A particular pseudo-random number generator is described that uses
the full 31-bit capacity of the registers tn the IBM SYSTEM/360
computers.

Experience with the generator in obtatning random permutations
of sequences is discussed, and results of stalistical tests applied to
evaluate the generator are given. The generator has been found to be
highly satisfactory.

An assembler language program of the generator is included.

A pseudo-random number generator for the System /360
by P. A. W. Lewis, A. 8. Goodman, and J. M. Miller

The purpose of this paper is to describe a pseudo-random number
generator that uses the full capacity of the 32-bit registers of IBM
SYSTEM /360 computers, and to briefly report on and document
the testing of and experience with the random number generator.
The generator is a particular case of the sequence of numbers z;
generated by the equation

T = Ax; (mod p) 1

where p is a prime and A is a positive primitive root of p.

The generator was described by Hutchinson' and ascribed to
Professor D. H. Lehmer. Hutchinson discussed a particular form
of the generator for the IBM 7094, in which p = 2°° — 31 is the
largest prime less than 2*° and A = 5°. Unfortunately, his tests on
this generator were not published; our own tests and use of the
generator confirmed that it is an exceptionally good pseudo-
random number generator.

Another and apparently independent description of the
generator is given by Downham and Roberts,” who give a succinct
description of the number theoretic concepts involved. They
considered generators with relatively small values of p and came to
the empirical conclusion that the positive primitive root 4 should
be approximately (p)'’* to obtain good results. They used mainly
serial correlation and runs tests, although these tests were not
always properly applied. They concluded that a runs test, aseribed
to Herman,’ is the most sensitive test for randomness. The runs
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test is, in fact, very old, and is known empirically to be powerful
against a broad class of alternatives. A discussion of the runs test
is given by Kendall and Stuart.*

Downham and Roberts’ results on the relative size of 4 conform
gencrally to the predictions of Coveyou and MacPherson,” who
have given one of the few analytical evaluations of pseudo-random
number genecrators in the literature (sce also Zaremba® and
Marsaglia’). Coveyou and MacPherson also concluded that it
might be difficult or impossible to find ‘‘good’ generators for the
single-precision 32-bit word size of the SYSTIIM/360. This theme
was taken up by Whittlesey,” who discussed the generator of
Equation 1 and gave additional references. However, Whittlesey
apparently failed to realize that A should be a positive primitive
root of p, if for no other reason than to obtain the full cycle of
length p in the generator. Moreover, Whittlesey’s reservations
about generators of the form of Equation 1 for the SYSTEM /360
were based on a serial correlation test that, relative to other tests,
has a rather dubious distribution theory. In addition this test,
while it can detect gross departures, is probably not sensitive to
small departures from randomness.

QOur own expericnce with the generator of Equation 1 on the
IBM 7094 led us to look for a similar gencrator for the SYSTEM /360.
There are 31 bits available for computation in the 32-bit general
register of the SYSTEM /360 (one bit is a sign bit), and the largest
prime p less than or equal to 2*' — 1 is very conveniently 2°' — 1
itself. The factorization of p — 1 is

p—1=2"—-2=2X3X7X11 X3l X151 X 331

and A = 7 is a positive primitive root of 2°' — 1. Any power
(modulo p) of 7, say 7%, where k is not a factor of p — 1, is also a
positive primitive root of p. In this way, many A’s could be
generated, and it was confirmed empirically that an A approx-
imately equal to (p)'’* is required to even begin to give good
test results. Note that this is not an inclusive statement to the
effect that all A’s in the neighborhood of (p)'/? give good gen-
erators. In fact if a positive primitive root exists that is almost
exactly equal to (p)'/?, we can expect strong serial correlation
of order zero in the generator.

The particular gencerator described in this paper uses
p=2"—1and A = 7° = 16807. We describe here the tests used
in evaluating this particular case of Equation 1 and give the test
results obtained for a number of reasons:

o A well-tested and experientially acceptable generator for the
SYSTEM /360 is not available.
We have found experimentally that Coveyou and MacPherson’s
predictions are valid and that a pseudo-random number
generator for a 31-bit machine has to be chosen carefully. In
particular only two values of A of the many investigated gave
test results as good as those obtained for A = 7°,
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o It has been our experience that many generators put forward

without documentation turn out to be defective. This is
because inadequate test statistics have been used, or because
the test statistics have been misused, or because the series
tested have not been long enough to detect subtle departures
from randomness.
Some of the tests described and advocated here use recent
advances in statistical knowledge and are not well known to
nonstatisticians. In fact these tests, and in particular those
based on Fourier transforms, are of the type that Whittlesey®
deseribes as not having yet been applied to evaluating the
generator of quation 1.

Random permutations

Our concern to obtain a “‘good’” and relatively fast pseudo-random
number generator arose because we were conducting large-scale
synthetic sampling experiments on tests for serial dependence in
time series. Lt the observed series be @y, +-- , a,, -+, x,, and
the rank of a; be denoted by r,. Let a(r;) be a monotone function
of r;, either the ranks themselves or scores (expected values of
order statistics from some population). A test for lack of serial
dependence in the time series can be based on the idea that under
the null hypothesis all n! orderings of the a(r;)’s are equally
likely. A commonly used test statistic for testing serial inde-
pendence is the score product-moment statistic of lag one,

R(1) = a(rya(r:) + -+ 4+ a(r-n)alr,)
or in the case of ranks
R(1) = rre + rory + -+ - 4 rasi?a

Therce are n! possible orderings of the ranks, and it is possible
to compute the exact distribution of R(1) under the null hypothesis
in a reasonable amount of time on a SYSTEM/360 Model 91
computer only up to n = 11. Beyond that, synthetic sampling
has to be used.

Our procedure for testing the generator for this particular
purpose was to work out the exact distributions of the rank
product-moment statistic for n = 10 and for lags 1, 2, and 3 and
then compare these distributions with the estimated distributions
obtained by generating random permutations of the numbers 1 to
10. A standard method” is used to gencrate random permutations
(see also Reference 10). Up to 14,000,000 random permutations
were generated and chi-square goodness-of-fit tests showed no
discrepancy between exact and estimated distributions.

Generating permutations of the numbers 1 through 10 uses
and tests only the first four bits of the random numbers. The
remaining bits can, however, also be used. Some further experience
is also relevant. The score product-moment statistics are known to
have a normal distribution for large n under very weak conditions
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on the numbers a(r;)."" For normal scores the normal distribution
was found to hold for n = 50 and for ranks for n = 75. Exponential
scores,”” however, produced a highly skewed distribution, which
had not converged at n = 9,000. This immediately raised doubts
about the random number generator; as a check, the distribution
of the rank product-moment statistic was computed at n = 9,000.
The latter distribution was found to be still normally distributed,
indicating that the random number generator and permutation
generating scheme held up at n = 9,000. Subsequent experience
showed that the rate of convergence of the distribution of the
score product-moment statistics to the asymptotic form depends
eritically on the skewness of the parent population of the scores.

Tests for randomness

Since the “‘random’™ numbers generated are specified to be uni-
formly distributed, as well as serially independent, it is necessary
to test before anything else for a uniform one-dimensional marginal
distribution. Provided sufficient divisions of the unit interval arc
used, a chi-square test of goodness-of-fit is adequate for this
purpose. For very long scries, the chi-square test is computa-
tionally much simpler than tests such as the Iolmogorov-
Smirnov test.

Tests for scrial independence in the random numbers arc
conveniently broken up into two types: direct tests on the raw
data for the absence of serial correlation or “‘bunching,” and tests
on the Fourier-transformed data for a flat spectrum.

Tor the direct tests we follow in part the discussion in MacLaren
and Marsaglia, ' relating their tests to their statistical antecedents.
In essence, these tests of serial correlation or bunching check for
uniformity of successive lagged pairs of random numbers. Thus,
let » be a power of two and dctermine the number of pairs
(i, ;0 )t = 1,2, --- , N 4+ £ — 1, for which the first log » bits of
x; had the value m and the first log » bits of x;,, had the value n.
Here N is the basice length of the sequence of random numbers (the
additional £ — 1 are used for computational convenience) and n
and m run from 0 to » — 1, giving »* possible pair values with
frequency f,.... We compute the chi-square statistic

co- 3 (-5 /0)

This is Good’s serial test for sampling numbers.'*''* Contrary to
the usual assumptions, the statistic does not have a chi-square
distribution with »* — » degrees of freedom; in fact, its mean value
is ¥© — 1 (see Reference 14). The exact distribution is not known.

Tests of n-tuples of various combinations of lags are possible
but have not been applied.™

As indicated earlier, a useful test of randomness is the runs
test. It is a nonparametric test, testing for serial independence
per se. The exact definition of a run (or phase) up or down of
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length d is given in Kendall and Stuart." For example, in the
sequence

5,4,1,2,3,4,5,4.3.2,3,4,5,6,7,8 9,6 4,5,3,2

we have 5 runs, the lengths of successive runs being 5, 3,7, 2, and 1.
The expected number of runs in a sequence of length N is, for N
large, (2N — 7)/3, and the expected number of runs of length d is

2((N — d — 2)(d® + 3d + 1)}
d + 3)!
Since this quantity decreases rapidly with d, it is usual to lump

long runs together; in our case, we lumped together runs of 8 or
longer. The expected number of such runs is*

/8) = 3@N - 7) — ; () (4)

The consistency with the hypothesis of serial independence is
tested by a chi-square statistic. In a series of length N, let n(d) be
the actual observed number of runs of length d if d is less than 8,
and the actual number of runs greater than or equal tod if d = 8.
Let Zn(d) be the total number of runs observed in the sequence
of length N. Then, if

1@ = 1) X g s (5)

s _ N f0d) — f(d)}?

U IR ©)
Note that the statistic has the distribution of the chi-square test
statistic only when N is large; even then it does not have a chi-
square distribution with 7 degrees of freedom because the variance
is inflated by the small cell frequencies for large d.*°

Tests of randomness based on the Fourier-transformed data
have become practical with the advent of the fast Fourier trans-
form algorithm;'" the tests are discussed in References 18 and 19.
The tests actually use the periodogram or estimated spectrum as
follows:

Take the finite Fourier transform of the sequence z;, § = 0,
1, -+, N — 1 to get

N—
i

a, = % x_e—21rijn/4\' e (7)

and compute the periodogram points
P, = 2N |a(n)|® n=1,2 -, M+1 (8)

and the (normalized) cumulative periodogram points

(N/2)—-1

r=1

where M = (N/2) — 2if Nisevenand M = (N — 3)/2if N is odd.

LEWIS, GOODMAN, AND MILLER IBM SYST J




For normally distributed, independent z; (and asymptotically
under fairly general conditions® for nonnormal, independent x;),
the p,’s are independent exponentially distributed variates and
the P,’s are the order statistics from a uniform distribution. Thus
the test for randomness has been transformed into a test for a
Poisson process.'® The alternatives are basically trends (nonflat
spectra), and suitable test statistics should be fairly insensitive to
small serial correlation and nonexponentiality in the p,’s. Following
Cox and Lewis' and Durbin," the test statistics used are the
following:

e The median-spectrum test statistic

1 M
S =137 Z%Pn (10)

The normalized test statistic U = [S — (1/2)](12M)"? has,
under the null hypothesis, a unit normal distribution even for
small M.

The onc-sided and two-sided modified Kolmogorov-Smirnov
test statistics

n
KS+ = max {P P T 1} (1

. n
s = i - 7 12

KS = max {KS+, KS—} (13)

The asymptotic distributions of these statistics are given by
Durbin.**

A modification of Bartlett's test for variance heterogeneity can
be used to test for a constant spectrum value.*” Thus, we divide
the M values of p,(n = 1,2, - -+, M) into k contiguous groups
of size v, where k is the largest integer such that £ = kv < M.
Denote the sum of the p,’s in each group, divided by 2=, as

iy

$= X psa im1 b (19

n=(i—1)r+1

The test statistic is then

is'f k
(

=t | _
Y, ; 2v log

i

6v — 2)/(6v — 3)

and has approximately a chi-squared distribution with & — 1
degrees of freedom if 2» is greater than 5. The hypothesis of
randomness is rejected for large values of I1(k).

N
2

(15)

A problem in using this test statistic is the arbitrary choice of k.
Another point is that since the p,’s are approximately exponentially
distributed, a k-sample Savage test statistic™® may be more appro-
priate.
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Tests results

To test the pseudo-random number generator of Equation 1 we
generated 10 successive groups of numbers. The length of each
sequence was 2'° 4 5, the five additional values being used in
Good's serial tests for computational convenience. The value
N = 2'% was felt to be large enough for the power of the tests to be
high enough to detect the presence of subtle departures from
randomness. The use of 10 sequences enhances the reliability of
the test results, particularly from a computational viewpoint.
Thus, on an initial run, all values of H(10) were found to be
within the acceptance level of the test, but all values were below
the median value of the test statistic and with rather small vari-
ability in the sample of size 10. Further checking indicated the
necessity of doing the computations of the H(k)'s in double
precision. The computations were performed on SYSTEM/360
Models 67 and 91 computers.

Table 1 gives the results of the direct tests of randomness,
column two giving the initial value z, for each sequence of pseudo-
random numbers. For the test of uniformity of the marginal
distribution, 2'* = 4096 cells were used, thus giving a test of the
first 12 bits of the x;’s. The value of the chi-square goodness-of-fit

Table 1 Direct tests on the pseudo-randem numbers

Run Uniformity Goods’ sertal {est Runs test
number g x2(4095) S(1) S(2) S(3) S4) S(5) S(6) x*(7)

12345678  4015.25 263.67  223.60  266.62 25848  269.05  228.02 16.18
(=79.75)  (+8.67) (—31.31) (+11.62) (+3.48) (+14.05) (—26.98) (+9.18)

855998726 4112.12 280.22 267.45 240.77 254.55 280.17 222.44 7.07
(+17.12)  (+25.22) (412.45) (—14.23) (—0.45) (+25.17) (-22.56) (40.07)

745681489 4125.12 253.34 237.19 227.50 221.05 238.95 219.27 12.15
(+30.12) (—1.66) (—17.81) (—27.50) (—33.95) (—16.05) (—35.73) (+5.15)

506104362  4113.50 246.00 23598 25831  258.02  252.77 25191 4.03
(+18.50) (—9.00) (—19.02) (43.31) (+3.02) (—2.23) (—3.09) (—2.97)

236686234  4150.75 246,39  258.58 22128 27598  286.08  239.23 12.10
(+55.75)  (—8.61) (43.58) (—33.72) (420.98) (431.08) (—~15.77)  (+5.10)

1912615462  4079.87 241.45 254.22 289.19 265.22 266.31 236.34 5.39
(=15.13) (~13.55) (—0.78) (+34.19) (410.22) (411.31) (—18.66) (—1.61)

481694049  4268.87 203.06  263.80  273.00  246.66 24255  277.56 6.88
(+172.87)  (+38.06) (+8.89) (+18.00) (—8.34) (—12.45) (+22.56) (—0.12)

785044942  4114.50 238.02  232.23 27269  223.94 28342  257.84 9.94
(+19.50)  (—16.98) (—22.77) (+17.69) (—31.06) (+28.42) (+2.84) (+2.94)

864268549  4058.37 229.89  201.48 22575 27525  237.09  221.17 10.18
(—36.63) (—25.11) (—53.52) (—20.25) (+20.25) (—17.91) (—33.83) (+3.18)

13034519  4096.87 246.97 24578 23242  260.00  277.53  250.53 3.31
(+1.87) (—8.03) (—0.22) (—22.58) (45.00) (+22.53) (—4.47) (—3.69)
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statistic is given in column three of Table 1. Seven values are
above the mean value 4095, since the variance of the test statistic
is 90.5, all deviations from the mean (shown in brackets below the
actual values) are less than 1.9 standard deviations.

The results for Good's serial test forlags £ = 1,2, 3,4, 5, 6, and
v = 16 are given in columns four through nine of Table 1. There
are 16° = 256 cells and a mean value of 255; the exact distribution
is not known but if a chi-squared distribution of 255 degrees of
freedom is assumed with standard deviation of approximately 23,
then the maximum and minimum values of the six columns of
+38.06 and —53.52 are within 2.3 standard deviations.

The last column of Table 1 gives the results for the runs tests;
the chi-squared statistic has a mean of seven but a standard
deviation highly inflated by the uncqual cell frequencics. No
inordinately large deviations from the mean were obtained.

There is, therefore, no evidence of departures from randomness
in the direct tests.

Results of tests on the transformed numbers are given in
Table 2. For the median test,  is a unit normal deviate and the
test results do not give any indications of departures from random-
ness. The values of KS+4, KS—, XS for the ten series are given in

Table 2 Tests on the transformed pseudo-random numbers

Feun Median test __Goodness-ofifit tests
number U KS+ KS— KS

Variance heterogeneity test

H(10)

H(20)

0.455 1.006

0.162 .870

1.334 .208

0.501 715

.026

.510

733

532

544

4,442
(=)
8.874
(+)
5.992
(=)
9.056
(+)
4.845
(=)
4.177
(=)
9.423
-+
9.139
(+)
10.120
(+)
4.350
(=)

10.340
(=)
18.393
(+)

20.325
(+)

18.355
+)

7.116
(=)
13.938
(=)
13.948
(=
15.408
(=)
14.769
(=)
17.572
(=)
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Table 3 Pseudo-random number generator

RANDOM CSECT
USING
STM

LM

L
M

D
ST

A
ST
LM
BR

DC
DC

*15
2,5,28(13)
2,3,0(1)

5,A
4,0(2)

4P
4,0(2)
4,7

4,CHAR
4,0(3)
2,5,28(13)

14
F'1073741824’
F/16807
F'2147483647

INITTAL LINKAGE

LOAD ADDRESSES OF
VARIABLES PASSED
COMPUTE NEXT INTEGER
RANDOM NUMBER WITH
X(I+1)=AX(I) (MOD P)

COMPUTE NEXT REAL
RANDOM NUMBER

TERMINAL LINKAGE
CONSTANTS. CHAR FIRST

S0 A IS ON DOUBLE WORD
BOUNDARY. MAKES LM

INSTRUCTION FASTER.

columns three through five in Table 2. The statistic KS has a
one-sided upper 5 percent point of approximately 1.3 and a 1
percent point of approximately 1.6. No significantly large devia-
tions oceur in column five.

The variance heterogeneity test was applied to the transformed
sequences with £ = 10 and k¥ = 20, giving variates with chi-
squared distributions of 9 and 19 degrees of freedom, respectively.
These values are given in columns six and seven. The plus and
minus signs in brackets indicate whether the variates were below
or above the median value of the distribution. The only abnormally
large deviation occurs in series 5 for H(20); the probability of a
single value less than 7.116 is approximately 0.04. Taken as one of
ten independent variates, this is not significantly small. Note,
however, that the average of the variate values for H(10) and
H(20) are well below the true means, indicating the possibility of
a very subtle departure from randomness in the generator. It
would be surprising, however, if some such departure did not show
up in pseudo-random sequences of length 2'°. The overall con-
clusion, however, from the tests and the experiences in generating
random permutations is that for a 32-bit word size the pseudo-
random number generator is remarkably good.

Generator program

A program to implement the algorithm of Equation 1 is shown in
Table 3. The program is written in SYSTEM /360 basic assembler
language. This generator can be used by any program that con-
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forms to the SYSTEM/360 FORTRAN linkage conventions. In
particular, it may be invoked in a FORTRAN program {compiled on
SYSTEM /360) by the statement:

CALL RANDOM (INT, REAL)

where INT is any full-word integer variable and REAL is any full-
word real variable (single precision). The integer variable, INT,
should be given an initial value before the first use of the generator.
The generator returns an integer random number in INT and a
real random number between 0 and 1 in REAL.

The program was run and timed internally on a SYSTEM /360
Model 67 computer. The generator was called 1,000,000 times
within a FORTRAN ‘DO LOOP”; execution of the loop took
31,162,846 microseconds. Thus, we have an upper bound of ~31.2
microseconds on the time to call a random number on the
SYSTEM /360 Model 67. Faster times can be obtained using sub-
routines that generate sequences of random numbers and using
subroutines that generate only integer random numbers. Another
scheme has been proposed by Payne, Rabung, and Bagyo.** This
scheme may be slightly faster on SYSTEM/360 computers. On the
Model 91, however, the loop made may make the two methods
comparable.

ACKNOWLEDGMENTS

We are indebted to Dr. B, Tuckerman, IBM Research Center, for
his invaluable help in finding the positive primitive root of the
prime p = 2! — 1, and to Dr. F. G. Gustavson, also of IBM
Research, for his helpful comments on the assembler language

program. Mr. John R. B. Whittlesey of Mandrel Industries, Inc.,
has also provided some valuable criticisms.

CITED REFERENCES

1. D. W. Hutchinson, “A new uniform pseudo-random number generator,”
Communications of the ACM 9, No. 6, 432-433 (1966).

2. D. Y. Downham and F. D. K. Roberts, “Multiplicative congruential
pseudo-random number generators,” Computer Journal 10, No. 1, 74-77
(1967).

. R. G. Herman, The Statistical Evaluaiion of Random Number Generating
Sequences for Digital Computers, Office of Technical Services, U. 8.
Department of Commerce, Washington, D. C. (1961).

. M. G. Kendall and A. Stuart, The Advanced Theory of Statistics 3, page 353,
Charles Griffin and Company, London (1966).

. R. R. Coveyou and R. D. MacPherson, “Fourier analysis of uniform
random number generators,”’ Journal of the Association for Computing
Machinery 14, No. 1, 100-119 (1967).

. S. K. Zaremba, “The mathematical basis of Monte Carlo and quasi-
Monte Carlo methods,” SIAM Review 10, 303-314 (1968).

. G. Marsaglia, “Random numbers fall mainly in the planes,” Proceedings
of the National Academy of Sciences 61, No. 2, 25-28 (1968).

. J. R. B. Whittlesey, “A comparison of the correlational behavior of
random number generators for the IBM SYSTEM/360,” Communications
of the ACM 11, No. 9, 641-644 (1968).

.2 ¢ 1969 PSEUDO-RANDOM NUMBER GENERATOR




. L. E. Moses and R. F. Oakford, Tables of Random Permutations, Allen
and Unwin, London (1963).

. E. W. Page, “A note on generating random permutations,” Journal of
the Royal Statistical Society C, 16, 273-274 (1967).

. K. Jogdeo, “Asymptotic normality in nonparametric methods,” Annals
of Mathematical Statistics 39, 905-922 (1968).

. D.R. Cox and P. A. W. Lewis, The Statistical Analysis of Series of Events,
page 54, Methuen, London; Dunod, Paris; and Barnes and Noble, New
York (1966).

. M. D. MacLaren and G. Marsaglia, “Uniform random number gen-
erators,” Journal of the Association for Compuiing Machinery 12, No. 1,
83-89 (1965).

. I. J. Good, “The serial test for sampling numbers and other tests of
randomness,” Proceedings of the Cambridge Philosophical Society 49,
276-284 (19563).

. I. J. Good, “The generalized serial test and the binary expansion of
/2, Journal of the Royal Statistical Society A, 130, 102-107 (1967).

. M. G. Kendall and A. Stuart, The Advanced Theory of Statistics 2, page 462,
Charles Griffin and Company, London (1961).

. J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation
of complex Fourier series,” Mathemaiics of Computation 19, 297-301 (1965).

. D. R. Cox and P. A. W. Lewis, T'he Staiistical Analysis of Series of Events,
Chapter 6, Methuen, London; Dunod, Paris; and Barnes and Noble,
New York (1966).

. J. Durbin, “Tests of serial independence based on the cumulated peri-
odogram.” Bulletin of the International Institute of Statistics (1967).

. R. A. Olshen, “Asymptotic properties of the periodogram of a discrete
stationary process,” Journal of Applied Probability 4, No. 3, 508-528
(December 1967).

. J. Durbin, “The probability that the sample distribution function lies
between two parallel straight lines,” Annals of Mathematics and Statistics
39, No. 2, 398-411 (1968).

. D.R. Cox and P, A. W. Lewis, The Statistical Analysis of Series of Events,
page 168, Methuen, London; Dunod, Paris; and Barnes and Noble,
New York (1966).

. A. P. Basu, “On a generalized Savage statistic with application to life
testing,”” Annals of Mathematical Statistics 39, No. 5, 1591-1604 (1968).

. W. H. Payne, J. R. Rabung, and T. P. Bogyo, “Coding the Lehmer
pseudo-random number generator,”’ Communications of the ACM 12,
No. 2, 85-86 (February 1969). See also W. Liniger, “On a method by
D. H. Lehmer for the generation of pseudo-random numbers,”’ Numerische
Mathematik 3, 265-270 (1961).

146 LEWIS, GOODMAN, AND MILLER IBM SYST J




