
Hilbert’s Inequalities

1. Introduction. In 1971, as an off–shoot of my research on the Davenport–
Halberstam inequality involving well–spaced numbers, I took the numbers to
be equally spaced and was led to the inequality

|
R∑

r, s = 1
r 6= s

x̄rxscosec
π(r − s)

R
| ≤ (R− 1)

R∑
r=1

|xr|2 (1)

for all complex numbers x1, . . . , xR.
If we let n ∈ N and R ≥ n and take xr = 0 for n < r ≤ R, then dividing

both sides of inequality (1) by R and letting R→∞ gives Hilbert’s “second”
inequality

|
n∑

r, s = 1
r 6= s

x̄rxs
r − s

| ≤ π
n∑
r=1

|xr|2. (2)

(See Hardy, Littlewood, Pólya [1].)
On reading my manuscript, Hugh Montgomery observed that a strength-

ening of Hilbert’s inequality could be obtained:

|
R∑

r, s = 1
r 6= s

x̄rxs
r − s

| ≤ π(1− 1

R
)

R∑
r=1

|xr|2. (3)

Montgomery conjectured that if the largest eigenvalue of the Hilbert matrix
is iµR, µR > 0, then

π − µR ∼
c logR

R
.

He was able to obtain a weaker “order of magnitude” result.
I have not seen a reference to (3).
We remark that the “first” Hilbert inequality

|
R∑

r,s=1

x̄rxs
r + s

| ≤ π

R∑
r=1

|xr|2. (4)
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is much less mysterious and also follows with some care, from inequality
(1). Also (see Wilf [4, pages 2–5]) if λR is the largest eigenvalue of the
corresponding (positive definite) Hilbert matrix, then Theorem 2.2 of Wilf
[4] states that

λR = π − π5/2(logR)2 +O(log logR/(logR)3).

2. A skew–circulant matrix.

LEMMA 1. The eigenvalues of the skew–circulant matrix complex matrix

A =


a0 a1 · · · aR−1

−aR−1 a0 · · · aR−2
...

...
...

...
−a1 −a2 · · · a0


are given by

λs =
R−1∑
r=0

are
(2s−1)rπi

R , s = 1, . . . , R.

Proof. (Montgomery)
Regard a0, . . . , aR−1 as indeterminates. Let Xs, s = 1, . . . , R be the col-

umn vector with entries

e
(2s−1)rπi

R , r = 0, . . . , R− 1.

Then direct calculation reveals that

AXs =

(
R−1∑
r=0

are
(2s−1)rπi

R

)
Xs.

LEMMA 2. Let C = [crs] be the R×R matrix defined by

crs =

{
cosec π(r−s)

R
if r 6= s

0 if r = s.

Then the eigenvalues of C are the purely imaginary numbers

(2s− 1−R)i, s = 1, . . . , R,
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or in other words, the numbers ±(R− 1)i,±(R− 3)i, . . .

PROOF. In the nomenclature of Lemma 1, C = A, where

a0 = 0 and ar = −cosec
πr

R
, r = 1, . . . , R− 1.

Hence the eigenvalues of C are given by

λs = −
∑
r=1

e
(2s−1)rπi

R cosec
πr

R

= −i
R−1∑
r=1

sin (2s−1)πr
R

sin πr
R

.

From the first of these expressions for λs we deduce that λν+1−λν = 2i. Also
λ1 = −(R− 1)i. Consequently the theorem follows.

Noting that the eigenvalue of largest modulus of C is i(R − 1), we have
the following result:

COROLLARY. For all complex numbers x1, . . . , xR,

|
R∑
r 6=s

x̄rxscosec
π(r − s)

R
| ≤ (R− 1)

R∑
r=1

|xr|2.

PROOF. A skew–symmetric matrix C is a normal matrix and is hence uni-
tarily similar to a diagonal matrix. We then argue as in the proof of Theorem
12.6.5, Mirsky [2, page 388].

3. An improvement to Hilbert’s inequality.

The next result is due to Schur (see Satz 5, Mirsky [3, page 11].)

LEMMA 3. Let C = [crs] and D = [drs] be R × R matrices with D positive
definite Hermitian. Then if µ = max

r
drr and ν is a positive number such

that the inequality

|
R∑
r=1

R∑
s=1

x̄rxscrs| ≤ ν

R∑
r=1

|xr|2

holds for all complex numbers x1, . . . , xR, then the inequality

|
R∑
r=1

R∑
s=1

x̄rxscrsdrs| ≤ µν
R∑
r=1

|xr|2
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holds for all complex numbers x1, . . . , xR.

We are now able to derive the improvement in Hilbert’s second inequality,
as pointed out by Montgomery:

THEOREM. The inequality

|
R∑

r, s = 1
r 6= s

x̄rxs
r − s

| ≤ π(1− 1

R
)

R∑
r=1

|xr|2 (5)

for all complex numbers x1, . . . , xR.
PROOF. We have

R∑
r, s = 1
r 6= s

x̄rxs
r − s

=
R∑
r=1

R∑
s=1

x̄rxscrsdrs, (6)

where

crs =

{
cosec π(r−s)

R
if r 6= s

0 if r = s.

drs =

{
1
r−s sin π(r−s)

R
if r 6= s

π
R

if r = s.

It is easy to prove that D is positive definite. For

R

π

∑
r

∑
s

x̄rxsdrs =
R

π

∑
r 6=s

x̄rxsdrs +
∑
r

|xr|2

=

∫ 1
2

− 1
2

∑
r

∑
s

x̄rxse
2π(s−r)ix

R dx

=

∫ 1
2

− 1
2

|
∑
r

xre
2πrix
R |2dx.

Since drr = π/R, we have µ = π/R. Also by the Corollary, we may take
ν = R− 1. Consequently (5) follows from (6) and Lemma 3.
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Dr. Graham Jameson has supplied another proof of the Theorem, which
does not use Lemma 3.

Let

br,s =

{
1/(r − s) if r 6= s,
0 if r = s,

and let

S =
R∑
r=1

R∑
s=1

br,sxrxs.

With the notation of the paper, br,s = cr,sdr,s.

Write (as usual) e(t) = e2πit. Note first that∫ 1/2

−1/2

e(λt) dt =
sin πλ

πλ

for λ 6= 0. Hence

dr,s =
π

R

∫ 1/2

−1/2

e

(
(r − s)t
R

)
dt

=
π

R

∫ 1/2

−1/2

gr(t)gs(t) dt,

where gr(t) = e(rt/R) (also when r = s). So

S =
π

R

∫ 1/2

−1/2

R∑
r=1

R∑
s=1

cr,s gr(t)gs(t) xrxs dt.

By (1), applied to the scalars gr(t)xr, we have∣∣∣∣∣
R∑
r=1

R∑
s=1

cr,s gr(t)xr gs(t)xs

∣∣∣∣∣ ≤ (R− 1)‖x‖2.

Hence

|S| ≤ π

R
(R− 1)‖x‖2 = π

(
1− 1

R

)
‖x‖2.
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[1] G.H. Hardy, J.E. Littlewood, G. Pólya, Inequalities , Cambridge Univer-

sity Press 1959.

[2] L. Mirsky, An introduction to linear algebra, Oxford University Press

1961.

[3] I. Schur, Bemerkungungen zur Theorie der beschränkten Bilinearformen
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