Hilbert's Inequalities

1. Introduction. In 1971, as an off-shoot of my research on the DavenportHalberstam inequality involving well-spaced numbers, I took the numbers to be equally spaced and was led to the inequality

$$
\begin{equation*}
\left|\sum_{\substack{r, s=1 \\ r \neq s}}^{R} \bar{x}_{r} x_{s} \operatorname{cosec} \frac{\pi(r-s)}{R}\right| \leq(R-1) \sum_{r=1}^{R}\left|x_{r}\right|^{2} \tag{1}
\end{equation*}
$$

for all complex numbers x_{1}, \ldots, x_{R}.
If we let $n \in \mathbb{N}$ and $R \geq n$ and take $x_{r}=0$ for $n<r \leq R$, then dividing both sides of inequality (1) by R and letting $R \rightarrow \infty$ gives Hilbert's "second" inequality

$$
\begin{equation*}
\left|\sum_{\substack{r, s=1 \\ r \neq s}}^{n} \frac{\bar{x}_{r} x_{s}}{r-s}\right| \leq \pi \sum_{r=1}^{n}\left|x_{r}\right|^{2} \tag{2}
\end{equation*}
$$

(See Hardy, Littlewood, Pólya [1].)
On reading my manuscript, Hugh Montgomery observed that a strengthening of Hilbert's inequality could be obtained:

$$
\begin{equation*}
\left|\sum_{\substack{r, s=1 \\ r \neq s}}^{R} \frac{\bar{x}_{r} x_{s}}{r-s}\right| \leq \pi\left(1-\frac{1}{R}\right) \sum_{r=1}^{R}\left|x_{r}\right|^{2} \tag{3}
\end{equation*}
$$

Montgomery conjectured that if the largest eigenvalue of the Hilbert matrix is $i \mu_{R}, \mu_{R}>0$, then

$$
\pi-\mu_{R} \sim \frac{c \log R}{R}
$$

He was able to obtain a weaker "order of magnitude" result.
I have not seen a reference to (3).
We remark that the "first" Hilbert inequality

$$
\begin{equation*}
\left|\sum_{r, s=1}^{R} \frac{\bar{x}_{r} x_{s}}{r+s}\right| \leq \pi \sum_{r=1}^{R}\left|x_{r}\right|^{2} \tag{4}
\end{equation*}
$$

is much less mysterious and also follows with some care, from inequality (1). Also (see Wilf [4, pages 2-5]) if λ_{R} is the largest eigenvalue of the corresponding (positive definite) Hilbert matrix, then Theorem 2.2 of Wilf [4] states that

$$
\lambda_{R}=\pi-\pi^{5} / 2(\log R)^{2}+O\left(\log \log R /(\log R)^{3}\right)
$$

2. A skew-circulant matrix.

LEMMA 1. The eigenvalues of the skew-circulant matrix complex matrix

$$
A=\left[\begin{array}{cccc}
a_{0} & a_{1} & \cdots & a_{R-1} \\
-a_{R-1} & a_{0} & \cdots & a_{R-2} \\
\vdots & \vdots & \vdots & \vdots \\
-a_{1} & -a_{2} & \cdots & a_{0}
\end{array}\right]
$$

are given by

$$
\lambda_{s}=\sum_{r=0}^{R-1} a_{r} e^{\frac{(2 s-1) r \pi i}{R}}, \quad s=1, \ldots, R .
$$

Proof. (Montgomery)
Regard a_{0}, \ldots, a_{R-1} as indeterminates. Let $X_{s}, s=1, \ldots, R$ be the column vector with entries

$$
e^{\frac{(2 s-1) r \pi i}{R}}, \quad r=0, \ldots, R-1
$$

Then direct calculation reveals that

$$
A X_{s}=\left(\sum_{r=0}^{R-1} a_{r} e^{\frac{(2 s-1) r \pi i}{R}}\right) X_{s}
$$

LEMMA 2. Let $C=\left[c_{r s}\right]$ be the $R \times R$ matrix defined by

$$
c_{r s}=\left\{\begin{array}{cl}
\operatorname{cosec} \frac{\pi(r-s)}{R} & \text { if } r \neq s \\
0 & \text { if } r=s
\end{array}\right.
$$

Then the eigenvalues of C are the purely imaginary numbers

$$
(2 s-1-R) i, \quad s=1, \ldots, R
$$

or in other words, the numbers $\pm(R-1) i, \pm(R-3) i, \ldots$
PROOF. In the nomenclature of Lemma $1, C=A$, where

$$
a_{0}=0 \text { and } a_{r}=-\operatorname{cosec} \frac{\pi r}{R}, r=1, \ldots, R-1
$$

Hence the eigenvalues of C are given by

$$
\begin{aligned}
\lambda_{s} & =-\sum_{r=1} e^{\frac{(2 s-1) r \pi i}{R}} \operatorname{cosec} \frac{\pi r}{R} \\
& =-i \sum_{r=1}^{R-1} \frac{\sin \frac{(2 s-1) \pi r}{R}}{\sin \frac{\pi r}{R}}
\end{aligned}
$$

From the first of these expressions for λ_{s} we deduce that $\lambda_{\nu+1}-\lambda_{\nu}=2 i$. Also $\lambda_{1}=-(R-1) i$. Consequently the theorem follows.

Noting that the eigenvalue of largest modulus of C is $i(R-1)$, we have the following result:
COROLLARY. For all complex numbers x_{1}, \ldots, x_{R},

$$
\left|\sum_{r \neq s}^{R} \bar{x}_{r} x_{s} \operatorname{cosec} \frac{\pi(r-s)}{R}\right| \leq(R-1) \sum_{r=1}^{R}\left|x_{r}\right|^{2}
$$

PROOF. A skew-symmetric matrix C is a normal matrix and is hence unitarily similar to a diagonal matrix. We then argue as in the proof of Theorem 12.6.5, Mirsky [2, page 388].

3. An improvement to Hilbert's inequality.

The next result is due to Schur (see Satz 5, Mirsky [3, page 11].)
LEMMA 3. Let $C=\left[c_{r s}\right]$ and $D=\left[d_{r s}\right]$ be $R \times R$ matrices with D positive definite Hermitian. Then if $\mu=\max _{r} d_{r r}$ and ν is a positive number such that the inequality

$$
\left|\sum_{r=1}^{R} \sum_{s=1}^{R} \bar{x}_{r} x_{s} c_{r s}\right| \leq \nu \sum_{r=1}^{R}\left|x_{r}\right|^{2}
$$

holds for all complex numbers x_{1}, \ldots, x_{R}, then the inequality

$$
\left|\sum_{r=1}^{R} \sum_{s=1}^{R} \bar{x}_{r} x_{s} c_{r s} d_{r s}\right| \leq \mu \nu \sum_{r=1}^{R}\left|x_{r}\right|^{2}
$$

holds for all complex numbers x_{1}, \ldots, x_{R}.
We are now able to derive the improvement in Hilbert's second inequality, as pointed out by Montgomery:

THEOREM. The inequality

$$
\begin{equation*}
\left|\sum_{\substack{r, s=1 \\ r \neq s}}^{R} \frac{\bar{x}_{r} x_{s}}{r-s}\right| \leq \pi\left(1-\frac{1}{R}\right) \sum_{r=1}^{R}\left|x_{r}\right|^{2} \tag{5}
\end{equation*}
$$

for all complex numbers x_{1}, \ldots, x_{R}.
PROOF. We have

$$
\begin{equation*}
\sum_{\substack{r, s=1 \\ r \neq s}}^{R} \frac{\bar{x}_{r} x_{s}}{r-s}=\sum_{r=1}^{R} \sum_{s=1}^{R} \bar{x}_{r} x_{s} c_{r s} d_{r s} \tag{6}
\end{equation*}
$$

where

$$
\begin{aligned}
& c_{r s}=\left\{\begin{array}{cl}
\operatorname{cosec} \frac{\pi(r-s)}{R} & \text { if } r \neq s \\
0 & \text { if } r=s
\end{array}\right. \\
& d_{r s}=\left\{\begin{array}{cl}
\frac{1}{r-s} \sin \frac{\pi(r-s)}{R} & \text { if } r \neq s \\
\frac{\pi}{R} & \text { if } r=s
\end{array}\right.
\end{aligned}
$$

It is easy to prove that D is positive definite. For

$$
\begin{aligned}
\frac{R}{\pi} \sum_{r} \sum_{s} \bar{x}_{r} x_{s} d_{r s} & =\frac{R}{\pi} \sum_{r \neq s} \bar{x}_{r} x_{s} d_{r s}+\sum_{r}\left|x_{r}\right|^{2} \\
& =\int_{-\frac{1}{2}}^{\frac{1}{2}} \sum_{r} \sum_{s} \bar{x}_{r} x_{s} e^{\frac{2 \pi(s-r) i x}{R}} d x \\
& =\int_{-\frac{1}{2}}^{\frac{1}{2}}\left|\sum_{r} x_{r} e^{\frac{2 \pi r i x}{R}}\right|^{2} d x .
\end{aligned}
$$

Since $d_{r r}=\pi / R$, we have $\mu=\pi / R$. Also by the Corollary, we may take $\nu=R-1$. Consequently (5) follows from (6) and Lemma 3.

Dr. Graham Jameson has supplied another proof of the Theorem, which does not use Lemma 3.

Let

$$
b_{r, s}= \begin{cases}1 /(r-s) & \text { if } r \neq s, \\ 0 & \text { if } r=s,\end{cases}
$$

and let

$$
S=\sum_{r=1}^{R} \sum_{s=1}^{R} b_{r, s} \overline{x_{r}} x_{s} .
$$

With the notation of the paper, $b_{r, s}=c_{r, s} d_{r, s}$.
Write (as usual) $e(t)=e^{2 \pi i t}$. Note first that

$$
\int_{-1 / 2}^{1 / 2} e(\lambda t) d t=\frac{\sin \pi \lambda}{\pi \lambda}
$$

for $\lambda \neq 0$. Hence

$$
\begin{aligned}
d_{r, s} & =\frac{\pi}{R} \int_{-1 / 2}^{1 / 2} e\left(\frac{(r-s) t}{R}\right) d t \\
& =\frac{\pi}{R} \int_{-1 / 2}^{1 / 2} g_{r}(t) \overline{g_{s}(t)} d t
\end{aligned}
$$

where $g_{r}(t)=e(r t / R)$ (also when $\left.r=s\right)$. So

$$
S=\frac{\pi}{R} \int_{-1 / 2}^{1 / 2} \sum_{r=1}^{R} \sum_{s=1}^{R} c_{r, s} g_{r}(t) \overline{g_{s}(t)} \bar{x}_{r} x_{s} d t
$$

By (1), applied to the scalars $\overline{g_{r}(t)} x_{r}$, we have

$$
\left|\sum_{r=1}^{R} \sum_{s=1}^{R} c_{r, s} g_{r}(t) \bar{x}_{r} \overline{g_{s}(t)} x_{s}\right| \leq(R-1)\|x\|^{2} .
$$

Hence

$$
|S| \leq \frac{\pi}{R}(R-1)\|x\|^{2}=\pi\left(1-\frac{1}{R}\right)\|x\|^{2}
$$

References

[1] G.H. Hardy, J.E. Littlewood, G. Pólya, Inequalities, Cambridge University Press 1959.
[2] L. Mirsky, An introduction to linear algebra, Oxford University Press 1961.
[3] I. Schur, Bemerkungungen zur Theorie der beschränkten Bilinearformen mit endlich vielen Verändlichen, J. reine angew. Math., 140 (1911), 128.
[4] H.S. Wilf, Finite sections of some classical inequalities, Ergebnisse der Mathematik, Band 52, Springer 1970.

