Hilbert's Inequalities

1. **Introduction**. In 1971, as an off-shoot of my research on the Davenport-Halberstam inequality involving well-spaced numbers, I took the numbers to be equally spaced and was led to the inequality

$$\left| \sum_{\substack{r,s=1\\r\neq s}}^{R} \bar{x}_r x_s \operatorname{cosec} \frac{\pi(r-s)}{R} \right| \leq (R-1) \sum_{r=1}^{R} |x_r|^2 \tag{1}$$

for all complex numbers x_1, \ldots, x_R .

If we let $n \in \mathbb{N}$ and $R \geq n$ and take $x_r = 0$ for $n < r \leq R$, then dividing both sides of inequality (1) by R and letting $R \to \infty$ gives Hilbert's "second" inequality

$$\left| \sum_{\substack{r,s=1\\r\neq s}}^{n} \frac{\bar{x}_r x_s}{r-s} \right| \le \pi \sum_{r=1}^{n} |x_r|^2.$$
 (2)

(See Hardy, Littlewood, Pólya [1].)

On reading my manuscript, Hugh Montgomery observed that a strengthening of Hilbert's inequality could be obtained:

$$\left| \sum_{\substack{r,s=1\\r\neq s}}^{R} \frac{\bar{x}_r x_s}{r-s} \right| \le \pi (1 - \frac{1}{R}) \sum_{r=1}^{R} |x_r|^2.$$
 (3)

Montgomery conjectured that if the largest eigenvalue of the Hilbert matrix is $i\mu_R$, $\mu_R > 0$, then

$$\pi - \mu_R \sim \frac{c \log R}{R}.$$

He was able to obtain a weaker "order of magnitude" result.

I have not seen a reference to (3).

We remark that the "first" Hilbert inequality

$$\left| \sum_{r,s=1}^{R} \frac{\bar{x}_r x_s}{r+s} \right| \le \pi \sum_{r=1}^{R} |x_r|^2. \tag{4}$$

is much less mysterious and also follows with some care, from inequality (1). Also (see Wilf [4, pages 2–5]) if λ_R is the largest eigenvalue of the corresponding (positive definite) Hilbert matrix, then Theorem 2.2 of Wilf [4] states that

$$\lambda_R = \pi - \pi^5 / 2(\log R)^2 + O(\log \log R / (\log R)^3).$$

2. A skew-circulant matrix.

LEMMA 1. The eigenvalues of the skew-circulant matrix complex matrix

$$A = \begin{bmatrix} a_0 & a_1 & \cdots & a_{R-1} \\ -a_{R-1} & a_0 & \cdots & a_{R-2} \\ \vdots & \vdots & \vdots & \vdots \\ -a_1 & -a_2 & \cdots & a_0 \end{bmatrix}$$

are given by

$$\lambda_s = \sum_{r=0}^{R-1} a_r e^{\frac{(2s-1)r\pi i}{R}}, \quad s = 1, \dots, R.$$

Proof. (Montgomery)

Regard a_0, \ldots, a_{R-1} as indeterminates. Let $X_s, s = 1, \ldots, R$ be the column vector with entries

$$e^{\frac{(2s-1)r\pi i}{R}}, \quad r = 0, \dots, R-1.$$

Then direct calculation reveals that

$$AX_s = \left(\sum_{r=0}^{R-1} a_r e^{\frac{(2s-1)r\pi i}{R}}\right) X_s.$$

LEMMA 2. Let $C = [c_{rs}]$ be the $R \times R$ matrix defined by

$$c_{rs} = \begin{cases} \csc \frac{\pi(r-s)}{R} & \text{if } r \neq s \\ 0 & \text{if } r = s. \end{cases}$$

Then the eigenvalues of C are the purely imaginary numbers

$$(2s-1-R)i, \quad s=1,\ldots,R,$$

or in other words, the numbers $\pm (R-1)i, \pm (R-3)i, \dots$

PROOF. In the nomenclature of Lemma 1, C = A, where

$$a_0 = 0$$
 and $a_r = -\csc \frac{\pi r}{R}$, $r = 1, ..., R - 1$.

Hence the eigenvalues of C are given by

$$\lambda_s = -\sum_{r=1} e^{\frac{(2s-1)r\pi i}{R}} \csc \frac{\pi r}{R}$$
$$= -i\sum_{r=1}^{R-1} \frac{\sin \frac{(2s-1)\pi r}{R}}{\sin \frac{\pi r}{R}}.$$

From the first of these expressions for λ_s we deduce that $\lambda_{\nu+1} - \lambda_{\nu} = 2i$. Also $\lambda_1 = -(R-1)i$. Consequently the theorem follows.

Noting that the eigenvalue of largest modulus of C is i(R-1), we have the following result:

COROLLARY. For all complex numbers x_1, \ldots, x_R ,

$$\left|\sum_{r\neq s}^{R} \bar{x}_r x_s \operatorname{cosec} \frac{\pi(r-s)}{R}\right| \le (R-1) \sum_{r=1}^{R} |x_r|^2.$$

PROOF. A skew–symmetric matrix C is a normal matrix and is hence unitarily similar to a diagonal matrix. We then argue as in the proof of Theorem 12.6.5, Mirsky [2, page 388].

3. An improvement to Hilbert's inequality.

The next result is due to Schur (see Satz 5, Mirsky [3, page 11].)

LEMMA 3. Let $C = [c_{rs}]$ and $D = [d_{rs}]$ be $R \times R$ matrices with D positive definite Hermitian. Then if $\mu = \max_{r} d_{rr}$ and ν is a positive number such that the inequality

$$\left| \sum_{r=1}^{R} \sum_{s=1}^{R} \bar{x}_r x_s c_{rs} \right| \le \nu \sum_{r=1}^{R} |x_r|^2$$

holds for all complex numbers x_1, \ldots, x_R , then the inequality

$$\left| \sum_{r=1}^{R} \sum_{s=1}^{R} \bar{x}_r x_s c_{rs} d_{rs} \right| \le \mu \nu \sum_{r=1}^{R} |x_r|^2$$

holds for all complex numbers x_1, \ldots, x_R .

We are now able to derive the improvement in Hilbert's second inequality, as pointed out by Montgomery:

THEOREM. The inequality

$$\left| \sum_{\substack{r,s=1\\r \neq s}}^{R} \frac{\bar{x}_r x_s}{r-s} \right| \leq \pi (1 - \frac{1}{R}) \sum_{r=1}^{R} |x_r|^2$$
 (5)

for all complex numbers x_1, \ldots, x_R .

PROOF. We have

$$\sum_{\substack{r,s=1\\r \neq s}}^{R} \frac{\bar{x}_r x_s}{r-s} = \sum_{r=1}^{R} \sum_{s=1}^{R} \bar{x}_r x_s c_{rs} d_{rs},$$
 (6)

where

$$c_{rs} = \begin{cases} \csc \frac{\pi(r-s)}{R} & \text{if } r \neq s \\ 0 & \text{if } r = s. \end{cases}$$

$$d_{rs} = \begin{cases} \frac{1}{r-s} \sin \frac{\pi(r-s)}{R} & \text{if } r \neq s \\ \frac{\pi}{R} & \text{if } r = s. \end{cases}$$

It is easy to prove that D is positive definite. For

$$\frac{R}{\pi} \sum_{r} \sum_{s} \bar{x}_{r} x_{s} d_{rs} = \frac{R}{\pi} \sum_{r \neq s} \bar{x}_{r} x_{s} d_{rs} + \sum_{r} |x_{r}|^{2}$$

$$= \int_{-\frac{1}{2}}^{\frac{1}{2}} \sum_{r} \sum_{s} \bar{x}_{r} x_{s} e^{\frac{2\pi (s-r)ix}{R}} dx$$

$$= \int_{-\frac{1}{2}}^{\frac{1}{2}} |\sum_{r} x_{r} e^{\frac{2\pi rix}{R}}|^{2} dx.$$

Since $d_{rr} = \pi/R$, we have $\mu = \pi/R$. Also by the Corollary, we may take $\nu = R - 1$. Consequently (5) follows from (6) and Lemma 3.

Dr. Graham Jameson has supplied another proof of the Theorem, which does not use Lemma 3.

Let

$$b_{r,s} = \begin{cases} 1/(r-s) & \text{if } r \neq s, \\ 0 & \text{if } r = s, \end{cases}$$

and let

$$S = \sum_{r=1}^{R} \sum_{s=1}^{R} b_{r,s} \overline{x_r} x_s.$$

With the notation of the paper, $b_{r,s} = c_{r,s}d_{r,s}$. Write (as usual) $e(t) = e^{2\pi it}$. Note first that

$$\int_{-1/2}^{1/2} e(\lambda t) dt = \frac{\sin \pi \lambda}{\pi \lambda}$$

for $\lambda \neq 0$. Hence

$$d_{r,s} = \frac{\pi}{R} \int_{-1/2}^{1/2} e\left(\frac{(r-s)t}{R}\right) dt$$
$$= \frac{\pi}{R} \int_{-1/2}^{1/2} g_r(t) \overline{g_s(t)} dt,$$

where $g_r(t) = e(rt/R)$ (also when r = s). So

$$S = \frac{\pi}{R} \int_{-1/2}^{1/2} \sum_{r=1}^{R} \sum_{s=1}^{R} c_{r,s} g_r(t) \overline{g_s(t)} \, \overline{x}_r x_s \, dt.$$

By (1), applied to the scalars $\overline{g_r(t)}x_r$, we have

$$\left| \sum_{r=1}^{R} \sum_{s=1}^{R} c_{r,s} g_r(t) \overline{x}_r \overline{g_s(t)} x_s \right| \le (R-1) ||x||^2.$$

Hence

$$|S| \le \frac{\pi}{R}(R-1)||x||^2 = \pi \left(1 - \frac{1}{R}\right)||x||^2.$$

References

- [1] G.H. Hardy, J.E. Littlewood, G. Pólya, *Inequalities*, Cambridge University Press 1959.
- [2] L. Mirsky, An introduction to linear algebra, Oxford University Press 1961.
- [3] I. Schur, Bemerkungungen zur Theorie der beschränkten Bilinearformen mit endlich vielen Verändlichen, J. reine angew. Math., 140 (1911), 1–28.
- [4] H.S. Wilf, *Finite sections of some classical inequalities*, Ergebnisse der Mathematik, Band 52, Springer 1970.