Hilbert’s Inequalities

1. Introduction. In 1971, as an off-shoot of my research on the Davenport—
Halberstam inequality involving well-spaced numbers, I took the numbers to
be equally spaced and was led to the inequality
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for all complex numbers zq, ..., zg.

If we let n € N and R > n and take x, = 0 for n < r < R, then dividing
both sides of inequality (1) by R and letting R — oo gives Hilbert’s “second”

inequality . .
T, Ty 2
Y I <aY )
r,s=1 r=1
r#s

(See Hardy, Littlewood, Pdlya [1].)
On reading my manuscript, Hugh Montgomery observed that a strength-
ening of Hilbert’s inequality could be obtained:
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Montgomery conjectured that if the largest eigenvalue of the Hilbert matrix
is 1R, pr > 0, then
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He was able to obtain a weaker “order of magnitude” result.
I have not seen a reference to (3).
We remark that the “first” Hilbert inequality
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is much less mysterious and also follows with some care, from inequality
(1). Also (see Wilf [4, pages 2-5]) if Ag is the largest eigenvalue of the
corresponding (positive definite) Hilbert matrix, then Theorem 2.2 of Wilf
[4] states that

A =7 —7°/2(log R)? + O(log log R/ (log R)*).

2. A skew—circulant matrix.

LEMMA 1. The eigenvalues of the skew—circulant matrix complex matrix
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Proof. (Montgomery)
Regard ay,...,ar_1 as indeterminates. Let X,, s = 1,..., R be the col-
umn vector with entries
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Then direct calculation reveals that
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LEMMA 2. Let C = [¢,5] be the R x R matrix defined by

o = cosec@ ifr#s
0 if r=s.

Then the eigenvalues of C' are the purely imaginary numbers

(2s—1—R)i, s=1,...,R,



or in other words, the numbers +(R — 1)i, £(R — 3)1i, . ..
PROOQOF. In the nomenclature of Lemma 1, C' = A, where
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Hence the eigenvalues of C' are given by
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From the first of these expressions for Ay we deduce that A\, — A, = 2¢. Also
A1 = —(R — 1)i. Consequently the theorem follows.

Noting that the eigenvalue of largest modulus of C' is i(R — 1), we have
the following result:

COROLLARY. For all complex numbers x1, ..., xg,
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PROOF. A skew—symmetric matrix C' is a normal matrix and is hence uni-
tarily similar to a diagonal matrix. We then argue as in the proof of Theorem
12.6.5, Mirsky [2, page 388].

3. An improvement to Hilbert’s inequality.
The next result is due to Schur (see Satz 5, Mirsky [3, page 11].)

LEMMA 3. Let C = [¢,5] and D = [d,s] be R x R matrices with D positive
definite Hermitian. Then if 4 = maxd,, and v is a positive number such

that the inequality
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holds for all complex numbers x4, ..., zg, then the inequality
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holds for all complex numbers x4, ..., zg.

We are now able to derive the improvement in Hilbert’s second inequality,
as pointed out by Montgomery:

THEOREM. The inequality
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for all complex numbers z1, ..., xg.
PROOF. We have
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where
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It is easy to prove that D is positive definite. For

gzzxrxsdrs = _Zxrx drs—i_z‘xr’Z

r;és

2w (s— r)zz
E E T,re E dx
2nriz
/ | E re ’ |*dz.

1
2 r

N[ wl

Since d,, = m/R, we have u = w/R. Also by the Corollary, we may take
v = R — 1. Consequently (5) follows from (6) and Lemma 3.



Dr. Graham Jameson has supplied another proof of the Theorem, which
does not use Lemma 3.

Let
I 1/(r—s) ifr#s,
"1 0 if r = s,
and let
R
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With the notation of the paper, b, s = ¢; sd; 5.
Write (as usual) e(t) = ™. Note first that
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where g,(t) = e(rt/R) (also when r = s). So
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By (1), applied to the scalars g,(t)z,, we have
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