
A particular  pseudo-random  number  generator  is   described  that  uses 
the  full   3i-bit   capacity of the  registers in the IBM SYsTEh1/360 
computers.  

Experience  with  the  generator in obtacning  random  permutations 
of sequences i s   d i scussed ,   and   resu l t s  of statistical  tests  applied  to 
evaluate  the  generator  are  given. The  generator  has  been  found  to be 
highly  satisfactory. 

An assembler  language  program of the  generafor i s   i nc luded .  

A pseudo-random number  generator  for the System/36O 
by P. A. W. Lewis, A. S. Goodman, and J. M. Miller 

The purpose of this  paper is to  describe  a  pseudo-random  number 
generator that uses the full  capacity of the 32-bit  registers of IBM 
SYSTEM/360 computers,  and to  briefly report on and document 
the testing of and experience with the random  number  generator. 
The generator is a  particular case of the sequence of numbers xi 
generated  by the equation 

= Axi (mod p )  (1) 

where p is a  prime and A is a  positive  primitive  root of p .  
The generator was described by  Hutchinson'  and ascribed to 

Professor D. H.  Lehmer.  Hutchinson discussed a particular  form 
of the generator  for the IBM 7094, in which p = 235 - 31 is the 
largest  prime less than 235 and A = 55.  Unfortunately, his tests on 
this  generator were not  published; our own tests  and use of t'he 
generator confirmed that  it is an exceptionally good pseudo- 
random  number  generator. 

Another  and  apparently  independent description of the 
generator is given by  Downham  and Roberts,' who give  a  succinct 
description of the number  theoretic  concepts  involved.  They 
considered generators  with  relatively  small  values of p and came to  
the empirical conclusion that  the positive  primitive  root A should 
be  approximately (p)'" to  obtain good results.  They used mainly 
serial  correlation and  runs  tests,  although t'hese tests were not 
always  properly  applied. They concluded that a  runs  test, ascribed 
to  Hermanj3 is the most  sensitive  test for randomness. The  runs 
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1 test is, in  fact,  very old, and is known empiricdly to  be powerful 
against  a  broad class of alternatives. A discussion of the  runs  test 
is given by  Kendall  and S t ~ a r t . ~  

Downham  and  Roberts’ results on the relative size of A conform 
generally to  the predictions of Coveyou and hl:wl’herson,‘ who 
have given one of the few analyt’ical  evaluations of pseudo-random 
number  generators  in the  literature (see also ZarembaG and 
ILlarsaglia’). Coveyou and  hlacPherson also concluded t,hat  it 
might  be difficult or impossible to find “good”  generators for the 
single-precision 32-bit word size of the SYSTlCLI/3GO. This  theme 
n-as taken  up by Whittlesey,8 who discussed the generator of 
Equation 1 and gave  additional references. However,  Whittlesey 
apparently failed to realize that A should  be  a  positive  primitive 
root of p ,  if for no other reason than t,o obtain  the full cycle of 
length p in  the  generator. Moreover,  Whittlesey’s  reservations 
about  generators of the  form of Equation 1 for the SYSTEhI/3GO 
were based on a serial  correlation test  that, relative to other  t,ests, 
has a rather dubious  dist’ribution  theory. In addition  this  test, 
while it can det’ect gross departures, is probably  not sensitive to  
small  departures  from  randomness. 

Our own experience with the generator of Equation 1 on the 
IBM 7094 led us to  look for a  similar gemrat’or for the SYSTEhl/360. 
There  are 31 bits  available  for  computat’ion in  the 32-bit  general 
regist’er of the sYSTEh4/:360 (one bit is :t sign bit),  and  the largest 
prime p less than or equal to 2’31 - 1 is very  conveniently 231 - 1 
itself. The factorization of p - 1 is 

p - l = 2 3 1 - 2 = 2 X 3 3 2 X 7 X l l X 3 1 X 1 5 1 X 3 3 1  

and A = 7 is  a  positive  primitive  root of 231 - 1. Any power 
(modulo p )  of 7, say 7’, where IC is not :b factor of p - 1, is also a 
positive  primitive  root of p .  In  this way,  many A’s could be 
generated,  and i t  was confirmed empirically  t’httt an ,4 approx- 
imately  equal  to (p)”’ is required to even begin to give good 
test results. Kote  that  this is not an inclusive statement  to  the 
effect that all A’s in  the neighborhood of ( P ) ” ~  give good gen- 
erators. In  fact if a  posit’ive  primitive  root  exists that is almost 
exactly  equal to (p)”’, we cnn expect strong  serial  correlation 
of order zero in the generator. 

The particular  gencrator described in  this  paper uses 
p = 231 - 1 :tad A = 7’ = 16807. We describe here  t,he tests used 
in  evaluating  this  particular case of Equation 1 and give the  test 
results  obtained  for  a  number of reasons: 

A well-tested and experientially  acceptable  generator  for the 
SYSTERI/:%O is not  available. 
We  have found  experiment,ally that Coveyou and  MacPherson’s 
predictions are  valid  and  that a pseudo-random  number 
generator for a  31-bit  machine has to be chosen carefully. In  
particular only two values of A of the  many  investigated  gave 
test results as good as those  obtained for A = 7’. 
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It has been our experience that mally  generators  put forward 
without  documentation t'urrl out t'o be defective. This is 
because inadequste t'est  statist'ics  have been used, or because 
the  test st'atisticas  h:tvc been misused,  or berause the series 
tested  have llot' been long enough t'o detect'  subtle  departures 
from  randomness. 
Some of the tests desrribed and advocated  here use rerent 
advances  in statisticd knowledge and are not well 1;110wn to 
nonstatist,ici:Lns. In f:wt, these  t'csts,  and  in  particular those 
based on Fourier t>r:msforms, are of the  type  that Whittlescy' 
describes as not'  having  yet been applied t'o evaluat'ing the 
generator of Equation 1. 

Random permutations 
Our courern t,o obt:rin a. "good" and relatively  fast pseudo-r:mdom 
number  generator arose because Tve were conducting  large-sralc 
synthetic sampling  experiment's 011 tests for serial dependence  in 
time series. Let' the observed series be xl, . . . , X", . . . , x,, and 
the  rank of x, be denoted by r,. Let a(r i )  be a monotone  function 
of T, ,  either the ranks  themselves or scores (expect'ed values of 
order  statistics from some population). ,4 test' for lark of serial 
dependence  in the time series can be based on the idea that under 
the null hypothesis  all n! orderings of the a(r , ) ' s  are equally 
likely. h commonly used test  st'at'istic for  testing seri:tl inde- 
pendence is the score product-moment  statistic of lag one, 

or in the case of ranks 

R(1) = rlrZ + r2r3 + . * .  + rfl_lrn 

There  are n! possible orderings of the  ranks,  and  it is possible 
to  compute  the exact' distribution of R(1) under  t'he  null  hypothesis 
in a reasonable  amount of t'ime on a SYSTE1\1/360 Model 91 
computer  only up to n = 11. Beyond that, sylnthetic: sampling 
has to  be used. 

Our  procedure for testing  the generat,or for  this  particular 
purpose \\.as to work out  t'he exact  distribut'ions of the rank 
product-moment  statist'ic  for n = 10 and for lags 1, 2, and 3 and 
then compare  these  distributions  with the estimated  distributions 
obtained  by  generating  random  permutations of the numbers 1 to 
10. A standard met'hod!' is used t'o  generate  random  permut'at8ions 
(see also Referenre 10). Up to 14,000,000 random  permutations 
were generat'cd and chi-square goodness-of-fit tests showed no 
discrepancy  between  exact and  estimated  distributions. 

Gcuerat'ing  permutations of the numbers I through 10 uses 
and  t'ests only the first four bits of the random  numbers. The 
remaining  bits  can,  however, also he used. Some furt'her expcrierwe 
is also relevant'. The score product-moment  statistics are known to 
have a normal  distribut)ion for large n under  very we:tk conditions 
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on the numbers ~ ( r , ) . "  For normal scores the uormal  distribution 
\\-as found to  hold for n = 50 and for rwnlrs for n = 75. Exponential 
~ ( ~ o r c s , ~ ~  ho\vever, produced a highly slxwed distribution, which 
1r:d not converged at, n = 9,000. This immcdiatcly raised d o u h  
:Lhont the r:lndom number  generator; as a check, the distribution 
of the  rmlr  product-moment st:ltistic: \vas romputed at, n = 9,000. 
The latter  distribution was found to hc still  normally distributed, 
indicntiug that  the random  number get1cr:ltor and permut' d 1' 1011 

generating sehcnlc held up at n = 9,000. Subsequent experience 
shon-ed that  the  rate of convergenct of the distribution of the 
score producat-morncnt statistics  to  the  asymptot'ic  form  depends 
critically on the s1;ewness  of the parent popu1:Ltion  of the scores. 

Tests for randomness 
Since thc  "rmdom" numbers geueratcd arc spevificd to be  uni- 
formly  dist'ributed, as well as serially  independent, it is necessary 
to  test before :ulything else for n uniform one-dimensional margin:ll 
distribution.  Provided sufficient divisions of the unit  interval arc 
used, :I chi-square test of goodness-of-fit is :Ldeyuate for this 
purpose. For very long series, t,he  chi-square test is computa- 
t,ionally  much  simpler than tests such as the Kolmogorov- 
Smirnov  test. 

Tests for  scrial  independence  in the random  numbers  arc 
conveniently brolxn up into two types:  direct  tests on the raw 
data for the ahsence of serial  correlation or "bunching,"  and  tests 
on t,he  Fourier-transformed data for LL flat spectrum. 

For the direct  tests we follo\v in  part the discussion in MacLaren 
and illarsagli:t,'3  relating their  tests t'o  t'heir  stat'isticul  :mtecedents. 
In essence, these tests of serial corrclat,ion or bunching check for 
uniformity of successive Inggctl pairs of random  numbers.  Thus, 
let v be a, power of two  and  determine the number of pairs 
(xi, ~ ~ + ~ ) i  = 1, 2, . . . , AT + 8 - 1, for which the first log z' bits of 
xi had t,he valuc m and  the first' log v bits of xi+l had  the  value n. 
Here N is t he   h s i r  lengt,h of the sequenw of random  numbers (the 
addit'ional 8 - I are used for  computational convenience) and n 
and m run from 0 to v - I ,  giving Y2 possible pair values with 
frequency fn r m .  We romput,e the chi-squarc statistic 

This is Good's  serial test for sampling Contrary  to 
the usual  assumptions, the st,atistic does not  have a chi-square 
distrilnhon with 2 - v degrees of freedom;  in  fact', it's mean  value 
is v 2  - 1 (see Itefcrence 14). The exact  distribution  is not, lmown. 

Tests of n-tuples of various  combinations of lags are possible 
but  have  not been ~tpplied.'~ 

As indicated  earlier, a useful t,est of randomness is t'he  runs 
test. It is a nonparametric  test,  testing for  serial  independence 
per se. The exact  definition of a run (or phase)  up or down of 
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Tests results 
To  test  the pseudo-random number  generator of Equation 1 we 
generated 10 successive groups of numbers.  The  length of each 
sequence was 21G + 5 ,  the five additional  values being used in 
Good's  serial tests for computational convenience. The  value 
N = 216 was felt to be large enough for the power of the  tests  to be 
high enough to detect  the presence of subtle  departures  from 
randomness. The use of 10 sequences enhances the reliability of 
the  test results,  particularly  from  a  computational  viewpoint. 
Thus, on an  initial  run, all  values of H(l0) were found t o  be 
within the acceptance level of the  test,  but all  values were below 
the median  value of the  test  statistic  and  with  rather small  vari- 
ability  in  the sample of size 10. Further checking indicated the 
necessity of doing the computations of the H ( k ) ' s  in  double 
precision. The  computations were performed on SYSTEM/360 
Models 67 and 91 computers. 

Table 1 gives the results of the direct  tests of randomness, 
column two giving the initial  value x. for each sequence of pseudo- 
random  numbers. For the  test of uniformity of the marginal 
distribution, 212 = 4096  cells were used, thus giving a test of the 
first 12 bits of the xi's. The value of the chi-square goodness-of-fit 

Table 1 Direct tests on the pseudo-random numbers 

Run Uniformity Goods' serial test Runs test 
number x. ~ ~ ( 4 0 9 5 )  S(1)  S(2) S(3) S(4) S ( 5 )  S(6) XY7) 

I 12345678 4015.25 263.67 223.69 266.62 258.48 269.05 228.02 16.18 
(-79.75) (f8.67) (-31.31) ($11.62) ($3.48) ($14.05) (-26.98)  ($9.18) 

2 855998726 4112.12 280.22 267.45 240.77 254.55 280.17 222.44 7.07 
(+17.12) ($25.22) ($12.45)  (-14.23)  (-0.45) (f25.17) (-22.56) ($0.07) 

3 745681489 4125.12 253.34 237.19 227.50 221.05 238.95 219.27 12.15 
($30.12) (-1.66)  (-17.81)  (-27.50)  (-33.95)  (-16.05)  (-35.73) (f5.15) 

4 506104362 4113.50  246.00 235.98 258.31 258.02 252.77 251.91 4.03 
($18.50) (-9.00) ( -  19.02) (f3.31)  (+3.02)  (-2.23)  (-3.09)  ("2.97) 

5 236686234 4150.75 246.39 258.58 221.28 275.98 286.08 239.23 12.10 
($55.75) (-8.61) ($3.58) (-33.72) (f20.98)  (f31.08) (-15.77) ("5.10) 

6 1912615462 4079.87 241.45 254.22 289.19 265.22 266.31 236.34 5.39 
(-15.13)  (-13.55) (-0.78) ($34.19)  ($10.22) (+11.31)  (-18.66) (-1.61) 

7 481694049 4268.87 293.06 263.89 273.00 246.66 242.55 277.56 6.88 
(f172.87)  (f38.06)  (f8.89) ($18.00) (-8.34) (-12.45)  ($22.56) (-0.12) 

8 785044942 4114.50 238.02 232.23 272.69 223.94 283.42 257.84 9.94 
(+19.50) (-16.98)  (-22.77) (+17.69)  (-31.06) ($28.42) ($2.84)  (f2.94) 

9 864268549 4058.37 229.89  201.48 225.75 275.25 237.09 221.17 10.18 
(-36.63)  (-25.11) ("53.52) (-29.25) (f20.25) (-17.91)  (-33.83)  (4-3.18) 

10 13034519 4096.87 246.97 245.78 232.42 260.00 277.53 250.53 3.31 
(+1.87)  (-8.03)  ("9.22) (-22.58) (f5.00) (f22.53) (-4.47) (-3.69) 
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st,lLtistic  is given in column three of Table 1. Seven  values are 
above the mean value 4095; since the variance of t'he  test  statistic 
is 90.5, all deviatiom from the mean (shown in brwltets below the 
actual values) are lcss than 1.9 standard devi' 'L t' 1011s. 

The results for Good's serial test for lags G = I ,  2, 3 , 4 ,  5,  6,  and 
v = 16 are given in columns four  t'hrough  nine of Table 1. There 
are 16' = 2.56 cells and  a mean  value of 255; the exact distribution 
is not  knonn  but if a  chi-squared  distribution of 255 degrees of 
freedom is assumed  with st:mdard deviat>ion of :Lpproximntelg 23, 
t,hen the maximum and minimum  values of the six columns of 
+38.06 and -53.52 are within 2.3 standard devi:lt,ions. 

The  last column of T:lhle 1 gives t'he  results for t'he  runs tests; 
the chi-squared statist'ir has n mean of seven but a standard 
deviat'ion  highly  inflated by the unequ:d  cell frequencies. No 
inordinately  large  deviations from the mean were obtained. 

There  is,  therefore, no evidence of departures from  randomness 
in the direct  test's. 

Results of tests on t'he  trausformed  numbers  are given i u  
Table 2 .  For  the medinn test, [ T  is a  unit  normal  deviate :and the 
test  results do not' givc any  indications of departures  from  random- 
ness. The values of ICs+, I<S - , liS for the  ten series :we given in 

Table 2 Tests on the transformed  pseudo-random  numbers 

Run Median test  Goodness-of-jit tcsts Variance  heterogeneity  test 
number U KS+ KS- KS H(10)  H(20)  

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

-1.069 

"1.310 

"1.425 

-0.014 

-1.265 

+0. 047 

-1. 105 

f 0 .  650 

-0.104 

-0.275 

0.455 

0.162 

1 ,334 

0.501 

0.346 

0.496 

0.113 

0.711 

0.482 

0.322 

1. 0OG 

0.870 

0.208 

0.715 

1.026 

0.510 

0.733 

0,532 

0.544 

0.567 

1.006 

0.870 

1 ,334 

0.715 

1.026 

0.510 

0.733 

0.711 

0.544 

0.567 

4,442 
( - )  

8.874 
(+) 

(-1 
5.992 

9.056 
($1 

4.845 
(-1 

( - )  

(+I 

( + I  

4.177 

9.423 

9.139 

10.120 
( + I  

4.350 
(-1 

10.340 
( - )  

(+) 

( + I  

("1 

( - )  

( - )  

(-) 

(-) 

18.393 

20.325 

18.355 

7.116 

13.938 

13.948 

15.408 

14.769 
( -1  

17.572 
(-) 



Toble 3 Pseudo-random number generator 

RANDOM CSECT 
USING *,I5 
STM 2,5,28(13) 
LM 2,3,0(1) 

L 5,A 
M 4,0(2) 

D 4,P 
ST 4,0(2) 
SRL 4,7 

A 4,CHAR 
ST 4,0(3) 
LM 2,5,28(13) 
BR 14 

CHAR DC F'1073741824' 
A DC F'16807' 
P DC F'2147483647' 

END 

INITIAL  LINKAGE 

LOAD ADDRESSES OF 
VARIABLES PASSED 
COMPUTE NEXT  INTEGER 
RANDOM NUMBER WITH 
X(I+l)=AX(I) (MOD P) 

COMPUTE NEXT REAL 
RANDOM NUMBER 

TERMINAL  LINKAGE 

CONSTANTS. CHAR FIRST 
SO A IS ON DOUBLE WORD 
BOUNDARY. MAKES LM 
INSTRUCTION  FASTER. 

columns three  through five in  Table 2. The  statistic KS has a 
one-sided upper 5 percent  point of approximately 1.3 and a 1 
percent  point of approximately  1.6. No significantly large  devia- 
tions occur in column five. 

The variance  heterogeneity test was applied to  the transformed 
sequences with lc = 10 and IC = 20, giving variates  with chi- 
squared  distributions of 9 and 19 degrees of freedom, respectively. 
These  values  are given in columns six and seven. The plus and 
minus signs in brackets  indicate  whether the  variates were below 
or  above the median value of the distribution.  The only abnormally 
large  deviation occurs in series 5 for H ( 2 0 ) ;  the probability of a 
single value less than 7.116 is approximately 0.04. Taken as one of 
ten  independent  variates, this is not significantly small.  Note, 
however, that  the average of the  variate values for H(1O) and 
H(20)  are well  below the  true means, indicating the possibility of 
a  very  subtle  departure from  randomness in  the generator. It 
would be  surprising, however, if some such departure did not show 
up in  pseudo-random sequences of length 2". The overall con- 
clusion, however, from the  tests  and  the experiences in  generating 
random  permutations is that for a 32-bit word size the pseudo- 
random  number  generator is remarkably good. 

Generator program 
A program to implement the algorithm of Equation 1 is shown in 
Table 3. The program is written  in SYSTEM/360 basic assembler 
language. This generator  can  be used by any  program that con- 
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t 

forms to  the SYSTEM/360  FORTRAN linkage conventions. In 
particular, it may be invoked  in  a FORTRAN program (compiled on 
SYSTEM/3GO) by the  statement: 

CALL RANDOM  (INT,  REAL) 

where I N T  is any full-word int,eger variable and REAL is any full- 
word real  variable (single precision). The integer  variable, INT,  
should be given an  initial  value before the first use of the generator. 
The generator  returns an integer  random  number in I N T  and a 
real  random  number between 0 and 1 in REAL. 

The program was run  and  timed  internally on a SYSTEM/360 
Model 67 computer. The generator was called 1,000,000 times 
within  a FORTRAN “DO LOOP”; execution of the loop took 
31,162,846 microseconds. Thus, we have  an upper  bound of -31.2 
microseconds on the  time  to call a  random  number on the 
SYSTEM/360 Model 67. Faster t)imes, can be obtained using sub- 
routines that generate sequences of random  numbers  and using 
subroutines that generate only integer  random  numbers.  Another 
scheme has been proposed by Payne,  Rabung,  and B a g y ~ . ’ ~  This 
scheme may be slightly  faster on SYSTEM/360 computers. On the 
Model 91, however, the loop made  may  make the two  methods 
comparable. 
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