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Site animals on the directed square and triangular lattices are known to have

quadratic, algebraic generating functions. Attempts to �nd the corresponding

generating function for directed hexagonal lattice animals have been unsuccessful.

Here we show that the generating function is almost certainly not algebraic, nor

di�erentiably �nite, nor constructible di�erentiably algebraic.

1 Introduction

A directed lattice animal A is a �nite connected set of vertices on an acyclic

lattice such that all vertices p 2 A are either the (unique) origin vertex or one

(lattice) step in one of the preferred directions from some other vertex in A.
The area of the animal is the number of vertices in A. A neighbour of A is a

vertex that does not belong to A, but is connected by an edge to a vertex of

A. The site perimeter of A is the number of its neighbours. As usual, animals

are de�ned up to a translation on an in�nite, periodic lattice. As well as their

intrinsic interest, they are closely related to lattice models of cell growth in

general, and percolation in particular.

For the square lattice, only steps in the +x and +y directions are per-

mitted, while on the triangular lattice only steps in the three directions with

positive x component are permitted. For these two lattices, the problem of

enumerating the number of site animals was �rst studied on strips of �nite

width 1�2. Subsequently Dhar et al. 3 solved the problem completely, obtain-

ing the generating function for both lattices empirically. Later Dhar 4 showed

the problem to be equivalent to the Baxter hard-square problem. This equiv-

alence was then 5 proved by a bijection to a class of one-dimensional walks,

and later 6 proved by a bijection to asymmetric trees. Similarly, Viennot 7

established the result for the triangular case.

For the square lattice, the generating function fs(x) satis�es

(f2s (x) + fs(x))(1 � 3x)� x = 0

aDedicated to Jim McGuire, on the occasion of his 65th birthday.
bPresent address: Silicon Genetics, California. arc@sigenetics.com
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from which one readily obtains

fs(x) =
1

2
(

r
1 + x

1� 3x
� 1):

The corresponding result for the triangular lattice is even simpler, being

ft(x) =
1

2
(

1p
1� 4x

� 1):

Corresponding results for bond animals are not known. Neither is the

solution for site animals on the hexagonal, Kagom�e or other Archimedean

lattices known. In 9 a family of so-called strange lattices was proposed, for

which the exact generating function for site animals was empirically obtained.

These results were subsequently proved 8;10. The strange lattices are a type of

decorated square lattice, but bear a super�cial resemblance to the hexagonal

lattice.

From the above expressions for the generating functions, it is clear that

the number of site-animals with n-sites grows asymptotically as �n=
p
n, where

� = 3 for the square lattice and � = 4 for the triangular lattice animals.

For hexagonal lattice animals, an enumeration 3 and subsequent analysis of

all animals up to 48 sites led to the conclusion that the asymptotic form was

unchanged, and to the estimate � = 2:0252 � 0:0005: In 9 we presented a

99 term series, and an analysis which gave the more precise estimate � =

2:025131�0:000005:However we failed to �nd an expression for the generating

function.

More recently, a detailed study of two-dimensional directed animals has

been given 10. In that paper Bousquet-M�elou considers the two-variable gener-

ating function f(x; t) where the second variable t is conjugate to the perimeter.

In terms of these two-variable generating functions, it is shown 10 that

fh(x; t) = xt+ fs(x
2; t(1 + x));

where fh(x; t) is the honeycomb lattice site and area generating function.

Hence the site generating function that we require is

fh(x; 1) = x+ fs(x
2; (1 + x)):

As the two-variable generating function for the square lattice is not known,

this doesn't provide the required solution! Note however that from the known

solution for the square lattice generating function we have the result that

fh(x; 1=(1 + x)) =
x

1 + x
+ fs(x

2; 1) =
x

1 + x
+ fs(x

2):
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Figure 1: Directed hexagonal lattice

Thus we see that the full two-variable hexagonal lattice generating function is

known along one curve of its domain. This is reminiscent of the susceptibility

of the anisotropic two-dimensional Ising model on the triangular lattice, which

is solvable along the disorder line.

Another parameter that can enter the problem arises if we look closely

at the various cases that can occur at an occupied vertex of a site animal.

For the hexagonal lattice, there are two types of site, and each site can be

supported in a variety of ways. Imagine a directed animal on the honeycomb

lattice rendered as a brickwork lattice (see Figure 1). Sites are allowed to be

to the right or to the left of an occupied site, subject to the restriction that

sites can only be supported on the left if there is a bond to their left.

We de�ne two types of sites : those that have a support to the left, and

those that do not. In the �gure, sites A, B and D all have supports to the left;

no other sites do. Note that C does not have support to the left, as there is

no bond to the left, and E has no support to the left as the site to the left is

unoccupied.

In this paper we have generalised the problem of hexagonal site animals

by enumerating not only by area, but also by the number of vertices supported

only one particular way. The result is a two-variable generating function

Fh(x; s) =
X
m;n

am;nx
msn; (1)

where am;n is the number of site animals of area m and with n sites supported
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one particular way. Summation over m gives

Fh(x; s) =
X
n

Hn(x)s
n; (2)

where Hn(x) is the generating function for all animals with exactly n sites

supported in one particular way. By empirically obtaining the �rst few func-

tions Hn(x) we are able to observe a pattern unfolding which we recognise as

characteristic of what we call a D-unsolvable problem 11�12. This concept is

fully discussed in the next section.

2 D-unsolvability

Some of the most famous results in mathematics involve a proof of the intrinsic

unsolvability of certain problems. Some, such as `trisecting an angle' go back

to antiquity, while others, such as the lack of integer solutions to the equation

xn + yn = zn for n > 2 have only quite recently been acceptably proved 27. In

mathematical physics and combinatorics such results about the solvability or

otherwise of problems are largely unknown. We have 11�12 taken the �rst steps

in �lling this gap by presenting and developing what is essentially a numerical

method that provides, at worst, strong evidence that a problem has no solu-

tion within a large class of functions, including algebraic, di�erentiably �nite

(D-�nite) 26;24 and a sub-class 18 of di�erentiably algebraic functions, called

constructible di�erentiably algebraic (CDA). Since most of the special func-

tions of mathematical physics | in terms of which most known solutions are

given | are di�erentiably �nite, this exclusion renders the problem unsolvable

within this class. We use the term D-unsolvable to mean that the problem has

no solution within the class of D-�nite functions as well as the sub-class of

di�erentiably algebraic functions described above.

In fact, the exclusion is wider than this, as we show that the solutions pos-

sess a natural boundary on the unit circle in an appropriately de�ned complex

plane. We show that this property implies that the appropriately de�ned two-

variable generating function cannot be either an algebraic, D-�nite nor CDA

function. Indeed, the exclusion goes further than this, | though we have no

simple way to describe this excluded class.

It may be worthwhile to recall the de�nitions of these classes of functions,

and their hierarchy. Algebraic functions are a subset of both the set of D-�nite

and of CDA functions, while both D-�nite and CDA functions are subsets of

the set of di�erentiably algebraic functions. However some D-�nite functions

are not CDA functions, and conversely, some CDA functions are not D-�nite.
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Let KI be a commutative �eld. A series f(z) 2 KI [[z]] is said to be di�eren-

tiably �nite if there exists an integer k and polynomials P0(z); � � � ; Pk(z) with
coeÆcients in KI such that Pk(z) is not the null polynomial and

P0(z)f(z) + P1(z)f
0(z) + � � �+ Pk(z)f

(k)(z) = 0:

A series f(z) 2 KI [[z]] is said to be di�erentiably algebraic if there exists an

integer k and a polynomial P in k + 2 variables with coeÆcients in KI , such

that

P (z; f(z); f 0(z); � � � ; f (k)(z)) = 0:

A series f(z) 2 KI [[z]] is said to be constructible di�erentiably algebraic if

there exists both series f1(z); f2(z); � � � ; fk(z) with f = f1; and polynomials

P1; P2; � � � ; Pk in k-variables, with coeÆcients in KI , such that

f 01 = P1(f1; f2; � � � ; fk); (3)

f 02 = P2(f1; f2; � � � ; fk);
� � �

f 0k = Pk(f1; f2; � � � ; fk):

Di�erentiably �nite functions in several variables are discussed in 24, while

CDA functions in several variables are discussed in 19.

The method which we shall describe and which can, in favourable circum-

stances, be sharpened into a formal proof, has been applied to a wide variety

of problems in both statistical mechanics and combinatorics. A review is given

in 12. Typically, the solution of the problem will require the calculation of

the graph generating function in terms of some parameter, such as perime-

ter, area, number of bonds or sites. A key �rst step is to anisotropise the

generating function. The anisotropisation is often non-unique, in which case

some thought needs to be given to the appropriate operation. For example, if

counting graphs by the number of bonds on, say, an underlying square lattice,

one distinguishes between horizontal and vertical bonds. In this way, one can

construct a two-variable generating function, G(x; y) =
P

m;n gm;nx
myn where

gm;n denotes the number of graphs with m horizontal and n vertical bonds.

An important requirement to bear in mind is that the anisotropisation

should not make the solution more complicated. For example, if studying an

Ising model in zero �eld, the appropriate anisotropisation is to distinguish be-

tween coupling constants in di�erent lattice directions. Generalising to temper-

ature and magnetic �eld, while producing a two-variable generating function,

is a poor choice as the solution will clearly be much more complicated. (Fur-

thermore, it is not an anisotropisation of a single variable | it is the addition

of a second, independent, variable.)
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Returning to the two variable generating function introduced above, if we

sum over one of the variables, we may write

G(x; y) =
X
m;n

gm;nx
myn =

X
n

Hn(x)y
n (4)

where Hn(x) is the generating function for the relevant graphs with n verti-

cal bonds. It has been observed in all the problems so far studied, that the

functions Hn(x) are rational, with denominator zeros lying on the unit circle

in the complex x plane.

In some cases one �nds only a small �nite number (typically one or two)

of denominator zeros on the unit circle. Loosely speaking, this is the hallmark

of a solvable problem. If, as is often observed, the denominator zeros become

dense on the unit circle as n increases, so that in the limit a natural boundary

is formed, then this is the hallmark of a D-unsolvable problem.

The signi�cance of this observation is substantial. It follows that, as n
increases, the denominators of Hn(x) contain zeros given by steadily higher

roots of unity. Hence the structure of the functions Hn(x) is that of a rational
function whose poles all lie on the unit circle in the complex x-plane, such that

the poles become dense on the unit circle as n gets large. This behaviour of

the functions Hn(x) implies that G(x; y) as a formal power series in y with

coeÆcients in C(x) (a) has a natural boundary (b) is neither algebraic nor

D-�nite, nor CDA. Further, provided that G(x; c) is well-de�ned for a given

complex value c; then, in the absence of miraculous cancellations, it follows

that G(x; c) also is neither D-�nite nor CDA.
Of course, we are primarily interested in the solution of the isotropic case,

when x = y; and it is clear that the anisotropic case can behave quite di�erently
from the isotropic case. This is most easily seen by construction. Consider the

function

f(x; y) = f1(x; y) + (x� y)f2(x; y); (5)

where f1(x; y) is D-�nite and f2(x; y) is not. Clearly, the function f(x; y)
is not D-�nite, while f(x; x) is D-�nite. However, in all the cases we have

studied where the solutions are known, the e�ect of anisotropisation does not

change the analytic structure of the solution. Rather, it simply moves sin-

gularities around in the complex plane, at most causing the bifurcation of a

real singularity into a complex pair. Further, for unsolved problems, numerical

procedures indicate that similar behaviour prevails. Nevertheless, this remains

an observation, rather than an established fact, and, strictly speaking, should

be established for each new problem.

If we now ask what functions do display the type of behaviour we have

just observed | a build up of singularities on the unit circle in the complex
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plane, then the most obvious candidate that displays this behaviour is the q-
generalisation of the standard functions of mathematical physics, or possibly

a modular function, when expressed in terms of its original expansion variable

z or q = exp(2�iz) 23. This behaviour has been seen in a number of solutions

already, such as the solution of the hard hexagon model 15, certain interacting

walk models 25 and some polygon models 16.

That being said, not all problems with a small number of denominator

zeros have been solved, while some D-unsolvable problems have been solved.

In the former case however we believe that it is only a matter of time before a

solution is found for these problems, while in the latter case the solutions have

usually been expressed in terms of q-generalisations of the standard functions,

which are of course not D-�nite, or modular functions.

As an example, the generating function for the number of parallelogram

polygons given in terms of the area (q), horizontal semi-perimeter (x) and

vertical semi-perimeter (y) is 17

G(x; y; q) = y
J1

J0
where (6)

J1(x; y; q) =
X
n�1

(�1)n�1xnq(
n+1

2 )

(q)n�1(yq)n
and (7)

J0(x; y; q) =
X
n�0

(�1)nxnq(
n+1

2 )

(q)n(yq)n
: (8)

In this case, it is clear that if we look at G(x; 1; q) in the complex q-plane with
x held �xed, the solution possesses a natural boundary on the unit circle.

Based on these observations, we have suggested that the following method

is a particularly useful �rst step in the study of such problems. One �rst

anisotropises the problem, then one computes enough terms in the generating

function to be able to construct the �rst few functionsHn, and one then studies

the denominator pattern. If it appears that the zeros are becoming dense on

the unit circle, one has reason to suspect that the problem is D-unsolvable. If

on the other hand there are only one or two zeros, one is in an excellent position

to seek the solution in terms of the standard functions of mathematical physics

| loosely de�ned as those described in 13. In some cases one may be able to

prove that the observed denominator pattern persists. In that case, one has

proved the observed results.

The construction of the functions Hn deserves some explanation. At very

low order this can often be done exactly, by combinatorial arguments based

on the allowed graphs. Beyond this, our method is to generate the coeÆcients
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in the expansion, assume the function Hn(x) is rational, then by essentially

constructing the Pad�e approximant one can con�dently conjecture the solu-

tion. Typically, one may generate 50-100 terms in the expansion | which

are therefore known exactly | and use perhaps 10 or 20 of them to �nd a

rational function with numerator and denominator of degree 5 or 10. Thus the

�rst 10 or 20 terms of the series are used to identify this conjectured rational

function, which can then be expanded, and the coeÆcients compared with the

exact coeÆcients that were not used in its discovery. Hence while this is not a

rigorous derivation, the chance of it being incorrect is extraordinarily small.

It should be said explicitly that this technique is computationally demand-

ing. That is to say, the generation of suÆcient terms in the generating function

is usually quite diÆcult. Only with improved algorithms | most notably the

combination of the �nite lattice method21;22 with a transfer matrix formulation

| and computers with large physical memory which are needed for the eÆcient

implementation of such algorithms, has it been possible to obtain expansions

of the required length in a reasonable time. The technique is still far from

routine, with each problem requiring a signi�cant calculational e�ort. Other

important aspects of the method, such as the connection of these ideas with

concepts of integrability, and with the existence of a Yang-Baxter equation are

not explored here.

An additional, and exceptionally valuable feature of the method comes

when the numerical work, described above, is combined with certain functional

relations that the anisotropised generating functions must satisfy. These key

functional relations or inversion relations imply a connection between the gen-

erating function and its analytic continuation, usually involving the reciprocal

of one or more of the expansion variable(s). As �rst shown by Baxter 14, the

existence of these inversion relations, coupled with any obvious symmetries

(usually a symmetry with respect to the interchange of x and y), coupled
with the observed behaviour of the functions Hn | described above | can

yield an implicit solution to the underlying problem with no further calcula-

tion. An example of this is the solution 14 of the zero-�eld free energy of the

two-dimensional Ising model.

This same approach has been used to show 11;20 that the susceptibility of

the two-dimensional Ising model, and the generating function for square lattice

self-avoiding walks, is D-unsolvable.

In the next sections we apply the method to the problem of square lattice

and hexagonal lattice site animals, and hence show that the former is solvable

while the latter appears to be D-unsolvable.
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3 Directed square site animals

As mentioned above, the generating function for square lattice directed site

animals is exactly known. It has recently been generalised to include the

number of sites supported in exactly one way, as well as the total number of

sites 16. The result is

Fsq(x; s) =
1

2

�
(1� 4x

(1 + x)(1 + x� sx)
)�

1
2 � 1

�
: (9)

Writing this as

Fsq(x; s) =
X
n

Hn(x)s
n; (10)

expansion readily yields

H0(x) = x=(1� x);

H1(x) = x2=(1� x)3;

H2(x) = x3(1 + x+ x2)=(1� x)5(1 + x);

H3(x) = x4(1 + 2x+ 4x2x+ 2x3 + x4)=(1� x)7(1 + x)2;

H4(x) = x5(1 + 3x+ 9x2 + 9x3 + 9x4 + 3x5 + x6)=(1� x)9(1 + x)3;

H5(x) = x6(1 + 4x+ 16x2 + 24x3 + 36x4 + 24x5 + 16x6 + 4x7 + x8)

=(1� x)11(1 + x)4:

Here it can be seen that the functions Hn(x) have just two denominator

zeros, at x = 1 and x = �1: As discussed above, this is the hallmark of a

solvable model.

Inspection also shows that Fsq(x; s) is invariant under the combined sub-

stitutions x ! 1=x and s ! sx in that order. However, if one applies this

transformation to the functions Hn above, it appears not to hold. The reason

for this relates to the choice of branches in the square-root function. H0(x)

is in fact 1
2
(
q

(1+x)2

(x�1)2
� 1); where the negative branch of the square root is

taken to obtain the result H0(x) = x=(1 � x) above. For n > 0; each of the

functions Hn(x) contain a multiplicative factor
q

(1+x)2

(x�1)2
; where the negative

branch has again been taken in obtaining the results given above. When the

transformation x ! 1=x is applied to these results, the other branch must be

taken. This then leaves the functions Hn invariant. (Without taking this into

account, the transformation x ! 1=x introduces a spurious factor �1=x to

each H function.)
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The existence of this invariance is, together with certain other observations,

suÆcient to implicitly solve the problem, by obtaining the functions Hn order

by order. To be precise, we �rst observe that the structure of the functions Hn

is Hn(x) = xn+1P2n�2(x)=(1�x)2n+1(1+x)n�1 for n > 0; where P2n�2(x) is a
symmetric unimodal polynomial with all coeÆcients positive. (The symmetry

is a re
ection of the invariance under the transformation x ! 1=x.) Thus we

have 2n� 1 unknown polynomial coeÆcients, of which n follow from symme-

try. To obtain the n � 1 unknowns, one studies the coeÆcients of the series

expansion of the functions Hn systematically, and observes that the lowest or-

der non-zero coeÆcients are all 1: The next lowest order coeÆcients are given

by a linear recurrence (the coeÆcients are 1; 3; 5; 7; 9; � � �) the next lowest by

a quadratic recurrence, and so on. This observation is suÆcient to determine

the unknown coeÆcients order by order (and to identify the recurrences order

by order). In this way we could have experimentally \solved" the problem.

Turning now to hexagonal animals, we see quite di�erent behaviour.

4 Directed hexagonal site animals

We have enumerated site animals on the hexagonal lattice, in the manner

described above, anisotropising the area by distinguishing between those sites

of the animal supported only one particular way, and the total number of sites.

Let

Fh(x; t) =
X
m;n

am;nx
mtn =

X
n

Hn(x)t
n; (11)

be the site generating function, where am;n gives the number of hexagonal

lattice site animals, with n sites supported one particular way, and m sites in

total.

The generating function for those animals with precisely n sites supported

one particular way is Hn(x).

The enumeration is carried out by a dynamic programming algorithm, as

follows: Consider a diagonal line perpendicular to the preferred direction, and

passing through sites. Any development of the animal in the preferred direction

of this line cannot use information on the other side of the line, and thus the

animal can be divided this way.

One can de�ne a function which takes a set of sites along this line, together

with a 
ag signifying whether it is an even line or an odd line (with respect

to the brick work), and the number of each of the two types of sites left to

consider, and which produces the number of animals. This function can be

de�ned recursively by looking at all ways of going to the next diagonal line.
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This recursive function was then evaluated using dynamic programming

(technically known as memoisation). This is a very eÆcient method of counting

in terms of computational time, but it does require a large amount of memory

to be used.

In this way, the �rst few functions Hn were found to be

H0(x) = x=(1� x);

H1(x) = x=(1� x)3(1 + x);

H2(x) = x2(1 + x+ x3)=(1� x)5(1 + x)2(1 + x2);

H3(x) = x3(1 + x)(1 + x+ 3x3 � x4 + x5)=(1� x)7(1 + x)3(1 + x2)2;

H4(x) = x4[1; 3; 4; 10; 12; 14; 16; 13; 14; 7; 6; 4; 0; 1]=

(1� x)9(1 + x)4(1 + x2)3(1� x� x2)(1 + x+ x2):

In H4(x) we have used the obvious notation [a0; a1; � � � ; an] for the polynomial

with those coeÆcients. Our enumerations are complete up to H9(x). The �rst
5 numerators are shown above, while the remaining 5 are shown in the table

below.

The structure of the denominators is clearly that characteristic of a D-

unsolvable model. All denominators have a zero at x = 1: Then H1(x) sees the
�rst occurence of the factor (1 � x2) in the denominator. Then new factors

appear at every second order. H2 and H3 see the �rst appearance of (1� x4)
and H4 and H5 see the �rst appearance of the factor (1 � x6): This pattern
persists as far as our enumerations have gone. Indeed, the denominator can

be written, as also mentioned in the tables, as:

(1� x)2n+1(1 + x)n(1 + x2)n�1(1 + x+ x2 + x3 + x4)n�7(1� x+ x2)n�3

(1 + x+ x2)n�3(1 + x4)n�5(1� x+ x2 � x3 + x4)n�7 � � � :

for n < 10:
Thus it appears that, for the problem we wish to solve, the structure is

such that the numerator polynomials appear to increase in degree non-linearly

(paralleling the growth of the denominator polynomials). The structure of the

denominator is such that steadily higher degree roots of unity occur. It follows

that, as n increases, the denominators of Hn(x) contain zeros given by the

2kth roots of unity, where 2k = n+ 1 or n+ 2 according as n is odd or even.

Hence as n increases, so does k: Hence the structure of the functions Hn(x) is
that of a rational function whose poles all lie on the unit circle in the complex

x-plane, such that the poles become dense on the unit circle as n gets large.

This behaviour of the functions Hn(x) implies that Fh(x; t) as a formal power
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m t5;m t6;m t7;m t8;m t9;m m t8;m t9;m

0 1 1 1 1 1 43 554727 301855120

1 4 5 6 7 8 44 274989 316203750

2 8 13 19 27 36 45 279041 253527720

3 22 40 65 105 156 46 123574 261829201

4 37 85 164 310 524 47 122507 198731706

5 56 160 358 806 1552 48 49192 202955241

6 88 297 763 1970 4259 49 45825 145078927

7 98 453 1377 4234 10394 50 17342 147020846

8 137 711 2474 8755 24183 51 14045 98362175

9 118 956 3936 16652 51875 52 5400 99296288

10 145 1276 6181 30224 106494 53 3354 61720320

11 113 1614 8979 52466 206745 54 1428 62329753

12 104 1798 12546 85594 384905 55 594 35690869

13 79 2192 16753 137723 687199 56 280 36212572

14 50 2064 21422 206033 1183788 57 87 18925621

15 40 2446 26258 309999 1963561 58 28 19365970

16 17 1949 31321 430890 3173730 59 13 9150529

17 10 2220 34969 610219 4927653 60 9463816

18 6 1546 39772 795737 7548433 61 1 4010458

19 1642 40007 1066153 11034284 62 4184507

20 1 1011 44030 1311798 16135051 63 1584852

21 959 39493 1671253 22312164 64 1651470

22 558 42663 1946718 31309061 65 563029

23 427 33716 2369655 41115663 66 570676

24 249 36011 2615436 55583921 67 179940

25 135 24891 3057147 69539866 68 168001

26 85 26363 3194751 90846746 69 51908

27 32 15853 3603847 108550608 70 40488

28 15 16467 3556844 137370735 71 13386

29 8 8717 3892590 157068764 72 7606

30 8644 3614528 192938081 73 2910

31 1 4115 3858021 211378885 74 1082

32 3667 3352815 252481864 75 456

33 1683 3509709 265248214 76 132

34 1201 2836166 308590485 77 36

35 581 2927694 310927383 78 16

36 281 2182896 352907485 79

37 154 2234387 340888419 80 1

38 51 1523809 378112259

39 21 1554040 349778052

40 10 960476 379840056

41 979475 335930553

42 1 543813 357880527

Table 1: CoeÆcients of numerator polynomials. Hn(x) has numerator xn
P

m
x
m
tn;m and

denominator (1� x)2n+1(1 + x)n(1 + x2)n�1(1 + x+ x2 + x3 + x4)n�7(1� x+ x2)n�3(1 +

x+ x2)n�3(1 + x4)n�5(1� x+ x2 � x3 + x4)n�7 � � �
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series in t with coeÆcients in C(x) (a) has a natural boundary (b) is neither

algebraic nor D-�nite, nor CDA.

This conclusion is then consistent with earlier observations that suggested

that the hexagonal lattice problem was qualitatively di�erent to the same prob-

lem on the square or triangular lattice, and provides quantitative support for

that observation. For some D-unsolvable problems inversion relations exist,

and these are often discoverable from the functions Hn. In this case however

we have been unable to �nd one. So the question as to the exact form of the

generating function remains unanswered, though we suggest a likely candidate

is the large class of q-generalisations of the standard functions of mathematical

physics or possibly modular functions.
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