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The  Enumeration of Trees by Height 
and  Diameter 

Abstract:  The enumeration of  trees which was begun by Harary and Prins, is simplified and elaborated in 

the  interest  of obtaining reliable numerical results. Height is a  characteristic  of  a  rooted  tree,  the  length in 

lines  of  the  longest path from  the  root, while the diameter of a (free) tree is  the length of the  longest path 

joining two endpoints.  The  most general enumerations given are for the  case where a fixed number  of  the 

points  of  the  trees are labeled with distinct  labels,  which  puts in one  setting  the  classical  contrast  of all points 

alike  and all points unlike. The numerical  tables given extend to  trees with 20 points, all alike, and to  trees 

with 10 points, all unlike. 

1. Introduction 

The enumeration of (mathematical)  trees and 
rooted trees  has been described, along with its 
historical background, in my book [l], which also 
contains an extensive table of the corresponding 
numbers. This  enumeration  may be  refined by intro- 
ducing a new variable, the diameter for trees, and 
the height for rooted trees. These  terms will be 
defined shortly. The refinement, for trees  with  all 
points alike, already  appears in the extensive survey 
of tree  enumerations  by Harary  and  Prins [2]. 
Here, in the first place, the results of Harary  and 
Prins are simplified and elaborated  in the  interest 
of obtaining reliable numerical answers. Next, they 
are extended to  the case where some of the points of 
the trees are labeled with distinct labels, thus 
providing a bridge between the cases of all  points 
alike and  all  points unlike as in the similar studies 
without regard for height or diameter  reported in 
[l] and [3]. Finally the case of all  points unlike 
is examined with the detail necessary for numerical 
answers. 

The numerical tables extend to trees with 20 
points  for  all  points alike and  to trees with 10 points 
for  all  points unlike. 

For  the convenience of the reader, a brief summary 
of the definitions forming the background of the 
paper follows. A linear  graph is a collection of two 
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kinds of entities,  points and lines; the lines are pairs 
of points and  taken  together describe the connections 
of the graph. For enumeration purposes, lines in 
parallel, joining the same  two  points, and slings, 
lines joining points to themselves, are usually 
banned. A tree is a connected linear  graph  with no 
cycles. A rooted tree is a tree  with one distinguished 
point, the root. A planted tree is a rooted tree whose 
root is an endpoint (incident to a single line). Two 
trees are isomorphic if there is a one-to-one corre- 
spondence of their  point  sets which preserves 
adjacency;  two rooted trees  are isomorphic if they 
are isomorphic as trees  and the correspondence 
maps one root on the other.  Points or lines carried 
into each other by  an isomorphism are called 
similar. Two labeled trees are isomorphic if they  are 
isomorphic with labels removed and  the elements 
labeled (points or lines) either remain unchanged or 
are changed to similar elements. All enumerations 
are of nonisomorphic trees 

A path joining points a, and a, in a tree is a 
collection of lines of the form alaz,  a,a,, - - - , a.-,a, 
where the points a, to a, are distinct;  there is 
unique path between each pair of point,s of a tree. 
The length of a path is the number of lines it contains. 
The diameter of a tree (spread is an alternative 
term  perhaps closer to nature) is the length of the 
longest path joining two of its (end) points. The 
height of a rooted tree is t,he length of the longest 473 

I IBM JOURNAL NOVEMBER 1960 



path joining the root and another end point [4]. 
Fig. 1 shows all trees with six points classified by 
diameter; Fig. 2 shows all rooted trees  with five 
points classified by height. 

The enumeration proceeds by finding relations 
for enumerating generating functions, which for 
brevity are called enumerators. The variables of 
enumerators are  indeterminates or tags whose 
powers identify the coefficients,  which are numbers 
of the various kinds of tree in question associated 
with the powers;  e.g., if the association is through 
number of points, the generating function  is said 
to be the enumerat,or by number of points. 

2. Rooted  trees by height 

Write r p h  for the number of rooted trees with p 
points and height h, s p h  for the similar number 
with height a t  most h, and 

rh(x) = C rphxv 

sh(x) = $ h x D  

for the corresponding enumerators, by number of 
points The rooted trees of height a t  most h + 1 
with n branches at  the root are a collection of n 
planted trees joined at  the  root; each planted tree  is 
of height at most h + 1 and is in one-to-one  corre- 
spondence with  a rooted tree of height a t  most h. 
Hence by  a procedure entirely similar to  that for 
rooted trees with height ignored [l] 

Sh+l(x) = x exp [ S h ( x )  -k S h ( X 2 ) / 2  + * * * 

+ S h ( S k ) / J C  + . . -1, (1) 

a relation given in other  notation  by Harary  and 
Prins [2] .  This  has an  alternate form, similar to  the 
Cayley form for rooted trees  and similarly derivable, 
namely 

S*+l(X) = z/(l - x)alh(l - x2)s,h * (1 - x k ) s h h  

(14 

The derivation of (la) from (1) is as follows: 

log sh+l(x) = log 2 + S h ( 4  + S h ( x 2 ) / 2  + * * * 

= log 2 + S k h ( x k  + x Z k / 2  f * * * 

= log x + Skh log (1 - Xk)-'. 

Equation (la) is a natural form for computation 
because of its resemblance to  the generating func- 
tion for partitions; indeed, since s,, = rpl = 1, 
p > 0, the instance h = 1 of (la) is 

&(x) = z/(l - x)(l - 2 )  * * *  (1 - xk) * * 

474 = m(x) = 7rnzn+l , 
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Figure 1 Trees with six  points by diameter. 

v 
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Figure 2 Rooted  trees with five points by height. 

with ~ ( x )  the enumerator of partitions;  then sn2 = 
T,,-~, rn2 = T,,-~ - 1, n > 2, with T,, the number 
of partitions of n. 

Also,  since 

Sph = r v l  f rv2 + . * f r p h  

rDh = Sph - S p . h - 1  



two additional forms of ( I )  are 

s h + l ( x )  = Sh(x)/(1 - x)T1h * * ( 1  - Zk)'" * ' 

= S h ( 3 )  exp [ r h ( Z )  + r h ( x 2 ) / 2  f ' ' '1. (Ib) 

Note that rkh = 0, k < h + 1 .  

first of (lb) leads in the first instance to 
Expanding the denominator on the right of the 

r p + l , h + l  = r i r D + l - i , h ,  P < 2h + 3,  (2) 

since sPn = rp,  p < h + 2, with r, the number of 
rooted trees with p points. More generally, it is 
found that 

t = 1  

T Z h + k . h  = r i r Z h + k - - i . h - l  - f k ( h ) l  (3) 
;=1 

%, with f,(h) = 0, IC < 2, f2 (h )  = h, f d h )  = hZ + 
2h - 1, f4(h) = (h + 1)3 - 2 - 6, h > 1 .  ( 3  

It should also be noticed that (la) may be re- 
1 written 

s h + l ( x ) g h + l ( x )  = $ 1  (1 

with 
ah+l(Z) = (1 - 3 ) y l  - Z 2 ) S . h  . . . (1 - Z y  * 

= c gn.h+lXn. 

Computation of the polynomials ~ ( 2 )  is a valuable 
alternative to direct use of (la) or (lb), since the 
numbers snh are determinable by the system of 
recurrences obtained from (IC) by  equating CO- 

efficients of xn, namely 

S i , h + l a n - i , h + l  = &I, 
i - I  

with 6,, a Kronecker delta. 

Table I The  number of rooted  trees with p points and 
h / p /  2 3 4 5 6  7 8 9 10 11 12 13 

1 1 1 1 1 1  1 1  1 1 1 1 1 
2 1 2  4  6 10 14 21 29 41  55  76 
3 1 3 8 18 38 76  147  277  509 924 
4 1 4 13 36 93 225 528 1198 2666 
5 1 5 19 61 180 498 1323 3405 
6 1 6  26 94 308 941 2744 
7 1 7 34 136 487 1615 
8 1 8 43 188 728 
9 1 9 53 251 

10 1 10 64 
11 1 11 
12 1 
13 
14 
15 
16 
17 
18 
19 _-___ 

Finally, the following particular results, which 
may be obtained either  by (2)  or direct enumeration, 
may be noted: 

r h c 4 . h  = ( h f 2  3 ) + 2 : ) + 2 ( h - 2 )  ( 
r h + 5 , h  = ( 4 ) f 3( 3 ) + 5( 2 ) h f 3  h + l  h - 1  

+ 7h - 15, h > 2 .  (4) 

Table 1 gives the numbers r p h  for p = 2(1)20, 
that is, for p = 2,3, - , 2 0 ,  and all values of h. 

3. Trees by diameter 

In  similar fashion to  the procedure above, write 
t p d  for the number of trees  with p points  and  diameter 
d, u , d  for the corresponding number with  diameter 
a t  most dl and t d ( x ) ,  ?&(x) for the enumerators  by 
number of points. 

Following Harary  and  Prins [2], these numbers 
may  be related to r,, and sPd by considering separately 
trees  with center and  trees with bicenter. For the 
latter, a  tree with diameter 2d + 1 clearly has a 
bicenter and indeed may be represented as  the line 
containing the bicenter terminated  by two like 
rooted trees each of height d; hence using Polya's 
theorem [ 11, 

t 2 d + l ( x )  = [ r i b )  + 7-dx2)I/2.  (5) 
The trees with center are of diameter 2d if a t  least 

height h. 
14 15 16 17 18 19 20 

1 1 1 1 1 1 1 
100 134 175 230 296 384 489 

1648 2912 6088 8823 1.5170 25935 44042 
5815 12517 26587 55933 116564 241151 495417 

- 

8557 
7722 
5079 
2593 
1043 
326 
76 
12 

21103 
21166 
15349 
8706 
3961 
1445 
414 

89 
' 13 

1 
1 

5 1248 
56809 
45009 
27961 
14102 
5819 
1948 
516 
103 
14 
1 

122898 
149971 
128899 
86802 
47816 
21858 
8282 
2567 
633 
118 
15 
1 

291579 
390517 
362266 
262348 
156129 
77878 
32695 
11481 
3318 
766 
134 
16 
1 

685562 1599209 
1005491 2564164 
1002681 2740448 
776126 2256418 
494769 1530583 
266265 880883 
121963 435168 
47481 184903 
15564 67249 
4218 20697 
916 5285 
151 1084 
17 169 
1 18 

1 - 
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two of the branches at  the center are planted trees 
of height d; the remaining branches at  the center are 
planted trees of height less than d. As usual they  are 
enumerated by Polya's theorem. The form given by 
Harary  and  Prins [2], Eq. (8,) is, in present notation, 

t Z d ( x )  = s d - l ( x )  ~ m ~ [ r d - 1 ( ~ ) ,  ' ' , r d - l ( x m ) ] ,  
m - 2  

d > 1, (6) 

with S, (il, Iz, e - , t m )  the (multivariable) cycle 
index of the symmetric group. Noting (Eq. (4.3a) 
in [l]) that 

1 + tl + S,(tl,  * * - , t,) 
m = 2  

= exp ( t l  + t 2 / 2  + t3/3 + + - ) 

and using the second form of (lb) leads to  the 
simpler form 

t Z d ( 4  = T d ( 4  - r d - l ( x ) s d - l ( x ) ,  d > 1. @a) 

The initial cases for tzd(x) are t o (x )  = x, t2(z) = 
s3/(l - x); note that t , ( x )  = x' satisfies ( 5 ) .  

For the variable ud(z) note first that u,(x) = x, 
u,(x) = x + x2, u,(x) = x/(l - z) = s,(x). Then, 
first 

U Z d ( 4  = UZd-Z(X) + t z d - d x )  + t z d ( x )  

= uzd-z(x) + r,i(x) - [s2d-1(4 - 5d-1(x2> 

- $:-2(x) + S d - 2 ( x 2 ) 1 / 2 ,  (7) 

and by iteration 

U 2 d ( x )  = s d ( x )  - [ s i - l ( x )  - s d - l ( x Z ) 1 / 2 >  (8) 

which holds for all non-negative values of d if 
S-~(Z) = 0, since st(x) - so(x2) = 0. Next 

U Z d + l ( x )  = % Z d ( z )  + L 2 d + l ( x )  

= s d ( x )  - [ s i - l ( x )  - y:(x) - S d ( x 2 ) ] / 2  

= s d ( x )  - [ 2 s d ( x ) s d - l ( ~ )  

- Si(%) - sd(x2)] /2 .  (9) 

Note that  for increasing d, ud(x) approaches t(x), 
the enumerator of trees  by number of points while 
sd(z) approaches r(x), the corresponding enumerator 
of rooted trees, and both (8) and (9) yield Ott,er's 
formula ([I], p. 137), namely 

@) = r(x) - [?(x) - r (x2 ) ] /2 .  

Note also that both (8) and (9) may be used to 
check numerical results obtained from (5)  and  (sa). 

Further numerical checks may be obtained from 
independent determinations of t v .p - i ,  j = I, 2, . . 
These are made by adding to  the diameter, a line 
with p - j + 1 points, j - 1 lines a t  all point 
positions which do  not increase the diameter,  and 
in all combinations which preserve the  tree.  There 
is one equivalence operation: the interchange of 
points k and p - j + 2 - k on the diameter. 

It is clear that t p , v - l  = 1, the  tree consisting of 
p - 1 lines in tandem. Next 

t 2 a . z . z - 2  = t2q+1,2.-1 = q - 1, (10) 

for the  tree is formed by adding to  the diameter a 
single line in all positions on one side of its center. 

For j = 3, the investigation is more elaborate. 
At  points 2 to p - 3 either one line or two lines in 
parallel may  be added. At  points 3 to p - 4 two 
lines in series may also be added. Hence the enumer- 
ator for additions to points 2 and p - 3 is 1 + x + x2 ,  
while for points 3 t o p  - 4 it is (1 + x + s2) (1 + y), 
x being the indicator of a single line, 2 that of two 

U P  
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 476 
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Table W The  number of trees with p points and diameter d. 
[ 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18  19 20 

1 1 1 1 1 1  1 1  1 1  1 1  1  1 1 1 1 1 
1 1 2 2 3  3  4  4 5 5 6 6 7 7 8 8 9 

1 2  5 8 14 21  32  45 65 & 12; 161 215  280  367 471 
1 2  7  14 32 58 110  187  322  519  839  1302  2015  3032  4542 

1 3 11 29  74  167  367  755  1515  2931 5551 10263 18677  33409 
1 3  14 42 128 334 850 2010  4625 10201  21990  46108  94912 

1 4  19 66 219  645  1813  4802 12265  30198  72396  169231 
1 4  23 88 328  1065  3303  9583  26793  71986  188092 

1 5 29 123 487  1717  5706 17843  53522  154520 
1 5  34 156 675 2557 9124  30462  97387 

1 6 41 204 928 3745  14109  49833 
1 6 47  250 1223  5233  20863 

1 7  55 313 1600  7218 
1 7 62 374  2034 

1 8 71 454 
1 8 79 

1 9 
1 



lines in series. The cycle index, taking  into  account 
the interchange of points on the diameter, is 

(t?“ + t ’3 /2 ,  n = 2m 

or 

(tfrn+l + t l t 3 / 2 ,  n = 2m + 1, 

where n is the number of positions where lines may 
be added, t ,  and t2 are  the indicators of cycles of 
lengths 1 and 2. 

Thus for p = 2q, using Polya’s theorem, the 
enumerator for all  additions is 

ezg (x ,  y) = [ ( I  + x + x2)2a-4(1  + y)2Q-6 

+ ( 1  + x2  + x4)9-2(1 + y2)9-31/2, 

and for p = 2q + 1, the enumerator is 

e2.+1(2, Y) = eza(x ,  d ( 1  + x + x2)(1 + Y)- 
The numbers in question are the sums of coefficients 
of x2 and y in these  enumerators, which turn  out 
to be 

For j = 4,  the procedure is similar, the chief 
difference  being  occasioned by  the possibility of 
adding  either of the two rooted trees  with four 
points at positions 4 to p - 5;  the results are 

t Z g . 2 a - 4  (2q3 - 6q2 - 5q + 12)/3, Q > 3 

t 2 g + 1 . 2 g - 3  = (2q3 - 3q2 - 1lq + 6)/3, Q > 3 (12) 

For j = 5 the results are 

t 2 g , 2 a ” 5  = 1 [( 2q 4 - 3 ) + (q 2 2 ) ]  + 2q3 - 14q2 2 

+ 24q - 10, q > 5 

t2g+1.2a-4 = 1 2 [(2q 4 ’) + ( q  ; l)] + 2q3 -w 
+ 12q + 1 ,  q > 4 .  

For j = 6, the results are  too  elaborate for com- 
plete  statement,  but it may be noticed that, with 

‘ t P , P - B  = t P + l . p - 6  - t D , P - 6 ,  

A3tZa,29-6 = “ 4 q  - 16, q > 6  

A3t2a+1.2g--5 = 2q2 + 7q 4- 13, q > 6 .  (13) 

Table 2 gives the numbers tpd for p = 2(1)20 and 
all values of d. 

4. Point-labeled  trees and rooted  trees 

The modifications in the enumerations occasioned 

by labeling points with a fixed number of distinct 
labels are  quite similar to those employed for trees 
and rooted trees with diameter  and  height ignored. 
These are described in [ l ]  and [3]; briefly, a new 
variable is put  into  the enumerators to account 
for the number of points labeled, and a slight 
modification of the theorem of Polya gives the 
enumerator relationships. 

For the rooted trees, if Sphm is the number of 
rooted trees  with p points, height a t  most h, and m 
points labeled, the modified enumerator is 

sdx,  y) = C xp C sPhmym/m! 

and  the modification of ( 1 )  is 

P 

p = 1  m=O 

sh+dx ,  Y) = 41 + exp b h k ,  Y) 
+ S h ( X 2 ) / 2  + * * * + Sh(xk)/k $. * * ]  (14) 

with sh(x) = s,,(x, 0). Combining this with (1) shows 
that 

S ~ + ~ ( X ,  y) exp &(x) = ( 1  + y)~t,+~(x) exp &,(x, y). (15) 

With similar notation for point-labeled trees, the 
results are 

t Z d ( x j  y) = Td(x j  y) - sd-l(x, ! / ) T d - - l ( x ,  y), 

d > 1 (16) 

t 2 d + I ( x ,  y) = [ d ( x ,  y) + T d ( Z 2 ,  0)]/2 (17) 

uZd(x, y) = y) 

- [d - l (Z ,  y) - sd-1(x2, 0)]/2 (18) 

% d + l ( x ,  y) = sd(x, y) - r2sd(x, ?/)sd-l(x, y> 

- &x, y) - S d W ,  0)1/2. (19) 

For concreteness and verifications note that 

So(%, y) = r o b ,  y) = t o ( 2 ,  y) = 4 1  + y) 

sl(x, y) = x(l + y)e””/(l - x) 
= xD(l  + y)(l + y + y 2 / 2 !  + * * - 

P - 1  

+ yP”/ (p  - 1) 9 
rl (x,  y) = d l  + y)/>e”’ - 1 + d/(l - x) 

= C x P ( l  + y ) ( l  + y + Y2/2!  + * * 
P = 2  

+ y p - X p  - 1) 9 
t 1 ( &  Y) = x2(1  + y + Y2/2!). 

5. Trees and rooted  trees with  all points labeled 

This is the special case m = p of the results in 
Section 4 and is the classical contrast to  the case of 477 
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h / p I  2 3 4 5 6 7 8 9 10 
1 2 3  4 5  6  7 8 9 10 
2 
3 

6  36  200  1170  7392  50568  372528  2936070 

3628800 9 
362880  27216000 8 

40320  2358720  96768000 7 
5040  221760  7136640  212133600 6 

720  22680  551040  12836880  305605440 5 
120  2520  43680  757680  13747104  264181680 4 

24 300  3360  38850  475776  6231960  87530400 

Table 4 

d l P  I 3 
2 3  
3 
4 
5 
6 
7 
8 

The numbers Tpd of trees with p labeled points 
and diameter d. 

4 5  6 7 8 9 10 
4 5  6 7 8 9 10 

12 60 210 630 1736 4536 11430 
60  720  6090  47040  363384  2913120 

360  7560  112560  1496880  19207440 
2520  80640  1829520  36892800 

20160  907200  28274400 
181440  10886400 

9 1  1814400 

all points alike. The enumerators for this case are 
easily obtained by changing the y variable to x = x y  
and passing to  the limit  for x = 0, since, e.g., by 
abuse of notation 

sh(x,z> = xD S , + m , h , m x m / m !  
D-1 m - 0  

= XPSD(Z ; h) , 
P = - l  

with the  latter a definition; s,(z; h) is the  enumerator, 
in this case an exponential generating function, of 
the rooted trees with height a t  most h and all points 
labeled (note that  the root in effect has  a double 
label). 

From Eq. (14) it follows that 

so(x; h + 1 )  = x exp so(x;  h). (20) 

Following the conventions of the Blissard calculus, [5] 

be rewritten 

exp zX(h + 1)  = x exp  [exp zX(h)]. (204 

Then differentiation with respect to z and  equating 
coefficients of powers of z leads to 

with F ( h )  = X,@) = s,h = S,,h,,, Eq. (20) may 

This recurrence served for computation of all 
478 numbers X,, and from them by differencing of the 

corresponding numbers R,,, which are given  in 
Table 3 for p = 2(1)10 and  all values of h. Note 
that X,@) = = p’”, h > p - 1, a result 
corresponding to  the curious identity (0’ = 0), 

Note also for verifications the following results 
obtained by direct enumeration: 

R,,,-I = p !  

R p . p - 2  = p!(2p - 5 ) / 2  

RD,’-3 = p!(3p2 - 151, + 10)/6,  P > 4  

Rp,p-d = p!(4p3 - 30-p2 + 4O-p + 3)/24,  p > 6 .  

The numbers Tpd of trees  with p labeled points 
and diameter d are obtained as follows Write the 
enumerator as 

4 = T,,zp/p!; 
then (16) and (17) lead to 

2 4  = T ~ ( z ;  d)  - s&; d - l)rO(~; d - 1) (22) 

to(z; 2d + 1)  = &x;  d)/2.   (23)  

These numbers are shown in  Table 4 for p = 3(1)10 
and all values of d .  Note for verifications that 

Tp.p-1 = P! /2  

Tp,,-2 = p ! ( p  - 4 ) / 2  

Tp,p-3 = p!(6p2 - 48p + 67)/24,  p > 7 
and 

T, = T,d = p p - 2 .  

It is also interesting to observe that  the ratio 
Tp.v-k/p!tv,v-k k = 2,  3, approaches unity with 
increasing p:  in other words, for large p ,  almost all 
labelings of such trees  are  distinct. 
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