGs over their en�

tire period �of length � � m � ��� on the average over multipliers a� is of order

O�m���logm�t log log�m����� This order is much smaller �for large m� than O�m������

meaning superuniformity� Over small fractions of the period length� the available bounds

on the discrepancy are more in accordance with the law of the iterated logarithm ������

This is yet another important justi�cation for never using more than a negligible fraction

of the period�

Suppose now that numbers are generated in ��� �� with L fractional binary digits�

This gives resolution ��L� which means that all un�s are multiples of ��L� It then follows

������� that D
�	t

N � ��L for all t � � and N � �� Therefore� as a necessary condition

for the discrepancy to be of the right order of magnitude� the resolution ��L must be
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small enough for the number of points N that we plan to generate� ��L should be much

smaller than N����� A too coarse discretization implies a too large discrepancy�

����� Quasi�random Sequences

The interest in discrepancy stems largely from the fact that deterministic error bounds

for �Monte Carlo� numerical integration of a function are available in terms of D
	t

N

and of a certain measure of variability of the function� In that context� the smaller the

discrepancy� the better �because the aim is to minimize the numerical error� not really to

imitate IID U��� �� random variables�� Sequences for which the discrepancy of the �rst

N values is small for all N are called low�discrepancy or quasi�random sequences ������

Numerical integration using such sequences is called quasi�Monte Carlo integration� To

estimate the integral using N points� one simply evaluates the function �say� a function

of t variables� at the �rst N points of the sequence� takes the average� multiplies by

the volume of the domain of integration� and uses the result as an approximation of the

integral� Speci�c low	discrepancy sequences have been constructed by Sobol�� Faure�

and Niederreiter� among others �see ������� Owen ����� gives a recent survey of their

use� In this chapter we concentrate on pseudorandom sequences and will not discuss

quasi�random sequences further�

����
 Long Period

Let us now return to the desired properties of pseudorandom sequences� starting with the

length of the period� What is long enough� Suppose that a simulation experiment takes

N random numbers from a sequence of length �� Several reasons justify the need to take

� 	 N �see� e�g�� ���� ��� ��� ���� ������ Based on geometric arguments� Ripley �����

suggests that � 	 N� for linear congruential generators� The papers ���� ��� provide

strong experimental support for this� based on extensive empirical tests� Our previous

discussion also supports the view that � must be huge in general�

Period lengths of ��� or smaller� which are typical for the default generators of many

operating systems and software packages� are unacceptably too small� Such period
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lengths can be exhausted in a matter of minutes on today�s workstations� Even � � ���

is a relatively small period length� Generators with period lengths over ���� are now

available�

����� E�ciency

Some say that the speed of a random number generator �the number of values that it

can generate per second� say� is not very important for simulation� since generating the

numbers typically takes only a tiny fraction of the simulation time� But there are several

counterexamples� such as for certain large simulations in particle physics ����� or when

using intensive Monte Carlo simulation to estimate with precision the distribution of a

statistic that is fast to compute but requires many random numbers� Moreover� even if a

fast generator takes only� say� �# of the simulation time� changing to another one that is

�� times slower will approximately double the total simulation time� Since simulations

often consume several hours of CPU time� this is signi�cant�

The memory size used by a generator might also be important in general� espe	

cially since simulations often use several generators in parallel� for instance to maintain

synchronization for variance reduction purposes �see Section ��� and ��� ��� for more

details��

����� Repeatability� Splitting Facilities� and Ease of Implementation

The ability to replicate exactly the same sequence of random numbers� called repeatabil�

ity � is important for program veri�cation and to facilitate the implementation of certain

variance reduction techniques ��� ��� ��� ����� Repeatability is a major advantage of

pseudorandom sequences over sequences generated by physical devices� The latter can

of course be stored on disks or other memory devices� and then reread as needed� but

this is less convenient than a good pseudorandom number generator that �ts in a few

lines of code in a high	level language�

A code is said to be portable if it works without change and produces exactly the

same sequence �at least up to machine accuracy� across all �standard compilers and

��



computers� A portable code in a high	level language is clearly much more convenient

than a machine	dependent assembly	language implementation� for which repeatability

is likely to be more di�cult to achieve�

Ease of implementation also means the ease of splitting the sequence into �long�

disjoint substreams and jumping quickly from one substream to the next� In Section ���

we show why this is important� For this� there should be an e�cient way to compute the

state sn�� for any large 	� given sn� For most linear	type generators� we know how to do

that� But for certain types of nonlinear generators and for some methods of combination

�such as shu�ing�� good jump	ahead techniques are unknown� Implementing a random

number package as described in Section ��� requires e�cient jump	ahead techniques�

����� Historical Accounts

There is an enormous amount of scienti�c literature on random number generation� Law

and Kelton ���� present a short �but interesting� historical overview� Further surveys

and historical accounts of the old days are provided in ���� ��� �����

Early attempts to construct pseudorandom number generators have given rise to all

sorts of bad designs� sometimes leading to disatrous results� An illustrative example is

the middle�square method� which works as follows �see� e�g�� ���� ����� Take a b	digit

number xi�� �say� in base ��� with b even�� square it to obtain a �b	digit number �perhaps

with zeros on the left�� and extract the b middle digits to de�ne the next number xi� To

obtain an output value ui in ��� ��� divide xi by ��b� The period length of this generator

depends on the initial value and is typically very short� sometimes of length � �such as

when the sequence reaches the absorbing state xi � ��� Hopefully� it is no longer used�

Another example of a bad generator is RANDU �see G� in Table ���

��



��� LINEAR METHODS

��	�� Multiple�Recursive Generator

Consider the linear recurrence

xn � �a�xn�� � 
 
 
� akxn�k� mod m� ���

where the order k and the modulus m are positive integers� while the coe�cients

a�� � � � � ak are integers in the range f��m � ��� � � � � m � �g� De�ne ZZm as the set

f�� �� � � � � m��g on which operations are performed modulom� The state at step n of the

multiple recursive generator �MRG� ���� ��� ���� is the vector sn � �xn� � � � � xn�k��� �
ZZ

k
m� The output function can be de�ned simply by un � G�sn� � xn�m� which gives

a value in ��� ��� or by a more re�ned transformation if a better resolution than ��m is

required� The special case where k � � is the MLCG mentioned previously�

The characteristic polynomial P of ��� is de�ned by

P �z� � zk � a�z
k�� � 
 
 
 � ak� ���

The maximal period length of ��� is � � mk � �� reached if and only if m is prime and

P is a primitive polynomial over ZZm� identi�ed here as the �nite �eld with m elements�

Suppose that m is prime and let r � �mk � ����m� ��� The polynomial P is primitive

over ZZm if and only if it satis�es the following conditions� where everything is assumed

to be modulo m �see �����

�a� �����k��ak�	m��
�q �� � for each prime factor q of m� �

�b� zr mod P �z� � ����k��ak

�c� zr�q mod P �z� has degree � � for each prime factor q of r� � � q � r�

For k � � and a � a� �the MLCG case�� these conditions simplify to a �� � �mod m�

and a	m��
�q �� � �modm� for each prime factor q ofm��� For large r� �nding the factors

q to check condition �c� can be too di�cult� since it requires the factorization of r� In this

��



case� the trick is to choose m and k so that r is prime �this can be done only for prime

k�� Testing primality of large numbers �using probabilistic algorithms� for example� as

in ���� ����� is much easier than factoring� Given m� k� and the factorizations of m� �

and r� primitive polynomials are generally easy to �nd� simply by random search�

If m is not prime� the period length of ��� has an upper bound typically much lower

than mk � �� For k � � and m � �e� e � �� the maximum period length is �e��� which

is reached if a� � � or � �mod �� and x� is odd ���� p� ���� Otherwise� if m � pe for p

prime and e � �� and k � � or p � �� the upper bound is �pk � ��pe�� ����� Clearly�

p � � is very convenient from the implementation point of view� because the modulo

operation then amounts to chopping	o
 the higher	order bits� So to compute ax mod m

in that case� for example with e � �� on a ��	bit computer� just make sure that the

over�ow	checking option or the compiler is turned o
� and compute the product ax using

unsigned integers while ignoring the over�ow�

However� taking m � �e imposes a big sacri�ce on the period length� especially for

k � �� For example� if k � � and m � ��� � � �a prime�� the maximal period length is

���������� � ����� But for m � ��� and the same value of k� the upper bound becomes

� � ��� � ������� � ���� which is more than ���� times shorter� For k � � and p � ��

an upper bound on the period length of the ith least signi�cant bit of xn is max��� �i���

���� and if a full cycle is split into �d equal segments� all segments are identical except

for their d most signi�cant bits ���� ���� For k � � and p � �� the upper bound on the

period length of the ith least signi�cant bit is ��k � ���i��� So the low	order bits are

typically much too regular when p � �� For k � � and m � ���� for example� the least

signi�cant bit has period length at most �� � � � ���� the second least signi�cant bit

has period length at most ���� � �� � ���� and so on�

Example � Consider the recurrence xn � �����xn�� mod ��� with x� � ������ The

�rst eight values of xn� in base �� and in base �� are

x� � ����� � ����������������

x� � ����� � ����������������

��



x� � ����� � ����������������

x� � ���� � ����������������

x� � ����� � ����������������

x � ���� � ����������������

x� � ����� � ����������������

x� � ����� � �����������������

The last two bits are always the same� The third least signi�cant bit has a period length

of �� the fourth least signi�cant bit has a period length of �� and so on�

Adding a constant c as in ��� can slightly increase the period	length� The LCG with

recurrence ��� has period length m if and only if the following conditions are satis�ed

����� p� ����

�� c is relatively prime to m�

�� a � � is a multiple of p for every prime factor p of m �including m itself if m is

prime��

�� If m is a multiple of �� then a� � is also a multiple of ��

For m � �e � �� these conditions simplify to c is odd and a mod � � �� But the low	

order bits are again too regular� The period length of the ith least signi�cant bit of xn

is at most �i�

A constant c can also be added to the right side of the recurrence ���� One can show

�see ����� that a linear recurrence of order k with such a constant term is equivalent

to some linear recurrence of order k � � with no constant term� As a result� an upper

bound on the period length of such a recurrence with m � pe is �pk��� ��pe��� which is

much smaller than mk for large e and k�

All of this argues against the use of power	of	� moduli in general� despite their

advantage in terms of implementation� It favors prime moduli instead� Later� when

��



discussing combined generators� we will also be interested in moduli that are the products

of a few large primes�

��	�� Implementation for Prime m

For k � � and primem� for the characteristic polynomialP to be primitive� it is necessary

that ak and at least another coe�cient aj be nonzero� From the implementation point

of view� it is best to have only two nonzero coe�cients� that is� a recurrence of the form

xn � �arxn�r � akxn�k� mod m ���

with characteristic trinomial P de�ned by P �z� � zk � arz
k�r� ak� Note that replacing

r by k � r generates the same sequence in reverse order�

When m is not a power of �� computing and adding the products modulo m in ���

or ��� is not necessarily straightforward� using ordinary integer arithmetic� because of

the possibility of over�ow� The products can exceed the largest integer representable on

the computer� For example� if m � ��� � � and a� � ������ then xn�� can be as large

as ��� � �� so the product a�xn�� can easily exceed ���� L�Ecuyer and C$ot�e ���� study

and compare di
erent techniques for computing a product modulo a large integer m�

using only integer arithmetic� so that no intermediate result ever exceeds m� Among

the general methods� working for all representable integers and easily implementable in

a high	level language� decomposition was the fastest in their experiments� Roughly� this

method simply decomposes each of the two integers that are to be multiplied in two

blocks of bits �e�g�� the �� least signi�cant bits and the �� most signi�cant ones� for a

��	bit integer� and then cross	multiplies the blocks and adds �modulo m� just as one

does when multiplying large numbers by hand�

There is a faster way to compute ax mod m for � � a� x � m� called approximate

factoring � which works under the condition that

a �m mod a� � m� ���

This condition is satis�ed if and only if a � i or a � bm�ic for i � p
m �here bxc denotes

the largest integer smaller or equal to x� so bm�ic is the integer division of m by i�� To

��



implement the approximate factoring method� one initially precomputes �once for all�

the constants q � bm�ac and r � m mod a� Then� for any positive integer x � m� the

following instructions have the same e
ect as the assignment x ax mod m� but with

all intermediate �integer� results remaining strictly between �m and m ��� ��� �����

y  bx�qc�
x a�x� yq�� yr�

IF x � � THEN x x�m END�

As an illustration� if m � ��� � � and a � ������ the generator satis�es the condition�

since ����� �
p
m� In this case� one has q � ������ and r � �����

H%ormann and Der�inger ���� give a di
erent method� which is about as fast� for the

case where m � ���� �� Fishman ���� p� ���� also uses a di
erent method to implement

the LCG with m � ��� � � and a � ��������� which does not satisfy ����

Another approach is to represent all the numbers and perform all the arithmetic

modulo m in double	precision �oating point� This works provided that the multipliers

ai are small enough so that the integers aixn�i and their sum are always represented

exactly by the �oating	point values� A su�cient condition is that the �oating	point

numbers are represented with at least

dlog� ��m� ���a� � 
 
 
� ak��e

bits of precision in their mantissa� where dxe denotes the smallest integer larger or

equal to x� On computers with good ��	bit �oating	point hardware �most computers

nowadays�� this approach usually gives by far the fastest implementation �see� e�g�� ����

for examples and timings��

��	�	 Jumping Ahead

To jump ahead from xn to xn�� with an MLCG� just use the relation

xn�� � a�xn mod m � �a� mod m�xn mod m�

��



If many jumps are to be performed with the same 	� the constant a� mod m can be

precomputed once and used for all subsequent computations�

Example 
 Again� let m � ����������� a � ������ and x� � ������ Suppose that we

want to compute x� directly from x�� so 	 � �� One easily �nds that ������ mod m �

���������� and x� � ����������x� mod m � ����������� which agrees with the value

given in Example �� Of course� we are usually interested in much larger values of 	� but

the method works the same way�

For the LCG� with c �� �� one has

xn�� �

�
a�xn �

c�a� � ��

a� �

�
mod m�

To jump ahead with the MRG� one way is to use the fact that it can be represented as

a matrix MLCG� Xn � AXn�� mod m� where Xn is sn represented as a column vector

and A is a k� k square matrix� Jumping ahead is then achieved in the same way as for

the MLCG�

Xn�� � A�Xn mod m � �A� mod m�Xn mod m�

Another way is to transform the MRG into its polynomial representation ����� in which

jumping ahead is easier� and then apply the inverse transformation to recover the original

representation�

��	�� Lattice Structure of LCGs and MRGs

A lattice of dimension t� in the t	dimensional real space IRt� is a set of the form

L �

��
�V �

tX
j��

zjVj j each zj � ZZ

��
	 � ���

where ZZ is the set of all integers and fV�� � � � � Vtg is a basis of IRt� The lattice L is thus

the set of all integer linear combinations of the vectors V�� � � � � Vt� and these vectors are

called a lattice basis of L� The basis fW�� � � � �Wtg of IRt which satis�es V �
iWj � �ij

for all � � i� j � t �where the prime means �transpose and where �ij � � if i � j� �

��



otherwise� is called the dual of the basis fV�� � � � � Vtg� and the lattice generated by this

dual basis is called the dual lattice to L�

Consider the set

Tt � fun � �un� � � � � un�t��� j n � �� s� � �x�� � � � � xk��� � ZZ
k
mg ���

of all overlapping t	tuples of successive values produced by ���� with un � xn�m� from

all possible initial seeds� Then this set Tt is the intersection of a lattice Lt with the

t	dimensional unit hypercube I t � ��� ��t� For more detailed studies and to see how to

construct a basis for this lattice Lt and its dual� see ���� ��� ��� ���� For t � k it is

clear from the de�nition of Tt that each vector �x�� � � � � xt��� in ZZ
t
m can be taken as s��

so Tt � ZZ
t
m�m � �ZZt�m� � I t� that is� Lt is the set of all t	dimensional vectors whose

coordinates are multiples of ��m� and Tt is the set of mt points in Lt whose coordinates

belong to f�� ��m� � � � � �m � ���mg� For a full	period MRG� this also holds if we �x

s� in the de�nition of Tt to any nonzero vector of ZZkm� and then add the zero vector

to Tt� In dimension t � k� the set Tt contains only mk points� while ZZtm�m contains

mt points� Therefore� for large t� Tt contains only a small fraction of the t	dimensional

vectors whose coordinates are multiples of ��m�

For full	period MRGs� the generator covers all of Tt except the zero state in one

cycle� In other cases� such as for MRGs with nonprime moduli or MLCGs with power	

of	� moduli� each cycle covers only a smaller subset of Tt� and the lattice generated by

that subset is often equal to Lt� but may in some cases be a strict sublattice or subgrid

�i�e�� a shifted lattice of the form V� � L where V� � IRt and L is a lattice�� In the

latter case� to analyze the structural properties of the generator� one should examine

the appropriate sublattice or subgrid instead of Lt� Consider� for example� an MLCG

for which m is a power of �� a mod � � �� and x� is odd� The t	dimensional points

constructed from successive values produced by this generator form a subgrid of Lt

containing one	fourth of the points ��� ���� For a LCG with m a power of � and c �� ��

with full period length � � m� the points all lie in a grid that is a shift of the lattice

Lt associated with the corresponding MLCG �with the same a amd m�� The value of c

determines only the shifting and has no other e
ect on the lattice structure�
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Figure �� All pairs �un� un��� for the LCG with m � ��� and a � ���

Example � Figures � to � illustrate the lattice structure of a small� but instructional�

LCGs with �prime� modulusm � ��� and full period length � � ���� in dimension t � ��

They show all ��� pairs of successive values �un� un��� produced by these generators�

for the multipliers a � ��� a � �� and a � ��� respectively� In each case� one clearly

sees the lattice structure of the points� Any pair of vectors forming a basis determine

a parallelogram of area � ���� This holds more generally� In dimension t� the vectors

of any basis of Lt determine a parallelepiped of volume ��mk� Conversely� any set of t

vectors that determine such a parallelepiped form a lattice basis�

The points are much more evenly distributed in the square for a � �� than for

a � ��� and slightly more evenly distributed for a � �� than for a � �� The points of Lt

are generally more evenly distributed when there exists a basis comprised of vectors of

similar lengths� One also sees from the �gures that all the points lie in a relative small

number of equidistant parallel lines� In Figure �� only two lines contain all the points

and this leaves large empty spaces between the lines� which is bad�
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Figure �� All pairs �un� un��� for the LCG with m � ��� and a � ��

In general� the lattice structure implies that all the points of Tt lie on a family of

equidistant parallel hyperplanes� Among all such families of parallel hyperplanes that

cover all the points� take the one for which the successive hyperplanes are farthest apart�

The distance dt between these successive hyperplanes is equal to ���t� where �t is the

length of a shortest nonzero vector in the dual lattice to Lt� Computing a shortest

nonzero vector in a lattice L means �nding the combination of values of zj in ��� giving

the shortest V � This is a quadratic optimization problem with integer variables and can

be solved by a branch	and	bound algorithm� as in ���� ���� In these papers the authors

use an ellipsoid method to compute the bounds on the zj for the branch	and	bound�

This appears to be the best �general� approach known to date and is certainly much

faster than the algorithm given in ���� and ����� This idea of analyzing dt was introduced

by Coveyou and MacPherson ���� through the viewpoint of spectral analysis� For this

historical reason� computing dt is often called the spectral test �

The shorter the distance dt� the better� because a large dt means thick empty slices
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Figure �� All pairs �un� un��� for the LCG with m � ��� and a � ���

of space between the hyperplanes� One has the theoretical lower bound

dt � d�t �
�

�tmk�t
� ���

where �t is a constant which depends only on t and whose exact value is currently

known only for t � � ����� So� for t � � and T � �� one can de�ne the �gures of merit

St � d�t�dt and MT � mink�t�T St� which lie between � and �� Values close to � are

desired� Another lower bound on dt� for t � k� is �see �����

dt �


�� � kX

j��

a�j

�
A
����

� ���

This means that an MRG whose coe�cients aj are small is guaranteed to have a large

�bad� dt�

Other �gures of merit have been introduced to measure the quality of random number

generators in terms of their lattice structure� For example� one can count the minimal

number of hyperplanes that contain all the points or compute the ratio of lengths of
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the shortest and longest vectors in a Minkowski	reduced basis of the lattice� For more

details on the latter� which is typically much more costly to compute than dt� the reader

can consult ���� and the references given there� These alternative �gures of merit do not

tell us much important information in addition to dt�

Tables � and � give the values of dt and St for certain LCGs and MRGs� All these

generators have full period length� The LCGs of the �rst table are well known and

most are �or have been� heavily used� For m � ��� � �� the multiplier a � ���������

was found by Fishman and Moore ���� in an exhaustive search for the MLCGs with the

best value of M� for this value of m� It is used in the GPSS H simulation environment�

The second multiplier� a � ������ was originally proposed in ����� is suggested in many

simulation books and papers �e�g�� ��� ���� ����� and appears in several software systems

such as the SLAM II and SIMAN simulation programming languages� MATLAB �����

the IMSL statistical library ����� and in operating systems for the IBM and Macintosh

computers� It satis�es condition ���� The IMSL library also has available the two

multipliers ��������� and ���������� with the same modulus� as well as the possibility

of adding a shu&e to the LCG� The multiplier a � ��������� was proposed in ������ is

recommended in ���� ��� among others� and is used in software such as the SIMSCRIPT

II�� and INSIGHT simulation programming languages� Generator G�� with modulus

m � ��� and multiplier a � ������ is the infamous RANDU generator� used for a

long time in the IBM ��� operating system� Its lattice structure is particularly bad in

dimension �� where all the points lie in only �� parallel planes� Law and Kelton ����

give a graphical illustration� Generator G�� with m � ���� a � ������ and c � �� is used

in the VAX VMS operating system� The LCG G�� with modulus m � ���� multiplier

a � ������������ and constant c � ��� is the generator implemented in the procedure

drand�� of the SUN Unix system�s library ������ G�� whose period length is slighly less

than ���� is used in the Maple mathematical software� We actually recommend none

of the generators G� to G�� Their period lengths are too short and they fail many

statistical tests �see Section �����

In Table �� G� and G� are two MRGs of order � found by a random search for

multipliers with a �good lattice structure in all dimensions t � ��� among those giving
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Table �� Distances between hyperplanes for some LCGs
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k � � � � � � �

a ������	 �
�� 
���
���
 
		�� 
��
� �	��������� ������

���

c � � � � � �� �

� 	�� � 	 	�� � 	 	�� � 	 	�� 	�� 	�� ���� � �	

S� ��
�� �����	 ����� ������ ��
	�� ��	��� ���	��

S� ��
�� ������ ������ ������ ������ ����� ����



S� ��
�� ��	�	� ����� ���	�	 ��
��� ������ ��
���

S� ����� ����
� ����� ���	�� ��
	� ��	�� ������

S� ����� ��
�	� ��	��� ������ ����	
 ��

�� ��
���

S	 ��
��� ��	��� ��
�
� ���	�� ������ ����	 ��		�

S� ����
� ��
��
 ������ ��
��� ��
�� ��	��� ��			

��m ��
	E��� ��
	E��� ��
	E��� ��
	E��� ����E��� ��		E��	 ����E���

d� ����	E�	 	��	�E�	 ����	E�	 ����	E�	 �����E�	 ���	E�� �����E�


d� ����E�� ��	
	E�� ��	��E�� ������ ����E�� ��
��E�	 �����E��

d� ��	�E�� 
����E�� ����E�� ����� 
����E�� ��	��E�� ����	E��

d� ������ ����	� ����� ����� ����
 �����E�� ����	E��

d� ����	� ������ ������ ����� ���
�� ��	�E�� ������

d	 ���		� ���
�� ���	�� ����� ����
� ���
E�� ����	


d� ���
� ������ ���

 ����� ����
� ����� ������

d� ����
� �����	 ������ ����� ������ ������ ���
��

d�
 ����	 ����	� ����		 ���	�� ����� ������ ������

d�� ���
�� ������ ������ ���	�� ������ ���	�� �����

d�� �����	 ����
� ������ ���
�� ���	� ���
�� �����	

d�� �����	 ����
� ������ ����
� ����
 ���
�� �����


d�� �����	 ������ ������ ������ ����
� ����� �����


d�� �����	 ������ ����� ������ ������ ����	� ����
�

d�� �����	 ����	 ������ ����	� �����
 ������ ������

d�	 �����	 �����	 ����	� ���
�� �����
 ������ ���
��

d�� ���	�� ���	�� ���	�� ���
�� �����
 ������ ���
��

d�� ���
�� ���	�� ���	�� ���
�� ���	�� ������ ����
�

d�
 ���
�� ���� ���
�� ���� ���	�� ���	� ������

d�� ���
�� ���� ���
�� ���� ����
� ���

� ������

d�� ���� ���� ������ ���� ����
� ����
 ������

d�� ���� ���� ������ ����
� ����
� ����� ������

d�� �����	 ���� �����	 ����
� ����
� ����
� ������

d�� �����	 ���� �����	 ����
� ����
� ����
� �����	

d�� �����	 ���� �����	 ����
� ����
� ����
� �����	

d�	 �����	 �����	 �����	 ����
� ����
� ����
� ���	��

d�� �����	 �����	 ������ ����
� ����
� ������ ���
��

d�� ����
� �����	 ������ ����
� ����
� �����
 ���
��

d�
 ����
� ����
� ������ ���	�
 ����
� �����
 ���
��

��



Table �� Distances between hyperplanes for some MRGs

G G� G�� G��
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a full period with m � ���� ��� For G� there are the additional restrictions that a� and

a� satisfy condition ��� and ai � � for � � i � �� This m is the largest prime under ���

such that �m�� ����m� �� is also prime� The latter property facilitates the veri�cation

of condition �c� in the full	period conditions for an MRG� These two generators are taken

from ����� where one can also �nd more details on the search and a precise de�nition of

the selection criterion� It turns out that G� has a very bad �gure of merit S�� and larger

values of dt than G� for t slightly larger than �� This is due to the restrictions ai � �

for � � i � �� under which the lower bound ��� is always much larger than d�t for t � ��

The distances between the hyperplanes for G� are nevertheless much smaller than the

corresponding values of any LCG of Table �� so this generator is a clear improvement

over those� G� is better in terms of lattice structure� but also much more costly to run�

because there are seven products modulo m to compute instead of two at each iteration

of the recurrence� The other generators in this table are discussed later�

��	�
 Lacunary Indices

Instead of constructing vectors of successive values as in ���� one can �more generally�

construct vectors with values that are a �xed distance apart in the sequence� using

lacunary indices� More speci�cally� let I � fi�� i�� � � � � itg be a given set of integers and

de�ne� for an MRG�

Tt�I� � f�ui��n� � � � � uit�n� j n � �� s� � �x�� � � � � xk��� � ZZ
k
mg�

Consider the lattice Lt�I� spanned by Tt�I� and ZZ
t� and let dt�I� be the distance between

the hyperplanes in this lattice� L�Ecuyer and Couture ���� show how to construct bases

for such lattices� how to compute dt�I�� and so on� The following provides �quick	and	

dirty lower bounds on dt�I� ���� ����

�� If I contains all the indices i such that ak�i�� �� �� then

dt�I� �


�� � kX

j��

a�i

�
A
����

� ����

��



In particular� if xn � �arxn�r�akxn�k� mod m and I � f�� k�r� kg� then d��I� �
�� � a�r � a�k�

�����

�� If m can be written as m �
Pt

j�� cija
ij for some integers cij � then

dt�I� �


� tX
j��

c�ij

�
A
����

� ����

As a special case of ����� consider the lagged�Fibonacci generator � based on a recur	

rence whose only two nonzero coe�cients satisfy ar � �� and ak � ��� In this case�

for I � f�� k � r� kg� d��I� � ��
p
� � ������ The set of all vectors �un� un�k�r� un�k�

produced by such a generator lie in successive parallel planes that are at distance ��
p
�

to each other� and orthogonal to the vector ��� �� ��� Therefore� apart from the vector

��� �� ��� all other vectors of this form are contained in only two planes! Speci�c in	

stances of this generator are the one proposed by Mitchell and Moore and recommended

by Knuth ����� based on the recurrence xn � �xn��� � xn�� mod �e for e equal to the

computer�s word length� as well as the addrans function in the SUN Unix library ������

based on xn � �xn� � xn���� mod ���� These generators should not be used� at least

not in their original form�

��	�� Combined LCGs and MRGs

Several authors advocated the idea of combining in some way di
erent generators �e�g��

two or three di
erent LCGs�� hoping that the composite generator will behave better

than any of its components alone� See ���� ��� ��� ��� ��� and dozens of other references

given there� Combination can provably increase the period length� Empirical tests show

that it typically improves the statistical behavior as well� Some authors �e�g�� ��� ��� ����

have also given theoretical results which �on the surface� appear to �prove that the out	

put of a combined generator is �more random than �or at least �as random as� the

output of each of its components� However� these theoretical results make sense only

for random variables de�ned in a probability space setup� For �deterministic� pseudo	

random sequences� they prove nothing and can be used only as heuristic arguments to

��



support the idea of combination� To assess the quality of a speci�c combined generator�

one should make a structural analysis of the combined generator itself� not only analyze

the individual components and assume that combination will make things more random�

This implies that the structural e
ect of the combination method must be well under	

stood� Law and Kelton ���� Prob� ���� give an example where combination makes things

worse�

The two most widely known combination methods are�

�� Shu&ing one sequence with another or with itself�

�� Adding two or more integer sequences modulo some integer m�� or adding se	

quences of real numbers in ��� �� modulo �� or adding binary fractions bitwise

modulo ��

Shu&ing one LCG with another can be accomplished as follows� Fill up a table of

size d with the �rst d output values from the �rst LCG �suggested values of d go from

� up to ��� or more�� Then each time a random number is needed� generate an index

I � f�� � � � � dg using the log��d� most signi�cant bits of the next output value from the

second LCG� return �as output of the combined generator� the value stored in the table

at position I� then replace this value by the next output value from the �rst LCG�

Roughly� the �rst LCG produces the numbers and the second LCG changes the order of

their occurrence� There are several variants of this shu&ing scheme� In some of them�

the same LCG that produces the numbers to �ll up the table is also used to generate

the values of I� A large number of empirical investigations performed over the past

�� years strongly support shu&ing and many generators available in software libraries

use it �e�g�� ���� ���� ������ However� it has two important drawbacks� ��� the e
ect

of shu&ing is not well	enough understood from the theoretical viewpoint� and ��� one

does not know how to jump ahead quickly to an arbitrary point in the sequence of the

combined generator�

The second class of combination method� by modular addition� is generally better

understood theoretically� Moreover� jumping ahead in the composite sequence amounts

��



to jumping ahead with each of the individual components� which we know how to do if

the components are LCGs or MRGs�

Consider J MRGs evolving in parallel� The jth MRG is based on the recurrence

xj�n � �aj��xj�n�� � 
 
 
� aj�kxj�n�k� mod mj�

for j � �� � � � � J � We assume that the moduli mj are pairwise relatively prime and

that each recurrence is purely periodic �has zero transient� with period length �j� Let

��� � � � � �J be arbitrary integers such that for each j� �j and mj have no common factor�

De�ne the two combinations

zn �



� JX
j��

�jxj�n

�
A mod m� un � zn�m� ����

and

wn �



� JX
j��

�j
xj�n
mj

�
A mod �� ����

Let k � max�k�� � � � � kJ� and m �
QJ

j��mj� The following results were proved in ���� for

the case of MLCG components �k � �� and in ���� for the more general case�

�� The sequences fung and fwng both have period length � � lcm���� � � � � �J� �the

least common multiple of the period lengths of the components��

�� The wn obey the recurrence

xn � �a�xn�� � 
 
 
� akxn�k� mod m� wn � xn�m� ����

where the ai can be computed by a formula given in ���� and do not depend on

the �j�

�� One has un � wn � 
n� with '� � 
n � '�� where '� and '� can be computed

as explained in ���� and are generally extremely small when the mj are close to

each other�

��



The combinations ���� and ���� can then be viewed as e�cient ways to implement

an MRG with very large modulus m� A structural analysis of the combination can

be done by analyzing this MRG �e�g�� its lattice structure�� The MRG components

can be chosen with only two nonzero coe�cients aij� both satisfying condition ���� for

ease of implementation� and the recurrence of the combination ���� can still have all

of its coe�cients nonzero and large� If each mj is an odd prime and each MRG has

maximal period length �j � m
kj
j ��� each �j is even� so � � �mk�

� ��� 
 
 
 �mkJ
J �����J��

and this upper bound is attained if the �m
kj
j � ���� are pairwise relatively prime �����

The combination ���� generalizes an idea of Wichmann and Hill ������ while ���� is

a generalization of the combination method proposed by L�Ecuyer ����� The latter

combination somewhat scrambles the lattice structure because of the added �noise 
n�

Example � L�Ecuyer ���� proposes the following parameters and gives a computer

code in the C language that implements ����� Take J � � components� �� � ��� � ��

m� � ��� � �� m� � ��� � �������� k� � k� � �� �a���� a���� a���� � ��� ���������������
and �a���� a���� a���� � ������� ����������� Each component has period length �j �

m�
j � �� and the combination has period length � � ������ � ���� The MRG ����

that corresponds to the combination is called G�� in Table �� where distances between

hyperplanes for the associated lattice are given� Generator G�� requires four modular

products at each step of the recurrence� so it is slower than G� but faster than G�� The

combined MLCG originally proposed by L�Ecuyer ���� also has an approximating LCG

called G�� in the table� Note that this combined generator was originally constructed on

the basis of the lattice structure of the components only� without examining the lattice

structure of the combination� Slightly better combinations of the same size have been

constructed since this original proposal ���� ���� Other combinations of di
erent sizes

are given in �����

��



��	�� Matrix LCGs and MRGs

A natural way to generalize LCGs and MRGs is to consider linear recurrences for vectors�

with matrix coe�cients

Xn � �A�Xn�� � 
 
 
� AkXn�k� mod m� ����

where A�� � � � � Ak are L�L matrices and each Xn is an L	dimensional vector of elements

of ZZm� which we denote by

Xn �



B�
xn��
���

xn�L

�
CA �

At each step� one can use each component of Xn to produce a uniform variate�

unL�j�� � xn�j�m� Niederreiter ����� introduced this generalization and calls it the

multiple recursive matrix method for the generation of vectors� The recurrence ���� can

also be written as a matrix LCG of the form Xn � AXn�� mod m� where

A �



BBB�

� I � � � �
���

���
� � �

���
� � � � � I
Ak Ak�� � � � A�

�
CCCA and Xn �



BBBB�

Xn

Xn��
���

Xn�k��

�
CCCCA ����

are a matrix of dimension kL � kL and a vector of dimension kL� respectively �here I

is the L � L identity matrix�� This matrix notation applies to the MRG as well� with

L � ��

Is the matrix LCG more general than the MRG� Not much� If a k	dimensional

vector Xn follows the recurrence Xn � AXn�� mod m� where the k � k matrix A has a

primitive characteristic polynomial P �z� � zk � a�z
k�� � 
 
 
 � ak� then Xn also follows

the recurrence ���� ��� ����

Xn � �a�Xn�� � 
 
 
� akXn�k� mod m ����

So each component of the vector Xn evolves according to ���� In other words� one simply

has k copies of the same MRG sequence in parallel� usually with some shifting between

those copies� This also applies to the matrix MRG ����� since it can be written as a

��



matrix LCG of dimension kL and therefore corresponds to kL copies of the same MRG

of order kL �and maximal period length mkL � ��� The di
erence with the single MRG

��� is that instead of taking successive values from a single sequence� one takes values

from di
erent copies of the same sequence� in a round	robin fashion� Observe also that

when using ����� the dimension of Xn in this recurrence �i�e�� the number of parallel

copies� does not need to be equal to k�

��	�� Linear Recurrences with Carry

Consider a generator based on the following recurrence�

xn � �a�xn�� � 
 
 
� akxn�k � cn��� mod b� ����

cn � �a�xn�� � 
 
 
� akxn�k � cn��� div b� ����

un � xn�b�

where �div denotes the integer division� For each n� xn � ZZb� cn � ZZ� and the state at

step n is sn � �xn� � � � � xn�k��� cn�� As in ���� ��� ���� we call this a multiply�with�carry

�MWC� generator� The idea was suggested in ���� ���� The recurrence looks like that of

an MRG� except that a carry cn is propagated between the steps� What is the e
ect of

this carry�

Assume that b is a power of �� which is very nice form the implementation viewpoint�

De�ne a� � ���
m �

kX
���

a�b
��

and let a be such that ab mod m � � �a is the inverse of b in arithmetic modulo m��

Note that m could be either positive or negative� but for simplicity we now assume that

m � �� Consider the LCG�

zn � azn�� mod m� wn � zn�m� ����

There is a close correspondence between the LCG ���� and the MWC generator� assum	

ing that their initial states agree ����� More speci�cally� if

wn �
�X
i��

xn�i��b
�i ����

��



holds for n � �� then it holds for all n� As a consequence� jun�wnj � ��b for all n� For

example� if b � ���� then un and wn are the same up to �� bits of precision! The MWC

generator can thus be viewed as just another way to implement �approximately� a LCG

with huge modulus and period length� It also inherits from this LCG an approximate

lattice structure� which can be analyzed as usual�

The LCG ���� is purely periodic� so each state zn is recurrent �none is transient��

On the other hand� the MWC has an in�nite number of states �since we imposed no

bound on cn� and most of them turn out to be transient� How can one characterize the

recurrent states� They are �essentially� the states s� that correspond to a given z� via

����(����� Couture and L�Ecuyer ���� give necessary and su�cient conditions for a state

s� to be recurrent� In particular� if a� � � for � � �� all the recurrent states satisfy

� � cn � a� � 
 
 
� ak� In view of this inequality� we want the a� to be small� for their

sum to �t into a computer word� More speci�cally� one can impose a� � 
 
 
 � ak � b�

Now b is a nice upper bound on the cn as well as on the xn�

Since b is a power of �� a is a quadratic residue and so cannot be primitive mod m�

Therefore� the period length cannot reach m� � even if m is prime� But if �m� ���� is

odd and � is primitive mod m �e�g�� if �m� ���� is prime�� then ���� has period length

� � �m� �����

Couture and L�Ecuyer ���� show that the lattice structure of the LCG ���� satis�es

the following� In dimensions t � k� the distances dt do not depend on the parameters

a�� � � � � ak� but only on b� while in dimension t � k � �� the shortest vector in the dual

lattice to Lt is �a�� � � � � ak�� so that

dt � �� � a�� � 
 
 
� a�k�
����� ����

The distance dk�� is then minimized if we put all the weight on one coe�cient a�� It

is also better to put more weight on ak� to get a larger m� So one should choose ak close

to b� with a� � 
 
 
� ak � b� Marsaglia ���� proposed two speci�c parameter sets� They

are analyzed in ����� where a better set of parameters in terms of the lattice structure

of the LCG is also given�

��



Special cases of the MWC include the add	with	carry �AWC� and subtract	with	

borrow �SWB� generators� originally proposed by Marsaglia and Zaman ���� and subse	

quently analyzed in ���� ����� For the AWC� put ar � ak � �a� � � for � � r � k and

all other a� equal to zero� This gives the simple recurrence

xn � �xn�r � xn�k � cn��� mod b�

cn � I�xn�r � xn�k � cn�� � b��

where I denotes the indicator function� equal to � if the bracketted inequality is true and

to � otherwise� The SWB is similar� except that either ar or ak is �� and the carry cn is

� or ��� The correspondence between AWC SWB generators and LCGs was established

in ������

Equation ���� tells us very clearly that all AWC SWB generators have a bad lat	

tice structure in dimension k � �� A little more can be said when looking at the

lacunary indices� For I � f�� r� kg� one has d��I� � ��
p
� and all vectors of the

form �wn� wn�r� wn�k� produced by the LCG ���� lie in only two planes in the three	

dimensional unit cube� exactly as for the lagged	Fibonacci generators discussed in Sec	

tion ������ Obviously� this is bad�

Perhaps one way to get around this problem is to take only k successive output

values� then skip �say� 	 values� take another k successive ones� skip another 	� and so

on� L%uscher ���� has proposed such an approach� with speci�c values of 	 for a speci�c

SWB generator� with theoretical justi�cation based on chaos theory� James ���� gives a

Fortran implementation of L%uscher�s generator� The system Mathematica uses a SWB

generator ������ p� ������� but the documentation does not specify if it skips values�

��	�� Digital Method� LFSR� GFSR� TGFSR� etc�� and Their Combination

The MRG ���� matrix MRG ����� combined MRG ����� and MWC ���(��� have res	

olution ��m� ��m� ��m�� and ��b� respectively� �The resolution is the largest number

x such that all output values are multiples of x�� This could be seen as a limitation�

To improve the resolution� one can simply take several successive xn to construct each

��



output value un� Consider the MRG� Choose two positive integers s and L � k� and

rede�ne

un �
LX
j��

xns�j��m
�j� ����

Call s the step size and L the number of digits in the m	adic expansion� The state at

step n is now sn � �xns� � � � � xns�k���� The output values un are multiples ofm�L instead

of m��� This output sequence� usually with L � s� is called a digital multistep sequence

���� ����� Taking s � L means that s � L values of the sequence fxng are skipped at

each step of ����� If the MRG sequence has period � and if s has no common factor with

�� the sequence fung also has period ��

Now� it is no longer necessary for m to be large� A small m with large s and L can

do as well� In particular� one can take m � �� Then fxng becomes a sequence of bits

�zeros and ones� and the un are constructed by juxtaposing L successive bits from this

sequence� This is called a linear feedback shift register �LFSR� or Tausworthe generator

���� ��� ���� ����� although the bits of each un are often �lled in reverse order than

in ����� An e�cient computer code that implements the sequence ����� for the case

where the recurrence has the form xn � �xn�r � xn�k� mod � with s � r and �r � k�

can be found in ���� ���� ����� For specialized jump	ahead algorithms� see ���� ����

Unfortunately� such simple recurrences lead to LFSR generators with bad structural

properties �see ���� ��� ��� ���� and other references therein�� But combining several

recurrences of this type can give good generators�

Consider J LFSR generators� where the jth one is based on a recurrence fxj�ng
with primitive characteristic polynomial Pj�z� of degree kj �with binary coe�cients��

an m	adic expansion to L digits� and a step size sj such that sj and the period length

�j � �kj � � have no common factor� Let fuj�ng be the output sequence of the jth

generator and de�ne un as the bitwise exclusive	or �i�e�� bitwise addition modulo �� of

u��n� � � � � uj�n� If the polynomials P��z�� � � � � PJ�z� are pairwise relatively prime �no pair

of polynomials has a common factor�� the period length � of the combined sequence fung
is equal to the least common multiple of the individual periods ��� � � � � �J � These �j can

be relatively prime� so it is possible here to have � �
QJ

j�� �j� The resulting combined

generator is also exactly equivalent to a LFSR generator based on a recurrence with

��



characteristic polynomial P �z� � P��z� 
 
 
PJ�z�� All of this is shown in ������ where

speci�c combinations with two components are also suggested� For good combinations

with more components� see ����� Wang and Compagner ����� also suggested similar

combinations� with much longer periods� They recommended constructing the combi	

nation so that the polynomial P �z� has approximately half of its coe�cients equal to

�� In a sense� the main justi�cation for combined LFSR generators is the e�cient im	

plementation of a generator based on a �reducible� polynomial P �z� with many nonzero

coe�cients�

The digital method can be applied to the matrix MRG ���� or to the parallel MRG

���� by making a digital expansion of the components of Xn �assumed to have dimension

L��

un �
LX
j��

xn�jm
�j� ����

The combination of ���� with ���� gives the multiple recursive matrix method of Nieder	

reiter ������ For the matrix LCG� L�Ecuyer ���� shows that if the shifts between the

successive L copies of the sequence are all equal to some integer d having no common

factor with the period length � � mk � �� the sequence ���� is exactly the same as

the digital multistep sequence ���� with s equal to the inverse of d modulo m� The

converse also holds� In other words� ���� and ����� with these conditions on the shifts�

are basically two di
erent implementations of the same generator� So one can be ana	

lyzed by analyzing the other� and vice versa� If one uses the implementation ����� one

must be careful with the initialization of X�� � � � � Xk�� in ���� to maintain the corre	

spondence� The shift between the states �x��j� � � � � xk���j� and �x��j��� � � � � xk���j��� in

the MRG sequence must be equal to the proper value d for all j�

The implementation ���� requires more memory than ����� but may give a faster

generator� An important instance of this is the generalized feedback shift register �GFSR�

generator ���� ��� ���� which we now describe� Takem � � and L equal to the computer�s

word length� The recurrence ���� can then be computed by a bitwise exclusive	or of the

Xn�j for which aj � �� In particular� if the MRG recurrence has only two nonzero

��



coe�cients� say ak and ar� we obtain

Xn � Xn�r �Xn�k�

where � denotes the bitwise exclusive	or� The output is then constructed via the binary

fractional expansion ����� This GFSR can be viewed as a di
erent way to implement a

LFSR generator� provided that it is initialized accordingly� and the structural proper	

ties of the GFSR can then be analyzed by analyzing those of the corresponding LFSR

generator ���� ����

For the recurrence ����� we need to memorize kL integers in ZZm� With this memory

size� one should expect a period length close to mkL� but the actual period length

cannot exceed mk � �� A big waste! Observe that ���� is a special case of ����� with

Ai � aiI� An interesting idea is to �twist the recurrence ���� slightly so that each aiI

is replaced by a matrix Ai such that the corresponding recurrence ���� has full period

length mkL� � while its implementation remains essentially as fast as ����� Matsumoto

and Kurita ���� ��� proposed a speci�c way to do this for GFSR generators and called

the resulting generators twisted GFSR �TGFSR�� Their second paper and ���� ���� point

out some defects in the generators proposed in their �rst paper� proposes better speci�c

generators� and give nice computer codes in C� Investigations are currently made to �nd

other twists with good properties� The multiple recursive matrix method of ����� is a

generalization of these ideas�

��	��� Equidistribution Properties for the Digital Method

Suppose that we partition the unit hypercube ��� ��t into mt� cubic cells of equal size�

This is called a �t� ���equidissection in base m� A set of points is said to be �t� ��	

equidistributed if each cell contains the same number of points from that set� If the set

contains mk points� the �t� ��	equidistribution is possible only for � � bk�tc� For a given

digital multistep sequence� let

Tt � fu� � �u�� � � � � ut��� j �x�� � � � � xk��� � ZZ
k
mg ����
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�where repeated points are counted as many times as they appear in Tt� and �t �

min�L� bk�tc�� If the set Tt is �t� �t�	equidistributed for all t � k� we call it a maximally

equidistributed �ME� set and say that the generator is ME� If it has the additional

property that for all t� for �t � � � L� no cell of the �t� ��	equidissection contains more

than one point� we also call it collision	free �CF�� ME	CF generators have their sets of

points Tt very evenly distributed in the unit hypercube� in all dimensions t�

Full	period LFSR generators are all �bk�sc� s�	equidistributed� Full	period GFSR

generators are all �k� ��	equidistributed� but their �k� ��	equidistribution for � � �

depends on the initial state �i�e�� on the shifts between the di
erent copies of the

MRG�� Fushimi and Tezuka ���� give a necessary and su�cient condition on this initial

state for �t� L�	equidistribution� for t � bk�Lc� The condition says that the tL bits

�x���� � � � � x��L� � � � � xt����� � � � � xt���L� must be independent� in the sense that the tL � k

matrix which expresses them as a linear transformation of �x���� � � � � xk����� has �full�

rank tL� Fushimi ���� gives an initialization procedure satisfying this condition�

Couture et al� ���� show how the �t� ��	equidistribution of simple and combined LFSR

generators can be analyzed via the lattice structure of an equivalent LCG in a space of

formal series� A di
erent �simpler� approach is taken in ����� Check if the matrix that

expresses the �rst � bits of un as a linear transformation of �x�� � � � � xk��� has full rank�

This is a necessary and su�cient condition for �t� ��	equidistribution�

An ME LFSR generator based on the recurrence xn � �xn�����xn����� mod �� with

s � ��� and L � ��� is given in ������ But as stated previously� only two nonzero

coe�cients for the recurrence is much too few� L�Ecuyer ���� ��� gives the results of

computer searches for ME and ME	CF combined LFSR generators with J � �� �� �� �

components� as described in subSection ������ Each search was made within a class

with each component j based on a characteristic trinomial Pj�z� � zkj � zrj � �� with

L � �� or L � ��� and step size sj such that sj � rj and �rj � kj� The period length is

� � ��k� � �� 
 
 
 ��kJ � �� in most cases� sometimes slightly smaller� The searches were

for good parameters rj and sj� We summarize here a few examples of search results�

For more details� as well as speci�c implementations in the C language� see ���� ����

��



Example �

�a� For J � �� k� � ��� and k� � ��� there are ���� parameter sets that satisfy the

conditions above� None of these combinations is ME� Speci�c combinations which

are nearly ME� within this same class� can be found in ������

�b� Let J � �� k� � ��� k� � ��� and k� � ��� In an exhaustive search among �����

possibilities satisfying our conditions within this class� �� ME combinations were

found� and � of them are also CF�

�c� Let J � �� k� � ��� k� � ��� k� � ��� and k� � ��� Here� in an exhaustive search

among ������� possibilities� we found ����� ME combinations� and ���� of them

also CF�

These results illustrate the fact that ME combinations are much easier to �nd as J

increases� This appears to be due to more possibilities to ��ll up the coe�cients of P �z�

when it is the product of more trinomials� Since GFSR generators can be viewed as a

way to implement fast LFSR generators� these search methods and results can be used

as well to �nd good combined GFSRs� where the combination is de�ned by a bitwise

exclusive	or as in the LFSR case�

One may strenghten the notion of �t� ��	equidistribution as follows� Instead of looking

only at equidissections comprised of cubic volume elements of identical sizes� look at more

general partitions� Such a stronger notion is that of a �q� k� t��net in base m� where there

should be the same number of points in each box for any partition of the unit hypercube

into rectangular boxes of identical shape and equal volume mq�k� with the length of each

side of the box equal to a multiple of ��m� Niederreiter ����� de�nes a �gure of merit

r	t
 such that for all t � bk�Lc� the mk points of Tt for ���� form a �q� k� t�	net in base

m with q � k � r	t
� A problem with r	t
 is the di�culty to compute it for medium and

large t �say� t � ���
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��� NONLINEAR METHODS

An obvious way to remove the linear �and perhaps too regular� structure is to use a

nonlinear transformation� There are basically two classes of approaches�

�� Keep the transition function T linear� but use a nonlinear transformation G to

produce the output�

�� Use a nonlinear transition function T �

Several types of nonlinear generators have been proposed over the last decade or so�

and an impressive volume of theoretical results have been obtained for them� See� for

example� ���� ��� ��� ��� ���� ���� and other references given there� Here� we give a brief

overview of this rapidly developing area�

Nonlinear generators avoid lattice structures� Typically� no t	dimensional hyperplane

contains more than t overlapping t	tuples of successive values� More important� their

output behaves much like �truly random numbers� even over the entire period� with

respect to discrepancy� Roughly� there are lower and upper bounds on their discrepancy

�or in some cases on the average discrepancy over a certain set of parameters� whose

asymptotic order �as the period length increases to in�nity� is the same as that of an IID

U��� �� sequence of random variables� They have also succeeded quite well in empirical

tests performed so far ����� Fast implementations with speci�c well	tested parameters are

still under development� although several generic implementations are already available

���� ����

����� Inversive Congruential Generators

To construct a nonlinear generator with long period� a �rst idea is simply to add a

nonlinear twist to the output of a known generator� For example� take a full	period

MRG with prime modulus m and replace the output function un � xn�m by

zn � �)xn��)x
��
n � mod m and un � zn�m� ����

��



where )xi denotes the ith nonzero value in the sequence fxng and )x��n is the inverse of

)xn modulo m� �The zero values are skipped because they have no inverse�� For xn �� ��

its inverse x��n can be computed by the formula x��n � xm��n mod m� with O�logm�

multiplications modulo m� The sequence fzng has period mk��� under conditions given

in ���� ����� This class of generators was introduced and �rst studied in ���� ��� ���� For

k � �� ���� is equivalent to the recurrence

zn �


�a� � a�z

��
n��� mod m if zn�� �� ��

a� if zn�� � ��
����

where a� and a� are the MRG coe�cients�

A more direct approach is the explicit inversive congruential method of ����� de�ned

as follows� Let xn � an � c for n � �� where a �� � and c are in ZZm and m is prime�

Then� de�ne

zn � x��n � �an � c�m�� mod m and un � zn�m� ����

This sequence has period � � m� According to ����� this family of generators seems to en	

joy the most favorable properties among the currently proposed inversive and quadratic

families� As a simple illustrative example� take m � ��� � � and a � c � �� �However�

at the moment� we are not in a position to recommend these particular parameters nor

any other speci�c ones��

Inversive congruential generators with power	of	� moduli have also been studied

���� ��� ���� However� they have have more regular structures than those based on

prime moduli ���� ���� Their low	order bits have the same short period lengths as for

the LCGs� The idea of combined generators� discussed earlier for the linear case� also

applies to nonlinear generators and o
ers some computational advantages� Huber ����

and Eichenauer	Herrmann ���� introduced and analyzed the following method� Take J

inversive generators as in ����� with distinct prime moduli m�� � � � � mJ � all larger than

�� and full period length �j � mj� For each generator j� let zj�n be the state at step n

and let uj�n � zj�n�mj� The output at step n is de�ned by the following combination�

un � �u��n � 
 
 
� uJ�n� mod ��

��



The sequence fung turns out to be equivalent to the output of an inversive generator

���� with modulus m � m� 
 
 
mJ and period length � � m� Conceptually� this is

pretty similar to the combined LCGs and MRGs discussed previously� and provides a

convenient way to implement an inversive generator with large modulus m� Eichenauer	

Herrmann ���� shows that this type of generator has favorable asymptotic discrepancy

properties� much like ����(�����

����� Quadratic Congruential Generators

Suppose that the transformation T is quadratic instead of linear� Consider the recurrence

xn � �ax�n�� � bxn�� � c� mod m�

where a� b� c � ZZm and xn � ZZm for each n� This is studied in ���� ��� ��� ����� If

m is a power of �� this generator has full period �� � m� if and only if a is even�

�b � a� mod � � �� and c is odd� Its t	dimensional points turn out to lie on a union of

grids� Also� the discrepancy tends to be too large� Our usual caveat against power	of	�

moduli applies again�

����	 BBS and Other Cryptographic Generators

The BBS generator� explained in Section ���� is conjectured to be polynomial	time per	

fect� This means that for a large enough size k� a BBS generator with properly �ran	

domly� chosen parameters is practically certain to behave very well from the statistical

point of view� However� it is not clear how large k must be and how K can be chosen in

practice for the generator to be really safe� The speed of the generator slows down with

k� since at each step we must square a �k	bit integer modulo another �k	bit integer� An

implementation based on fast modular multiplication is proposed by Moreau �����

Other classes of generators� conjectured to be polynomial	time perfect� have been

proposed� From empirical experiments� they have appeared no better than the BBS�

See ��� ��� ��� for overviews and discussions� An interesting idea� pursued for instance in
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���� is to combine a slow but cryptographically strong generator �e�g�� a polynomial	time

perfect one� with a fast �but unsecure� one� The slow generator is used sparingly� mostly

in a preprocessing step� The result is an interesting compromise between speed� size�

and security� In ���� it is also suggested to use a block cipher encryption algorithm for

the slow generator� These authors actually use triple	DES �three passes over the well	

known data encryption standard algorithm� with three di
erent keys�� combined with a

linear hashing function de�ned by a matrix� The keys and the hashing matrix must be

�truly� random� Their fast generator is implemented with a six	regular expander graph

�see their paper for more details��

��� EMPIRICAL STATISTICAL TESTING

Statistical testing of random number generators is indeed a very empirical and heuristic

activity� The main idea is to seek situations where the behavior of some function of the

generator�s output is signi�cantly di
erent than the normal or expected behavior of the

same function applied to a sequence of IID uniform random variables�

Example � As a simple illustration� suppose that one generates n random numbers

from a generator whose output is supposed to imitate IID U��� �� random variables�

Let T be the number of values that turn out to be below � �� among those n� For

large n� T should normally be not too far from n��� In fact� one should expect T to

behave like a binomial random variable with parameters �n� ����� So if one repeats

this experiment several times �e�g�� generating N values of T �� the distribution of the

values of T obtained should resemble that of the binomial distribution �and the normal

distribution with mean n�� and standard deviation
p
n�� for large n�� If N � ��� and

n � ������ the mean and standard deviation are ���� and ��� respectively� With these

parameters� if one observes� for instance� that �� values of T are less than ����� or that

�� values of T out of ��� are less than ����� one would readily conclude that something

is wrong with the generator� On the other hand� if the values of T behave as expected�

one may conclude that the generator seems to reproduce the correct behavior for this

��



particular statistic T �and for this particular sample size�� But nothing prevents other

statistics than this T to behave wrongly�

��
�� General Setup

De�ne the null hypothesis H� as� �The generator�s output is a sequence of IID U��� ��

random variables� Formally� this hypothesis is false� since the sequence is periodic and

usually deterministic �except parhaps for the seed�� But if this cannot be detected by

reasonable statistical tests� one may assume that H� holds anyway� In fact� what really

counts in the end is that the statistics of interest in a given simulation have �sample�

distributions close enough to their theoretical ones�

A statistical test for H� can be de�ned by any function T of a �nite number of U��� ��

random variables� for which the distribution under H� is known or can be approximated

well enough� The random variable T is called the test statistic� The statistical test tries

to �nd empirical evidence against H��

When applying a statistical test to a random number generator� a single�level pro	

cedure computes the value of T � say t�� then computes the p	value

�� � P �T � t� j H���

and� in the case of a two	sided test� rejects H� if �� is too close to either � or �� A

single	sided test will reject only of �� is too close to �� or only if it is too close to ��

The choice of rejection area depends on what the test aims to detect� Under H�� �� is a

U��� �� random variable�

A two�level test obtains �say� N �independent copies of T � denoted T�� � � � � TN � and

computes their empirical distribution $FN � This empirical distribution is then compared

to the theoretical distribution of T under H�� say F � via a standard goodness	of	�t test�

such as the Kolmogorov(Smirnov �KS� or Anderson(Darling tests ���� ����� One version

of the KS goodness	of	�t test uses the statistic

DN � sup
���x��

j $FN�x�� F �x�j�

��



for which an approximation of the distribution under H� is available� assuming that the

distribution F is continuous ����� Once the value dN of the statistic DN is known� one

computes the p	value of the test� de�ned as

�� � P �DN � dN j H���

which is again a U��� �� random variable under H�� Here one would reject H� if �� is

too close to ��

Choosing N � � yields a single	level test� For a given test and a �xed computing

budget� the question arises of what is best� To choose a small N �e�g�� N � �� and

base the test statistic T on a large sample size� or the opposite� There is no universal

winner� It depends on the test and on the alternative hypothesis� The rationale for

two	level testing is to test the sequence not only globally� but also locally� by looking

at the distribution of values of T over shorter subsequences ����� In most cases� when

testing random number generators� N � � turns out to be the best choice because the

same regularities or defects of the generators tend to repeat themselves over all long	

enough subsequences� But it also happens for certain tests that the cost of computing

T increases faster than linearly with the sample size� and this gives another argument

for choosing N � ��

In statistical analyses where a limited amount of data is available� it is common

practice to �x some signi�cance level � in advance and reject H� when and only when

the p	value is below �� Popular values of � are ���� and ���� �mainly for historical

reasons�� When testing random number generators� one can always produce an arbitrary

amount of data to make the test more powerful and come up with a clean	cut decision

when suspicious p	values occur� We would thus recommend the following strategy� If the

outcome is clear� for example if the p	value is less than ������ reject H�� Otherwise� if

the p	value is suspicious ������� for example�� then increase the sample size or repeat the

test with other segments of the sequence� In most cases� either suspicion will disappear

or clear evidence against H� will show up rapidly�

When H� is not rejected� this somewhat improves con�dence in the generator but

never proves that it will always behave correctly� It may well be that the next test

��



T to be designed will be the one that catches the generator� Generally speaking� the

more extensive and varied is the set of tests that a given generator has passed� the more

faith we have in the generator� For still better con�dence� it is always a good idea to

run important simulations twice �or more�� using random number generators of totally

di
erent types�

��
�� Available Batteries of Tests

The statistical tests described by Knuth ���� have long been considered the �standard

tests for random number generators� A Fortran implementation of �roughly� this set of

tests is given in the package TESTRAND ����� A newer battery of tests is DIEHARD�

designed by Marsaglia ���� ���� It contains more stringent tests than those in ����� in

the sense that more generators tend to fail some of the tests� An extensive testing

package called TestU�� ����� that implements most of the tests proposed so far� as

well as several classes of generators implemented in generic form� is under development�

References to other statistical tests applied to random number generators can be found

in ���� ��� ��� ��� ��� ��� ��� �����

Simply testing uniformity� or pair correlations� is far from enough� Good tests are

designed to catch higher	order correlation properties or geometric patterns of the suc	

cessive numbers� Such patterns can easily show up in certain classes of applications

���� ��� ���� Which are the best tests� No one can really answer this question� If the

generator is to be used to estimate the expectation of some random variable T by gener	

ating replicates of T � the best test would be the one based on T as a statistic� But this

is impractical� since if one knew the distribution of T � one would not use simulation to

estimate its mean� Ideally� a good test for this kind of application should be based on

a statistic T � whose distribution is known and resembles that of T � But such a test is

rarely easily available� Moreover� only the user can apply it� When designing a general

purpose generator� one has no idea of what kind of random variable interests the user�

So� the best the designer can do �after the generator has been properly designed� is to

apply a wide variety of tests that tend to detect defects of di
erent natures�
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��
�	 Two Examples of Empirical Tests

For a short illustration� we now apply two statistical tests to some of the random number

generators discussed previously� The �rst test is a variant of the well	know serial test

and the second one is a close�pairs test� More details about these tests� as well as re�ned

variants� can be found in ���� ��� ��� ����

Both tests generate n nonoverlapping vectors in the t	dimensional unit cube ��� ��t�

That is� they produce the point set�

Pt � fU i � �Ut	i��
� � � � � Uti���� i � �� � � � � ng�

where U�� U�� � � � is the generator�s output� Under H�� Pt contains n IID random vectors

uniformly distributed over the unit hypercube�

For the serial test� we construct a �t� ��	equidissection in base � of the hypercube �see

Section �������� and compute how many points fall in each of the k � �t� cells� More

speci�cally� let Xj be the number of points U i falling in cell j� for j � �� � � � � k� and

de�ne the chi	square statistic

X� �
kX

j��

�Xj � n�k��

n�k
� ����

Under H�� the exact mean and variance of X� are � � E�X�� � k � � and �� �

Var�X�� � ��k����n����n� respectively� Moreover� if n�� for �xed k� X� converges

in distribution to a chi	square random variable with k � � degrees of freedom� whereas

if n � � and k � � simultaneously so that n�k � � for some constant �� �X� �
���� converges in distribution to a N��� �� �a standard normal� random variable� Most

authors use a chi	square approximation to the distribution of X�� with n�k � � �say�

and very large n� But one can also take k 	 n and use the normal approximation� as

in the forthcoming numerical illustration�

For the close	pairs test� let Dn�i�j be the Euclidean distance between the points U j

and U i in the unit torus� i�e�� where the opposite faces of the hypercube are identi�ed

so that points facing each other on opposite sides become close to each other� For s � ��

��



let Yn�s� be the number of distinct pairs of points i � j such Dt
n�i�jVtn�n � ���� � s�

where Vt is the volume of a ball of radius � in the t	dimensional real space� Under H��

for any constant s� � �� as n � �� the process fYn�s�� � � s � s�g converges weakly

to a Poisson process with unit rate� Let � � Tn�� � Tn�� � Tn�� � 
 
 
 be the jump times

of the process Yn� and let Wn�i � � � exp���Tn�i � Tn�i����� For a �xed integer m � �

and large enough n� the random variables Wn��� � � � �Wn�m are approximately IID U��� ��

under H�� To compare their empirical distribution to the uniform� one can compute� for

example� the Anderson(Darling statistic

A�
m � �m� �

m

mX
i��

n
��i� �� ln�W	n�i
� � ��m� �� �i� ln���W	n�i
�

o
�

and reject H� if the p	value is too small �i�e�� if A�
m is too large��

These tests have been applied to the generators G� to G�� in Tables ��� and ���� We

took N � � and dimension t � �� We applied two instances of the serial test� one named

ST�� with n � ��� and � � �� which gives k � ��� and n�k � ������ and the second one

named ST�� with n � ��� and � � ��� so k � ��� and n�k � ������ For the close	pairs

�CP� test� we took n � ��� and m � ��� In each case� �n random numbers were used�

and this value is much smaller than the period length of the generators tested� For all

generators� at the beginning of the �rst test� we used the initial seed ����� when a single

integer was needed and the vector ������� � � � � ������ when a vector was needed� The

seed was not reset between the tests� Table � gives the p	values of these tests for G� to

G�� For G� to G��� all p	values remained inside the interval ������ ������

For the serial test� the p	values that are too close to � �e�g�� ST� and ST� for G��

indicate that the n points are too evenly distributed among the k cells compared to what

one would expect from random points �X� is too small�� On the other hand� the very

small p	values indicate that the points tend to go signi�cantly more often in certain cells

than in others �X� is too large�� The p	values less than ���� for the CP test stem from

the fact that the jumps of the process Yn tend to be clustered �and often superposed��

because there are often equalities �or almost� among the small Dn�i�j�s� due to the lattice

structure of the generator ���� ����� This implies that several Wn�i are very close to

zero� and the Anderson	Darling statistic is especially sensitive for detecting this type of

��



Table �� The p	values of two empirical tests applied to Generators G� to G���

Generator ST� ST� CP
G� �� ����� ���� � �� ���� � ����

G� ����� � ���� � ����

G� �� ����� ���� � ���� � ����

G� � ���� � ���� � ����

G� ����� � �� ���� � ����

problem� As a general rule of thumb� all LCGs and MRGs� whatever be the quality of

their lattice structure� fail spectacularly this close	pairs test with N � � and m � ��

when n exceeds the square root of the period length �����

G� and G� pass these tests� but will soon fail both tests if we increase the sample

size� For G� to G��� on the other hand� the sample size required for clear failure is so

large that the test becomes too long to run in reasonable time� This is especially true

for G� and G���

One could raise the issue of whether these tests are really relevant� As mentioned in

the previous subsection� the relevant test statistics are those that behave similarly as the

random variable of interest to the user� So� relevance depends on the application� For

simulations that deal with random points in space� the close	pairs test could be relevant�

Such simulations are performed� for example� to estimate the �unknown� distribution of

certain random variables in spatial statistics ����� As an illustration� suppose one wishes

to estimate the distribution of mini�j Dn�i�j for some �xed n� by Monte Carlo simulation�

For this purpose I would not trust the generators G� to G�� The e
ect of failing the serial

or close	pairs test in general is unclear� In many cases� if not so many random numbers

are used and if the application does not interact constructively with the structure of

the point set produced by the generator� no bad e
ect will show up� On the other

hand� simulations using more than� say� ��� random numbers are becoming increasingly

common� Clearly� G� to G� and all other generators of that size are unsuitable for such

simulations�

��



��
�� Empirical Testing� Summary

Experience from years of empirical testing with di
erent kinds of tests and di
erent

generator families provides certain guidelines ���� ��� ��� ��� ��� ��� ���� Some of these

guidelines are summarized in the following remarks�

�� Generators with period length less than ��� �say� can now be considered as �baby

toys and should not be used in general software packages� In particular� all LCGs

of that size fail spectacularly several tests that run in a reasonably short time and

use much less random numbers than the period length�

�� LCGs with power	of	� moduli are easier to crack than those with prime moduli�

especially if we look at lower	order bits�

�� LFSRs and GFSRs based on primitive trinomials� or lagged	Fibonacci and AWC SWB

generators� whose structure is too simple in moderately large dimension� also fail

several simple tests�

�� Combined generators with long periods and good structural properties do well in

the tests� When a large fraction of the period length is used� nonlinear inversive

generators with prime modulus do better than the linear ones�

�� In general� generators with good theoretical �gures of merit �e�g�� good lattice

structure or good equidistribution over the entire period� when only a small frac	

tion of the period is used� behave better in the tests� As a crude general rule�

generators based on more complicated recurrences �e�g�� combined generators� and

good theoretical properties perform better�

��� PRACTICAL RANDOM NUMBER PACKAGES

����� Recommended Implementations

As stated previously� no random number generator can be guaranteed against all pos	

sible defects� However� there are generators with fairly good theoretical support�

��



that have been extensively tested� and for which computer codes are available� We

now give references to such implementations� Some of them are already mentioned

earlier� We do not reproduce the computer codes here� but the user can easily

�nd them from the references� More references and pointers can be found from the

pages http���www�iro�umontreal�ca��lecuyer and http���random�mat�sbg�ac�at

on the World Wide Web�

Computer implementations that this author can suggest for the moment include

those of the MRGs given in ����� the combined MRGs given in ���� ���� the combined

Tausworthe generators given in ���� ���� the twisted GFSRs given in ���� ���� and perhaps

the RANLUX code of �����

����� Multigenerator Packages with Jump�Ahead Facilities

Good simulation languages usually o
er many �virtual� random number generators�

often numbered �� �� �� � � � � In most cases this is the same generator but starting with

di
erent seeds� widely spaced in the sequence� L�Ecuyer and C$ot�e ���� have constructed

a package with �� generators �which can be easily extended to ������ Each generator

is in fact based on the same recurrence �a combined LCG of period length near �����

with seeds spaced �� values apart� Moreover� each subsequence of �� values is split

further into ��� segments of length ���� A simple procedure call permits one to have

any of the generators jump ahead to the beginning of its next segment� or its current

segment� or to the beginning of its �rst segment� The user can also set the initial seed

of the �rst generator to any admissible value �a pair of positive integers� and all other

initial seeds are automatically recalculated so that they remain �� values apart� This

is implemented with e�cient jump	ahead tools� A boolean switch can also make any

generator produce antithetic variates if desired�

To illustrate the utility of such a package� suppose that simulation is used to com	

pare two similar systems using common random numbers� with n simulation runs for

each system� To ensure proper synchronization� one would typically assign di
erent

generators to di
erent streams of random numbers required by the simulation �e�g�� in

��



a queueing network� one stream for the interarrival times� one stream for the service

times at each node� one stream for routing decisions� etc��� and make sure that for each

run� each generator starts at the same seed and produces the same sequence of numbers

for the two systems� Without appropriate tools� this may require tricky programming�

because the two systems do not necessarily use the same number of random numbers in

a given run� But with the package in ����� one can simply assign each run to a segment

number� With the �rst system� use the initial seed for the �rst run� and before each new

run� advance each generator to the beginning of the next segment� After the nth run�

reset the generators to their initial seeds and do the same for the second system�

The number and length of segments in the package of ���� are now deemed too small

for current and future needs� A similar package based on a combined LCG with period

length near ���� in given in ����� and other systems of this type� based on generators with

much larger periods� are under development� In some of those packages� generators can

be seen as objects that can be created by the user as needed� in practically unlimited

number�

When a generator�s sequence is cut into subsequences spaced� say� 	 values apart

as we just described� to provide for multiple generators running in parallel� one must

analyze and test the vectors of nonsuccessive output values �with lacunary indices� see

Section ������ spaced 	 values apart� For LCGs and MRGs� for example� the lattice

structure can be analyzed with such lacunary indices� See ���� ��� for more details and

numerical examples�

����	 Generators for Parallel Computers

Another situation where multiple random number generators are needed is for simula	

tion on parallel processors� The same approach can be taken� Partition the sequence

of a single random number generator with very long period into disjoint subsequences

and use a di
erent subsequence on each processor� So the same packages that provide

multiple generators for sequential computers can be used to provide generators for par	

allel processors� Other approaches� such as using completely di
erent generators on the

��



di
erent processors or using the same type of generator with di
erent parameters �e�g��

changing the additive term or the multiplier in a LCG�� have been proposed but appear

much less convenient and sometimes dangerous ���� ���� For di
erent ideas and surveys

on parallel generators� the reader can consult ��� �� ��� ��� �����

ACKNOWLEDGMENTS

This work has been supported by NSERC	Canada Grant ODGP������� and SMF��������

and FCAR	Qu�ebec Grant ��ER����� Thanks to Christos Alexopoulos� Jerry Banks�

Raymond Couture� Hannes Leeb� Thierry Moreau� and Richard Simard for their helpful

comments�

REFERENCES

�� Aiello� W�� S� Rajagopalan and R� Venkatesan ������� Design of practical and prov	

ably good random number generators� Manuscript �contact venkie	bellcore�com��

�� Anderson� S� L� ������� Random number generators on vector supercomputers and

other advanced architecture� SIAM Review� Vol� ��� pp� ���(����

�� Atkinson� A� C� ������� Tests of pseudo	random numbers� Applied Statistics� Vol�

��� pp� ���(����

�� Blum� L�� M� Blum and M� Schub ������� A simple unpredictable pseudo	random

number generator� SIAM Journal on Computing� Vol� ��� No� �� pp� ���(����

�� Boucher� M� ������� La g�en�eration pseudo	al�eatoire cryptographiquement s�ecuritaire

et ses consid�erations pratiques� Master�s thesis� D�epartement d�I�R�O�� Universit�e

de Montr�eal�

�� Brassard� G� ������� Modern Cryptology � A Tutorial� volume ��� of Lecture Notes

in Computer Science� Springer Verlag�

�� Bratley� P�� B� L� Fox and L� E� Schrage ������� A Guide to Simulation� second

edition� Springer	Verlag� New York�

�� Brown� M� and H� Solomon ������� On combining pseudorandom number generators�

Annals of Statistics� Vol� �� pp� ���(����

��



�� Chen� J� and P� Whitlock ������� Implementation of a distributed pseudorandom

number generator� In H� Niederreiter and P� J�	S� Shiue� editors� Monte Carlo and

Quasi�Monte Carlo Methods in Scienti�c Computing� number ��� in Lecture Notes

in Statistics� pp� ���(���� Springer	Verlag�

��� Collings� B� J� ������� Compound random number generators� Journal of the Amer�

ican Statistical Association� Vol� ��� No� ���� pp� ���(����

��� Compagner� A� ������� The hierarchy of correlations in random binary sequences�

Journal of Statistical Physics� Vol� ��� pp� ���(����

��� Compagner� A� ������� Operational conditions for random number generation� Phys�

ical Review E� Vol� ��� No� �	B� pp� ����(�����

��� Couture� R� and P� L�Ecuyer ������� On the lattice structure of certain linear con	

gruential sequences related to AWC SWB generators� Mathematics of Computation�

Vol� ��� No� ���� pp� ���(����

��� Couture� R� and P� L�Ecuyer ������� Linear recurrences with carry as random

number generators� In Proceedings of the �		
 Winter Simulation Conference� pp�

���(����

��� Couture� R� and P� L�Ecuyer ������� Computation of a shortest vector and

Minkowski	reduced bases in a lattice� In preparation�

��� Couture� R� and P� L�Ecuyer ������� Distribution properties of multiply	with	carry

random number generators� Mathematics of Computation� Vol� ��� No� ���� pp�

���(����

��� Couture� R�� P� L�Ecuyer and S� Tezuka ������� On the distribution of k	dimensional

vectors for simple and combined Tausworthe sequences� Mathematics of Computa�

tion� Vol� ��� No� ���� pp� ���(���� S��(S���

��� Coveyou� R� R� and R� D� MacPherson ������� Fourier analysis of uniform random

number generators� Journal of the ACM� Vol� ��� pp� ���(����

��� Cressie� N� ������� Statistics for Spatial Data� Wiley� New York�

��� De Matteis� A� and S� Pagnutti ������� Parallelization of random number generators

and long	range correlations� Numerische Mathematik� Vol� ��� pp� ���(����

��� De Matteis� A� and S� Pagnutti ������� A class of parallel random number generators�

��



Parallel Computing� Vol� ��� pp� ���(����

��� De�ak� I� ������� Uniform random number generators for parallel computers� Parallel

Computing� Vol� ��� pp� ���(����

��� Dieter� U� ������� How to calculate shortest vectors in a lattice� Mathematics of

Computation� Vol� ��� No� ���� pp� ���(����

��� Dudewicz� E� J� and T� G� Ralley ������� The Handbook of Random Number Gen�

eration and Testing with TESTRAND Computer Code� American Sciences Press�

Columbus� Ohio�

��� Durbin� J� ������� Distribution Theory for Tests Based on the Sample Distribution

Function� SIAM CBMS	NSF Regional Conference Series in Applied Mathematics�

SIAM� Philadelphia�

��� Durst� M� J� ������� Using linear congruential generators for parallel random number

generation� In Proceedings of the �	�	 Winter Simulation Conference� pp� ���(����

IEEE Press�

��� Eichenauer� J�� H� Grothe� J� Lehn and A� Topuz*oglu ������� A multiple recursive

nonlinear congruential pseudorandom number generator� Manuscripta Mathematica�

Vol� ��� pp� ���(����

��� Eichenauer� J� and J� Lehn ������� A nonlinear congruential pseudorandom number

generator� Statistische Hefte� Vol� ��� pp� ���(����

��� Eichenauer� J� and J� Lehn ������� On the structure of quadratic congruential

sequences� Manuscripta Mathematica� Vol� ��� pp� ���(����

��� Eichenauer� J�� J� Lehn and A� Topuz*oglu ������� A nonlinear congruential pseudo	

random number generator with power of two modulus� Mathematics of Computation�

Vol� ��� No� ���� pp� ���(����

��� Eichenauer	Herrmann� J� ������� Inversive congruential pseudorandom numbers� A

tutorial� International Statistical Reviews� Vol� ��� pp� ���(����

��� Eichenauer	Herrmann� J� ������� Statistical independence of a new class of inversive

congruential pseudorandom numbers� Mathematics of Computation� Vol� ��� pp�

���(����

��� Eichenauer	Herrmann� J� ������� On generalized inversive congruential pseudoran	

��



dom numbers� Mathematics of Computation� Vol� ��� pp� ���(����

��� Eichenauer	Herrmann� J� ������� Pseudorandom number generation by nonlinear

methods� International Statistical Reviews� Vol� ��� pp� ���(����

��� Eichenauer	Herrmann� J� and H� Grothe ������� A new inversive congruential pseu	

dorandom number generator with power of two modulus� ACM Transactions on

Modeling and Computer Simulation� Vol� �� No� �� pp� �(���

��� Eichenauer	Herrmann� J�� H� Grothe and J� Lehn ������� On the period length of

pseudorandom vector sequences generated by matrix generators� Mathematics of

Computation� Vol� ��� No� ���� pp� ���(����

��� Eichenauer	Herrmann� J� and H� Niederreiter ������� An improved upper bound for

the discrepancy of quadratic congruential pseudorandom numbers� Acta Arithmetica�

Vol� LXIX��� pp� ���(����

��� Entacher� K� ������� Bad subsequences of well	known linear congruential pseudoran	

dom number generators� ACM Transactions on Modeling and Computer Simulation�

Vol� �� No� �� To appear�

��� Ferrenberg� A� M�� D� P� Landau and Y� J� Wong ������� Monte Carlo simulations�

Hidden errors from �good random number generators� Physical Review Letters�

Vol� ��� No� ��� pp� ����(�����

��� Fincke� U� and M� Pohst ������� Improved methods for calculating vectors of short

length in a lattice� including a complexity analysis� Mathematics of Computation�

Vol� ��� pp� ���(����

��� Fishman� G� S� ������� Monte Carlo� Concepts Algorithms and Applications�

Springer Series in Operations Research� Springer	Verlag� New York�

��� Fishman� G� S� and L� S� Moore III ������� An exhaustive analysis of multiplicative

congruential random number generators with modulus ��� � �� SIAM Journal on

Scienti�c and Statistical Computing� Vol� �� No� �� pp� ��(���

��� Fushimi� M� ������� Increasing the orders of equidistribution of the leading bits of

the Tausworthe sequence� Information Processing Letters� Vol� ��� pp� ���(����

��� Fushimi� M� ������� An equivalence relation between Tausworthe and GFSR se	

quences and applications� Applied Mathematics Letters� Vol� �� No� �� pp� ���(����

��



��� Fushimi� M� and S� Tezuka ������� The k	distribution of generalized feedback shift

register pseudorandom numbers� Communications of the ACM� Vol� ��� No� �� pp�

���(����

��� Good� I� J� ������� Probability and the Weighting of Evidence� Gri�n� London�

��� Good� I� J� ������� How random are random numbers� The American Statistician�

Vol� � pp� ��(���

��� Grothe� H� ������� Matrix generators for pseudo	random vectors generation� Statis�

tische Hefte� Vol� ��� pp� ���(����

��� Hellekalek� P� ������� Inversive pseudorandom number generators� Concepts� results�

and links� In C� Alexopoulos� K� Kang� W� R� Lilegdon� and D� Goldsman� editors�

Proceedings of the �		
 Winter Simulation Conference� pp� ���(���� IEEE Press�

��� Hoaglin� D� C� and M� L� King ������� A remark on algorithm AS ��� The spectral

test for the evaluation of congruential pseudo	random generators� Applied Statistics�

Vol� ��� pp� ���(����

��� H%ormann� W� and G� Der�inger ������� A portable random number generator well

suited for the rejection method� ACM Transactions on Mathematical Software� Vol�

��� No� �� pp� ���(����

��� Huber� K� ������� On the period length of generalized inversive pseudorandom num	

ber generators� Applied Algebra in Engineering Communications and Computing�

Vol� �� pp� ���(����

��� Hull� T� E� ������� Random number generators� SIAM Review� Vol� �� pp� ���(����

��� IMSL ������� IMSL Library Users�s Manual Vol��� IMSL� Houston� Texas�

��� James� F� ������� A review of pseudorandom number generators� Computer Physics

Communications� Vol� ��� pp� ���(����

��� James� F� ������� RANLUX� A Fortran implementation of the high	quality pseudo	

random number generator of L%uscher� Computer Physics Communications� Vol� ���

pp� ���(����

��� Knuth� D� E� ������� The Art of Computer Programming Volume �� Seminumerical

Algorithms� second edition� Addison	Wesley� Reading� Mass�

��� Ko+c� C� ������� Recurring	with	carry sequences� Journal of Applied Probability� Vol�

��



��� pp� ���(����

��� Lagarias� J� C� ������� Pseudorandom numbers� Statistical Science� Vol� �� No� ��

pp� ��(���

��� Law� A� M� and W� D� Kelton ������� Simulation Modeling and Analysis� second

edition� McGraw	Hill� New York�

��� L�Ecuyer� P� ������� E�cient and portable combined random number generators�

Communications of the ACM� Vol� ��� No� �� pp� ���(��� and ���� See also the

correspondence in the same journal� Vol� ��� No� � ������� pp� ����(�����

��� L�Ecuyer� P� ������� Random numbers for simulation� Communications of the ACM�

Vol� ��� No� ��� pp� ��(���

��� L�Ecuyer� P� ������� Testing random number generators� In Proceedings of the �		�

Winter Simulation Conference� pp� ���(���� IEEE Press�

��� L�Ecuyer� P� ������� Uniform random number generation� Annals of Operations

Research� Vol� ��� pp� ��(����

��� L�Ecuyer� P� ������� Combined multiple recursive random number generators� Op�

erations Research� Vol� ��� No� �� pp� ���(����

��� L�Ecuyer� P� ������� Maximally equidistributed combined Tausworthe generators�

Mathematics of Computation� Vol� ��� No� ���� pp� ���(����

��� L�Ecuyer� P� ������� Bad lattice structures for vectors of non	successive values

produced by some linear recurrences� INFORMS Journal on Computing� Vol� �� No�

�� pp� ��(���

��� L�Ecuyer� P� ������� Good parameters and implementations for combined multiple

recursive random number generators� Manuscript�

��� L�Ecuyer� P� ������� Tests based on sum	functions of spacings for uniform random

numbers� Journal of Statistical Computation and Simulation� Vol� ��� pp� ���(����

��� L�Ecuyer� P� ������� Tables of maximally equidistributed combined LFSR genera	

tors� Mathematics of Computation� To appear�

��� L�Ecuyer� P� �Circa ������ TestU��� Un logiciel pour appliquer des tests statistiques

,a des g�en�erateurs de valeurs al�eatoires� In preparation�

��� L�Ecuyer� P� and T� H� Andres ������� A random number generator based on the

��



combination of four LCGs� Mathematics and Computers in Simulation� Vol� ��� pp�

��(����

��� L�Ecuyer� P�� F� Blouin and R� Couture ������� A search for good multiple recur	

sive random number generators� ACM Transactions on Modeling and Computer

Simulation� Vol� �� No� �� pp� ��(���

��� L�Ecuyer� P�� A� Compagner and J�	F� Cordeau ������� Entropy tests for random

number generators� Manuscript�

��� L�Ecuyer� P�� J�	F� Cordeau and R� Simard ������� Close	point spatial tests and

their application to random number generators� Submitted�

��� L�Ecuyer� P� and S� C$ot�e ������� Implementing a random number package with

splitting facilities� ACM Transactions on Mathematical Software� Vol� ��� No� �� pp�

��(����

��� L�Ecuyer� P� and R� Couture ������� An implementation of the lattice and spectral

tests for multiple recursive linear random number generators� INFORMS Journal

on Computing� Vol� �� No� �� pp� ���(����

��� L�Ecuyer� P� and R� Proulx ������� About polynomial	time �unpredictable genera	

tors� In Proceedings of the �	�	 Winter Simulation Conference� pp� ���(���� IEEE

Press�

��� L�Ecuyer� P�� R� Simard and S� Wegenkittl ������� Sparse serial tests of randomness�

In preparation�

��� L�Ecuyer� P� and S� Tezuka ������� Structural properties for two classes of combined

random number generators� Mathematics of Computation� Vol� ��� No� ���� pp� ���(

����

��� Leeb� H� and S� Wegenkittl ������� Inversive and linear congruential pseudorandom

number generators in empirical tests� ACM Transactions on Modeling and Computer

Simulation� Vol� �� No� �� pp� ���(����

��� Lehmer� D� H� ������� Mathematical methods in large scale computing units� Annals

Comp� Laboratory Harvard University� Vol� ��� pp� ���(����

��� Lewis� P� A� W�� A� S� Goodman and J� M� Miller ������� A pseudo	random number

generator for the system ���� IBM System�s Journal� Vol� �� pp� ���(����

��



��� Lewis� T� G� and W� H� Payne ������� Generalized feedback shift register pseudo	

random number algorithm� Journal of the ACM� Vol� ��� No� �� pp� ���(����

��� L%uscher� M� ������� A portable high	quality random number generator for lattice

�eld theory simulations� Computer Physics Communications� Vol� ��� pp� ���(����

��� MacLaren� N� M� ������� A limit on the usable length of a pseudorandom sequence�

Journal of Statistical Computing and Simulation� Vol� ��� pp� ��(���

��� Marsaglia� G� ������� A current view of random number generators� In Com�

puter Science and Statistics Sixteenth Symposium on the Interface� pp� �(��� North	

Holland� Amsterdam� Elsevier Science Publishers�

��� Marsaglia� G� ������� Yet another rng� Posted to the electronic billboard

sci�stat�math� August ��

��� Marsaglia� G� ������� DIEHARD� a battery of tests of randomness� See

http���stat�fsu�edu��geo�diehard�html�

��� Marsaglia� G� ������� The Marsaglia random number CDROM� See

http���stat�fsu�edu��geo��

��� Marsaglia� G� and A� Zaman ������� A new class of random number generators�

The Annals of Applied Probability� Vol� �� pp� ���(����

��� Marse� K� and S� D� Roberts ������� Implementing a portable FORTRAN uniform

����� generator� Simulation� Vol� ��� No� �� pp� ���(����

��� Mascagni� M�� M� L� Robinson� D� V� Pryor and S� A� Cuccaro ������� Parallel

pseudorandom number generation using additive lagged	�bonacci recursions� In

H� Niederreiter and P� J�	S� Shiue� editors� Monte Carlo and Quasi�Monte Carlo

Methods in Scienti�c Computing� number ��� in Lecture Notes in Statistics� pp�

���(���� Springer	Verlag�

��� MATLAB ������� MATLAB Reference Manual� The MathWorks Inc�� Natick� Mass�

��� Matsumoto� M� and Y� Kurita ������� Twisted GFSR generators� ACM Transactions

on Modeling and Computer Simulation� Vol� �� No� �� pp� ���(����

��� Matsumoto� M� and Y� Kurita ������� Twisted GFSR generators II� ACM Trans�

actions on Modeling and Computer Simulation� Vol� �� No� �� pp� ���(����

��� Matsumoto� M� and Y� Kurita ������� Strong deviations from randomness in m	

��



sequences based on trinomials� ACM Transactions on Modeling and Computer Sim�

ulation� Vol� �� No� �� pp� ��(����

��� Matsumoto� M� and T� Nishimura ������� Mersenne twister� A ���	dimensionally

equidistributed uniform pseudorandom number generator� ACM Transactions on

Modeling and Computer Simulation� Vol� �� No� �� To appear�

��� Moreau� T� ������� A practical �perfect pseudo	random number generator� Man	

uscript�

���� Niederreiter� H� ������� The serial test for pseudorandom numbers generated by

the linear congruential method� Numerische Mathematik� Vol� ��� pp� ��(���

���� Niederreiter� H� ������� A pseudorandom vector generator based on �nite �eld

arithmetic� Mathematica Japonica� Vol� ��� pp� ���(����

���� Niederreiter� H� ������� Random Number Generation and Quasi�Monte Carlo Meth�

ods� volume �� of SIAM CBMS�NSF Regional Conference Series in Applied Mathe�

matics� SIAM� Philadelphia�

���� Niederreiter� H� ������� The multiple	recursive matrix method for pseudorandom

number generation� Finite Fields and their Applications� Vol� �� pp� �(���

���� Niederreiter� H� ������� New developments in uniform pseudorandom number and

vector generation� In H� Niederreiter and P� J�	S� Shiue� editors� Monte Carlo and

Quasi�Monte Carlo Methods in Scienti�c Computing� number ��� in Lecture Notes

in Statistics� pp� ��(���� Springer	Verlag�

���� Niederreiter� H� ������� Pseudorandom vector generation by the multiple	recursive

matrix method� Mathematics of Computation� Vol� ��� No� ���� pp� ���(����

���� Owen� A� B� ������� Latin supercube sampling for very high dimensional simula	

tions� ACM Transactions of Modeling and Computer Simulation� Vol� �� No� �� To

appear�

���� Park� S� K� and K� W� Miller ������� Random number generators� Good ones are

hard to �nd� Communications of the ACM� Vol� ��� No� ��� pp� ����(�����

���� Payne� W� H�� J� R� Rabung and T� P� Bogyo ������� Coding the Lehmer pseudo	

random number generator� Communications of the ACM� Vol� ��� pp� ��(���

���� Percus� D� E� and M� Kalos ������� Random number generators for MIMD parallel

��



processors� Journal of Parallel and Distributed Computation� Vol� �� pp� ���(����

���� Press� W� H� and S� A� Teukolsky ������� Portable random number generators�

Computers in Physics� Vol� �� No� �� pp� ���(����

���� Rabin� M� O� ������� Probabilistic algorithms for primality testing� J� Number

Theory� Vol� ��� pp� ���(����

���� Ripley� B� D� ������� Stochastic Simulation� Wiley� New York�

���� Ripley� B� D� ������� Thoughts on pseudorandom number generators� Journal of

Computational and Applied Mathematics� Vol� ��� pp� ���(����

���� Schrage� L� ������� A more portable fortran random number generator� ACM

Transactions on Mathematical Software� Vol� �� pp� ���(����

���� Stephens� M� S� ������� Tests based on EDF statistics� In R� B� D�Agostino and

M� S� Stephens� editors� Goodness�of�Fit Techniques� Marcel Dekker� New York and

Basel�

���� Stephens� M� S� ������� Tests for the uniform distribution� In R� B� D�Agostino and

M� S� Stephens� editors� Goodness�of�Fit Techniques� pp� ���(���� Marcel Dekker�

New York and Basel�

���� Sun Microsystems ������� Numerical Computations Guide� Document number

���	����	���

���� Tausworthe� R� C� ������� Random numbers generated by linear recurrence modulo

two� Mathematics of Computation� Vol� ��� pp� ���(����

���� Teichroew� D� ������� A history of distribution sampling prior to the era of com	

puter and its relevance to simulation� Journal of the American Statistical Associa�

tion� Vol� ��� pp� ��(���

���� Tezuka� S� ������� Uniform Random Numbers� Theory and Practice� Kluwer

Academic Publishers� Norwell� Mass�

���� Tezuka� S� and P� L�Ecuyer ������� E�cient and portable combined Tausworthe

random number generators� ACM Transactions on Modeling and Computer Simu�

lation� Vol� �� No� �� pp� ��(����

���� Tezuka� S�� P� L�Ecuyer and R� Couture ������� On the add	with	carry and

subtract	with	borrow random number generators� ACM Transactions of Modeling

��



and Computer Simulation� Vol� �� No� �� pp� ���(����

���� Tootill� J� P� R�� W� D� Robinson and D� J� Eagle ������� An asymptotically

random Tausworthe sequence� Journal of the ACM� Vol� ��� pp� ���(����

���� Vazirani� U� and V� Vazirani ������� E�cient and secure pseudo	random number

generation� In Proceedings of the �
th IEEE Symposium on Foundations of Computer

Science� pp� ���(����

���� Wang� D� and A� Compagner ������� On the use of reducible polynomials as

random number generators� Mathematics of Computation� Vol� ��� pp� ���(����

���� Wichmann� B� A� and I� D� Hill ������� An e�cient and portable pseudo	random

number generator� Applied Statistics� Vol� ��� pp� ���(���� See also corrections and

remarks in the same journal by Wichmann and Hill� Vol� �� ������ p� ���� McLeod

Vol� �� ������ pp� ���(���� Zeisel Vol� �� ������ p� ���

���� Wolfram� S� ������� The Mathematica Book� third edition� Wolfram Me	

dia Cambridge University Press� Champaign� USA�

��



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


