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Abstract

An algorithm is described which produces a finite list of Zg[z1,z2] solutions to a
diophantine equations of the form

AX?2+BY? +CZ" =0

where r € {3,4,5}, S is a finite set of primes, A, B € Z%,C € Zg. This list has the property
that all integer solutions with gcd(X,Y,Z) € Z% occur by specializing the parameters
(z1,22) in one of the parameterized solutions to integers.

The algorithm is used to construct a finite list of Z[z1, 23] solutions of :

X2+Y3+2%5=0

such that all integer solutions with gcd(X,Y, Z) = 1 occur by specializing the parameters
(z1,22) in one of the parameterized solutions to integers.
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1 Introduction
In this paper I prove the following theorem:

Theorem 1.1 Fizr € {3,4,5}. Fiz a finite set of primes S. Fiz A,B € Z§ and non zero
C € Zg. There is is a finite set of solutions in Zgs[x1, 2] to :

Az + By*+Cz" = 0 (1)

such that
e their integer specializations include all integer solutions with ged(X,Y,Z) € Z%
o their Zg specializations include all Zg solutions with gcd(X,Y, Z) € Z%.

Furthermore there is an explicit algorithm to create these parameterizations.

This is a generalizes a result of Beukers [FB9§], as:
o The parameterizations are now in Zg[z1, 23] rather than just Q[z;,zs].
e The algorithm is explicit

I illustrate the latter point by producing sets of Z[z1,z2] solutions of the equations:
X24+Y3+ 27", re{3,4,5}

whose integer specializations include all integer solutions with ged(X,Y, Z) = 1. Before
this paper, (complete) sets were only known for r = 3 (Mordell 1969) and r» = 4 (Zagier
1998 in [FB98]).

The method given here is a generalization of an algorithm for the 2, 3, 3 case, presented
by Mordell in his book Diophantine Equations [Mo69][ch. 25].

1.2 Layout of Paper

The lion’s share of the paper in devoted to producing Z[z1,z2] parameterizations to:
X2+Y3+dZ"=0 (2)

(d is a non-zero integer) whose integer specializations include all relatively prime integer
solutions. L.e. we prove the main theorem for the special cases when S =, A= B = 1.
This is done in the following sections:

e Section 2, describes the invariant theory and other properties of Klein forms needed
in the paper.
e Section 3 show how integer solutions to (2) can be lifted to parameterized solutions

e Section 4 proves various properties of real Klein forms, needed to apply Hermite
reduction in the algorithm.
e Section 5 describes Hermite reduction theory

e Section 6 merges the theory of the previous sections into an algorithm for producing
complete sets of parameterized solutions to (2).

Section 7 shows how to generalize to the case AX2 + BY3 + CZ" = 0,#S < oo, thus
proving the main Theorem 1.1.
Appendix A gives complete parameterizations to the equations X24+Y3+ 2" =0, S = 0.
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2 The Invariant Theory of Klein Forms

2.1 Definition of Covariants

This section fixes the notation and gives the basics of the invariant theory to be used in
this paper. Take a generic form of order k given by:-

k k o
=y ( ; ) a2tk
i=0
Let g = ( gu 912 ) € GL(2,C) act on C? by:
g21 922
(1, 22) = (91121 + g12%2, g21%1 + g22%2)

define o' by f(a',z1,22) := f(a, g(z1,22)).

Definition 2.2 A form H € Clag, .. .ay, z1, 22] = Cla, 21, 2] is a covariant iff there is a
D € Z>q such that:

H(a',z1,22) = det(g)?H(a, g(x1, x2))
for all g € GL(2,C). The number p is called the weight of the covariant.
We write H = H(f) to emphasis the dependence on the coefficients of f.
Lemma 2.3 H is a covariant of weight p iff for all g € GL(2,C):

H(f)o g =det(g)"PH(f)
where f = fog.

2.4 Examples of covariants

Consider:
_ U \?for fa
Hm‘(k(k—n) fre for
_ 1 fa f
W =so=o |1, H,

These can be shown (e.g. [DG95, Lecture XXVI, p88]) to be covariants of weight 2,3
respectively. Written explicitly:

f = apx¥+...
H(f) = (aoag —a)zx?* 4+ ...
t(f) = (adaz —3aparas +2ad)x3F 6 4 ...



2.5 The Klein Forms

In [FK84], Felix Klein embeds the tetrahedron, octahedron, icosahedron on the 2 sphere
which he then projects onto the extended complex plane P™. After a suitable rotation of
the sphere, forms whose roots correspond to the vertices of the solid are:

Definition 2.6

r | Solid The vertices k| N | B

3 | Tetrahedron | fs = x4 — 2v/32323 — 2} 12 | 33
4 | Octahedron | fy = z15 (z} — %) 6 | 24 | 432
fi = mima(a} + 23)
5 | Icosahedron | fs = x1z2(23® — 112323 — 21°) | 12 | 60 | 1728

S

In the definition k& denotes the number of vertices of the solid, NV the order of the group
of rotational symmetries of the solid.

Covariants of the f,. correspond to unions of orbits on the sphere. Klein’s relations
become:

(GUE? + B + o f = 0 )

The f; also represents the octahedron. It satisfies:

1 . . 1 -
GNP+ HG - it = o @
Definition 2.7 Forr € {3,4,5} and for d € C* define:
C(r) = {froglge€GL2,0}

Q
—~~
3

QU
~

I

{f €CY | (A + H( +df" =0)
Lemma 2.8 For g € GL(2,C) and A € C* we have:

frec(r,B)
fec(r,d = fog€C(r,det(g)’d)
fec(r,d = A € C(r,\57"d)
Proof. The first claim comes from the definition of 8,. The second claim follows by
Lemma 2.3 since t(f)2, H(f)? are covariants of weight 6 but f" is a covariant of weight 0.

The third follows since ¢(f)2, H(f)® homogeneous of degree 6 in the a;, and f" is of degree
T

q.ed
Proposition 2.9 We have:
C(r,d) = {f = fr °g | det(g)G = ﬂrd}
and

C(r) = |_| C(r,d)

deC*

(disjoint union of non empty sets).



Proof. This follows by Lemma 2.8.
g.e.d

Notation 2.10 (Klein forms) We call C(3) UC(4) UC(5) the Klein forms. C(3) are the
tetrahedral Klein forms, C(4) the octahedral Klein forms, and C(5) the icosahedral Klein
forms. A Klein form is called a real Klein form if all its coefficients are real.

2.11 Characterizing the C(r,d)

For general k define the 4th and 6th covariants of f by:-

1 (k-4
nn =3 (52) Weni@ ...
) Y,y =22
1((k=6)\>
(=3 (552) @i ). .,
’ Y,y =22
where
2 2
0- % 4
oxdy'  dydx’
Then
(f) = (aoas —4aras + 3ad)z?* 8 + ...
76(f) = (aoas —6aras + 15aza4 — 10a2)22¥ 712 4 .

These are up to a constant factor the 4th and 6th transvections of base form with itself
(see [DH97, XXVI, p88]). They have weight 4 and 6 respectively.
For base forms of order k = 4 define the catalecticant invariant j by:

apg ap a2
i(f) = |a a a3
as a3 a4

= agasay4 + 2a1a0a3 — ag — aoag — afa4

(see [Mo069, ch25, p233]). This also has weight 6.
In answer to a question posed by Clebsch, Gordan proved:

Theorem 2.12 (Gordan 1887) Let f be a form of order k. Then 74(f) = 0 iff f is
GL(2,C) equivalent to x¥, z¥~ x5 or one of the Klein forms: fs,fy or fs.

See [PG87, p 204].
The fact that the covariant of =¥ x’f_lscz disappear can be explained by the following

Lemma 2.13 Let G be a covariant of weight p, homogeneous of degree n in the a;. If
p>n then G(zF) =0, G(zF12,) = 0.

Proof.Let G = 71 Gz ). The theory of covariants (e.g. [DH97, XIII, p43]) shows

k

that each coeflicient G is isobaric of weight > p in the a;. For f = z¥, ¥ 125 the only

non zero a; have i =0 or 1 and so G(f) =0.



q.e.d

Theorem 2.14 (Classification of Klein Forms ) Fiz d € C*.

CB,d) = {felar,zls|n(f) =0,5(f) = 4d}

)=
C4,d) = {feCai,ws|7a(f) =0,76(f) = 72d}

C(5,d) = {fe«:[xl,xz]mmjf)z w(f) = 22odf)

Proof. Fixr € {3,4,5}. Call the right hand sides of the above equalities: V' (3,d), V (4,d),
V(5,d).

j and 1 both have weight 6 and are homogeneous of degree 3 and 2 in the a;. So by
Lemma 2.13 z¥ 2¥ "'z, ¢ V(r,d). By Theorem 2.12 we can restrict attention to f which
are GL(2,C) equivalent to a Klein form. Using Lemma 2.3 and the fact that 74, have
weight 6 we get that

feV(r,d < fogeV(r,det(g)sd)
So by Proposition 2.8 we only have to show that f, € V(r, B;1). This is verified by direct
calculation.

g.e.d

2.15 Defining Integral Forms

Here we define what we mean for f to be integral. As for quadratic forms there are two
common ways to consider these higher order forms to be integral: one of them is that
f € Z]x1, 2] and the other is that a; € Z. However, it turns out prudent for us to use the
following intermediate definition:

Definition 2.16 (Integrality of Forms) Given r € {3,4,5} we consider base forms of
order k = 4,6, 12 respectively. We define:

Qg = {ao,...a4}
Q4 = {ao,al,...ae}
Q5 = {ao,...a5,7a6,a7...a12}

and consider a form to be integral if it is in X, where:

Xr[z1,22] ={f = Z ( )a,wl 3 | Q. consists of integers }

Proposition 2.17 The classes X3,X4, X5 are closed under the action of GL(2,7Z).

Proof. GL(2,Z) is generated by:

(0 1 (11 (1 0
s=(Sa)r=(ad)v-(0 5)

X, are clearly closed under S,U. We only have to show it is closed under T'. Let

k
f= Z( .)a,a:l igt



and let f':= f(z1 + za,x2) have coefficients g’ Then:-

t—1
t
a;:at—#Z( ; )a,-
=0

The result follows trivially in the cases r = 3,4 and from the fact that 7 divides () for
6 <t <12in the case r = 5.

g.ed
Proposition 2.18 Fiz r € {3,4,5} and k € {4,6,12} respectively for the order of the
base forms. Let C = Y"1, C;x{""‘zh be a covariant. Suppose Cy € Zlag...ax) and if r =5
that the covariant has weight < 5. Then C(f) € Z[Q; 1, 22]. In particular:
fe Xr[xl,xg] = C(f) S Z[.Z'l,mg]

Proof. By [DH97, 1.12, p103], C(f) can be gotten by replacing the a; in Cy by

where f(9 denotes the i-th derivative of f wrt ;. This implies the result for r = 3,4.
For r = 5 the extra assumption means that Cy is isobaric of weight < 5 in the a;. But
fos f1--- f5 € Z[Q5; 21, 22] and the result for r = 5 follows too.

q.ed

3 Lifting Integer Solutions to Parameterizations

We now show how integer solutions to our diophantine equations can be used to construct
integral parameterizations to the same equation.

3.1 Existence of Lifts

This section will be devoted to proving the following theorem:
Theorem 3.2 ( Lifting Theorem) Fiz d a non zero integer and r € {3,4,5}. Suppose

that X,Y, Z satisfy X2 + Y2 +dZ" = 0 with X,Y,Z € 7, ged(X,Y,Z) = 1. Then there
exists a binary form f € X, NC(r,d) and so,ty € Z such that:

1
X = St(f)(s0,t0), Y = H(f)(s0,t0), Z = f(s0,%0)
where H,t are the covariants defined in 2.4.

3.2.1 Common Part of Proof

We start with an arbitrary f € C(r,d). 3t(f), H(f), f € C[s, ] define a map from A into
the surface V C A® defined by:-

V . X?24Y)+dZ"=0



Lemma 3.3 the map is onto.

. : 7 .~ (1 0 0 1 i 0
Proof.Consider, first, f = fs, fi, fs along with m = ( 0 i ), ( 10 >,( 0 i >

respectively. In all cases det(n) = —1, fom = f. Since f equals f o h for some
h € GL(2,C), m = h~'mh is a matrix of determinant —1 fixing f.

Now take X,Y, Z € V(C). Use elimination theory to find (sq, to) with H(f)(so,to), f(s0,t0) =
Y, Z. We must have Lt(f)(so,t0) = £X. If it is +X we are through. Otherwise replace
(s0,t0)T by m(so,to)T, where m is as above. Since f, H,t have weight 0,2, 3, Lemma 2.3
shows that sg,ty now maps to X,Y, Z.

g.e.d Lemma

By applying a SL(2,C) transformation to the f we can suppose that the triple is the
image of the point (1,0).

f1,0) = a=7,
H(1,0) = (agaz —a}) =Y,
t(1,0) = (aZaz — 3apaias + 2a3) = 2X

We now replace f(x1,x2) by f(z1 + Aza2,z2) for an appropriate A € C. The map
(z,y) — (x + Ay, y) has determinant 1 and preserves the value of the forms at (1,0). We
specify A as follows:

(Case I: Z=10) If Z =0, we have a; # 0 since the Klein forms do no have multiple
roots. We choose A so that a; = 0.

Since ged(X,Y) = 1 we have X,Y, Z = +£1, —1,0. This means we can assume ag, a1, as =
0,£1,0.

(Case II: Z #0) 1If Z # 0 we can choose X so that a; takes on an arbitrary value.

In all cases, we use that fact that ged(Y,Z) = ged(X,Y,Z) = 1 to choose a; = —%
modulo Z". For any prime dividing Z let v(z) = vp(2) and v*(x) = v(z)/v(Z). From the
formula H(1,0) =Y

X

apay = Y + (?)2 =

azr
-3

From the formula ¢(1,0) = 2X:

X24+Y3  —dXZ"

agaz = —X e v

This shows that ag,a1,a2,as € Z and that for primes dividing Z:

v*(ao) =1, v*(a) =0, v*(ag) >r—1, v*(ag)>r—2

3.3.1 Tetrahedron
The relations We have the 74(f) =0 and j(f) = 4d:

0 = agay4 —4aia3+ 3a§

4d apa20a4 + 2a1a203 — ag — a0a§ — afa4



(Case I: Z =0) Since ag,as,a2 = 0,=+1,0, the relations in section 3.3.1 imply that:

[a0,a1,...as] =[0,£1,0,0,—4d]

(Case II: Z # 0) We already have that ag,a1,as,a3 € Z and for primes dividing Z
that:

v(ag) =1, v*(a1) =0, v¥(az) >2, v*(a3z)>1
so 74(f) = 0 implies that a4 € Z also.

3.3.2 Octahedron

The relations Let 74(f) = E?:o D,z zi. Using PARI we get the following relations
from the first four coefficients:-

Dy/1:0 = asap— 4aza; + 3a3
D1/2:0 = asap— 3asa1 + 2azaz
D3/1:0 = agap—9asas + 8a§
D3/2:0 = agas — 3asas + 2a4as

The relationship 74(f) = 72d means:
72d = agap — 6asa; + 15a4as — 10a§
(Case I: Z =0) Since ag,a1,a2 = 0,%1,0, the relations in section 3.3.2 imply that:
[a0, a1, . .. ag] = [0,£1,0,0,0,F12d, 0]

(Case II: Z # 0) We already have that ag,a1,as,a3 € Z and for primes dividing Z
that:

v*(ag) =1, v*(a1) =0, v*(a2) >3, v*(asz)>2

Going through the coefficients of D gives:

Dy=0 = V*(a4) >1
Di=0 = v*(a5)>0
Dyy=0 = v*(ag) >3

(due to the disappearance of an ajas term in D)
Since the relations also show that only primes p dividing Z will occur in the denomi-
nators of the a; we have that a; € Z.

10



3.3.3 Icosahedron

The relations Let 74(f) = E:io D;z16_;2%. Using PARI we get the following relation
from the first 10 coefficients:

Dy/1: 0 = apas —4ajaz + 3a3
D,/8: 0 = apas — 3aia4 + 2a2a3
Dy/4: 0 = ag(7ag) — 12a1a5 — 15aza4 + 20a3
Ds3/56: 0 = apa; — 6azas + Hagas
D4/14: 0 = bagag + 12a1a7 — 6as(7ag) — 20azas + 45a;
D5/56: 0 = agag + 6aias — 6azar — 4as(7ag) + 27asas
Dg/28: 0 = apaio + 12a1a9 + 12asas — T6azar — 3as(Tag) + 72a?
D7/8: 0 = apai1 + 24a1a10 + 90aza9 — 130azas — 405a4a7 + 60as(7ag)
Ds/1: 0 = apaiz2 + 60aia11 + 534aza10 + 380aszag — 3195a4as — 720asar + 60(7ag)*
Dy/8: 0 = ajai2 + 24a2a11 + 90asai0 — 130asag — 405as5as + 60(7ag)ar

Furthermore using that Dy = D3 = Dy = 0 we can express ag in terms of ag...as. We
call this expression Dj:

Dy : agag = 12a4azaia9 + 18a4a3ay — 24a§a2a0 + 4a5a3a3 —9a?

We also have 776(f) — 360df = 0. Using PARI, the z1? and zilzs terms give the following
relations:

Ro/1: 360dag = ao(7ag) — 42asa; + 105a4as — 70a3

R1 /6 : 720da1

Tarag — 5a1(7ag) + 63asas — 35a4a3

(Case I: Z =0) Since ag,a1,a2 = 0,£1,0, the relations in section 3.3.3 imply that:

144d

[ag,a1,...a12] = [0,41,0,0,0,0, —T,o,o,o,o,;(144d)2,o]

(Case II: Z # 0) We already have that ag,ai,as,a3 € Z and for primes dividing Z
that:
vi(ag) =1, v*(a1) =0, v*(a2) >4, v*(a3z) >3

Going through the relations (using the fact that the ag only occur in the form 7ag ) gives:

DO =0 - u*(a4) Z 2
D=0 = v*as)>1
Dy=0 = v*(Tag) >0
D3=0 — V*(a7) >4
D;=0 = v*(as)>3
Ds=0 = v*(ag)>2
Dg=0 — V*(alg) >1
D; =0 = V*(an) >0
Dg =0 - u*(au) >3

Since the relations also show that only primes p dividing Z will occur in the denomi-
nators of the a; (resp. 7ag) we have that Q5 consists of integers.

g.e.d Proof of Theorem 3.2

11



3.4 Uniqueness of Lifts

Fixr € {3,4,5} and d a non zero integer. For a given f € X, NC(r,d) define Y(f) C Z3 to be
the set of relatively prime integers X, Y, Z which occur by specializing the parameterization

t(f)/2,H(f), f to integers.
Theorem 3.5 Suppose f1, fo € X, NC(r,d). Suppose (X,Y,Z) € Y(f1). Then:

(X,Y,Z2) € X(f2) = f1is SL(2,Z) equivalent to fs
(-X,Y,Z2) e X(f) = f1is SL(2,2Z) equivalent to fo(z1,—22)

In particular the Y (f;) are either equal or disjoint.

Proof. Suppose (X,Y, Z) € Y(f1). We will show that f; is SL(2,Z) equivalent an f whose
coefficients are determined totally by (X,Y, Z). This means that f> will also be equivalent
to fif (X,Y,Z) € T(f2) and the first claim will follow.

Since fi; € X,.[z1,22] we have fi, H(f1) € Z[z1,22] so the integer parameters sy, sg
witnessing the specialization:

fi(s1,82) = Z, H(fi)(s1,82) =Y, t(f1)(s1,82) =2X

are relatively prime. Therefore there is an A € SL(2,Z) such that A(1,0)T = (s1,52)T.
Replacing f1 by f1 o A we can assume that the specialization is at (1,0). We now show
that f is uniquely determined up to (z1,z2) = (z1 + nza, z2),n € Z.

(Case I : Z = 0) We must have (X,Y,Z) = (£1,—1,0) and so ap = 0,a; = F1. By
replacing fi(z1,2z2) by fi(z1 + nx2,x2) for a suitable integer n we can also assume that
az = 0 or 1. Since the leading term of 74(f) is apas — 4ajaz + 3a3 and ag,...as € Z
we must have aa = 0. The remaining a; are now completely determined by the various
relations given in section 3.1.

(CaseIl: Z # 0) We have ap = Z. Since the leading term of 74(f) is apas —4aiaz +3a3,
we have that as is even if ag is even. This plus H(f)(1,0) = Y and t(f)(1,0) = 2X
imply that a; = —% modulo Z. By replacing f(z1,22) by f(z1 + nzs,z>) for a suitable
integer n we can assume 0 < a; < |Z|. This determines a;. as is now determined from
H(f)(1,0) =Y, after which a3 by #(f)(1,0) = 2X. The remaining a; are now completely
determined by the various relations given in section 3.1.

The first of the 2 claims is now proven.

For the second claim, take any A € GL(2,Z) with determinant —1. Let f' = f o A.
Since the f, H,t have weights 0,2, 3 respectively we get that:

(U H), f) = (55 0 A H(f) o A, f o 4)

and the second claim follows from the first.

g.e.d

4 Properties of Real Klein Forms

In this section we examine Klein forms f € C(r) N R[z1,22]. By the characterization of
C(r,d) this implies that f € C(r,d) for some d € R*.

Theorem 4.1 All real Klein forms in the same C(r,d) have the same signature. In fact:

12



Case Signature of real forms
r=3 (2,1)
r=4,d>0 (2,2)
r=4,d<0| (4,1)
r=5 (4,4)

Furthermore if f, f' are real Klein forms with the same signature then f is GL(2,R) equiv-
alent to £ f'.

This theorem will be proved in this section.

4.2 Preamble

Stereographic projection produces a 1-1 correspondence between the Riemann Sphere
S2(R) and the extended complex plane P™. It take circles to circles if we agree that
straight line are also circles passing through oo on P*°. Furthermore we can join points on
the sphere by edges and see what happens under this projection. We get a similar graph
of points and edges, albeit slightly deformed, so the concepts of adjacency, paths, path
length, being inside/outside a closed loop e.t.c. are preserved.

Any GL(2,C) matrix induces a bijective action on P> which takes circles to circles.
GL(2,C) is path connected, in the sense that any matrix can be gradually deformed until
it becomes the identity. The induced action can therefore be gradually deformed until
it is the identity. This means that the graph theoretic properties mentioned above are
invariant under GL(2,C) actions.

4.3 Some lemmas about circles

Lemma 4.4 Take 2n distinct points, symmetric about the real axis, none of which is on
the real axis and not all on a single vertical line. Then there is a finite circle:

o with its center on the real axis

o with all 2n points on or inside the circle.

o with at least 4 of the points on the circumference
Proof. Wlog each vertical line contains at most 2 points and the right most points J3, Jé;
lie on the imaginary axis. Consider the circle thru (0,t), 43,3 for t € R>?. For small ¢ it

contains all 2n points. For large ¢t only 2. Somewhere in between it witnesses the claim of
the lemma. (note this is not necessarily a circle of smallest radius containing all points).

g.e.d

Lemma 4.5 . Take 6 distinct points, symmetric about the real axis. If there is a circle
through exactly 5 points then one of these points is on the real line and the circle passes
thru it.

Let p be the number of points on the real line. Since its even, the circle will go though one
of them provided p # 0. We now suppose pu = 0. If the circle does not go thru 8, remove
B and its reflection in the real axis 3. The circle must go thru the remaining 2 pairs on
distinct conjugate points. It is therefore a vertical line or a circle with center on the real
line. It therefore passes thru an even number of the original 6 points. Contradiction.

q.e.d
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4.6 Number of Real Roots
Proposition 4.7 Any real tetrahedral form has exactly 2 real roots

Proof. There are no circles on the tetrahedron containing 4 vertices, so there can be no
circles on the extended complex plane containing all 4 roots of a tetrahedron form. The
roots cannot then all lie on the extended real line since this is considered a circle. Neither
can they by Lemma 4.4 occur as 2 pairs of complex conjugate roots. Therefore a real
tetrahedral form has exactly 2 real roots.

g.e.d
Proposition 4.8 Any real octahedral form has exactly 2 or 4 real roots

Proof. The circles on the octahedron contain at most 4 vertices. Furthermore the circles
with 4 have 1 additional vertex inside and one outside. An octahedral form cannot have 6
real roots (too many roots on the extended real line). If it had 3 pairs of complex conjugate
roots then by Lemma 4.4 we could draw a circle thru 4 of these roots with the remaining
2 points inside. Contradiction. A real octahedral form has therefore exactly 2 or 4 real
roots.

g.e.d
Proposition 4.9 Any real icosahedral form has exactly 4 real roots

Proof. The circles on the icosahedron contain at most 5 vertices. Therefore a real
icosahedral form has g = 0,2 or 4 real roots.

Suppose g = 0 then it has 6 pairs of complex conjugate roots. Then by Lemma 4.4
there is a circle through 4 roots with 8 on the inside. Circles thru 4 vertices on the
icosahedron always have 4 vertices on each side. Contradiction.

Suppose pu = 2 so there are 5 pairs of complex conjugate roots and 2 real roots. Then
by Lemma 4.4 there is a large circle C' through 4 of the complex roots the remaining 6
complex roots inside the circle. If we are not going to get the same problem as with p = 0,
the circle must pass thru 5 roots - i.e. one of the real roots also lies on it. Circles on
the icosahedron thru 5 vertices 5-circles occur in non intersecting pairs. These split Sz (R)
into 3 distinct regions with exactly 2 regions being non adjacent. There is one additional
vertex in each of the non adjacent regions. In particular a 5-circle has 1 vertex on one side
and 6 on the other. The remaining real root of f must therefore lie outside the circle C
and another 5 circle C' must pass thru exactly 5 of the complex conjugate roots inside C.
This is a contradiction by Lemma 4.5.

A real icosahedral form therefore has exactly 4 real roots.

g.e.d

4.10 GL(2,R) equivalence

Proposition 4.11 If f, f' are two real tetrahedral Klein forms then f is GL(2,R) equiv-
alent to £ f'.

Proof. Wlog f = fs. Let f' = fog some g € GL(2,C). Replacing g by a multiple of
R o g where R corresponds to a rotation of the tetrahedron, we can suppose that g maps
the 2 real roots of f to the 2 real roots of f’.

Take f and map the 2 real roots via GL(2,R) to 0,00. Do the same to f'. The two
forms now differ by an action which fixes 0 and co. The only such actions are rotation
and expansion. Since the complex roots are conjugate, the rotation must be thru 0 or 7.
The whole action is then GL(2,R) and the result follows.
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q.e.d

Proposition 4.12 If f, f' are two real octahedral Klein forms with the same number of
real roots then f is GL(2,R) equivalent to +f'.

Proof. If there are 4 real roots they all lie on the real line so we can choose 2 corresponding
to opposite vertices on the octahedron. If there are 2 real roots, there is a circle passing
through the 4 complex roots, so the real roots are ’opposite vertices’. Take f and map
2 opposite real roots via GL(2,R) to 0, 00. Rotating the octahedron through 7 /2 around
the axis through the opposite vertices permutes permutes the remaining vertices cyclically.
There must be a similar action on the P* fixing 0,00. This must be rotation about the
origin thru 7 /2. The remaining roots must line on a circle center the origin which we can
assume has radius 1. Since the form is still real the roots must be +1, £¢ if there are 4
real roots, or %(:ﬁ:l +4) if there are 2 real roots.

Do the same to f'. Both real forms have been GL(2,R) reduced to a form with the
same roots. The result follows.

g.e.d

Corollary 4.13 Let f € C(4,d) have real roots. If d > 0 then f has 4 real roots. If d <0
it has 2 real roots.

By Proposition 4.8, f has either 2 or 4 real roots. By Proposition 4.12, +f must be
GL(2,R) equivalent to f4 if it has 4 real roots, or f; if it has only 2. The result now
follows from equations (3,4) and Lemma 2.8.

g.e.d

Proposition 4.14 If f, f' are two real icosahedral Klein forms then f is GL(2,R) equiv-
alent to £ f'.

Proof. Wlog f = fs5. Let f' = fog some g € GL(2,C). Replacing g by a multiple of
R o g where R corresponds to a rotation of the icosahedron, we can suppose that g maps
the 4 real roots of f to the 4 real roots of f’.

Let ag = g0, @eo = g~ 'oo. Take f' and map these 2 real roots via GL(2,R) to 0, cc.
The two forms now differ by an action which fixes 0 and oo.

The only such actions are rotation and expansion. Since the there is a circle center the
origin containing exactly 5 roots of fs spaced equally, the rotation can only be thru 0 or
7. The whole action on the roots is then GL(2,R) and the result follows.

g.e.d

5 Hermite Reduction Theory

Hermite reduction theory is a generalization of the reduction theory of positive definite
real binary forms. In the latter theory, we say that a form is reduced if the unique root zg
in H is in the usual fundamental domain for SL(2,Z). Every form is SL(2,Z) equivalent
to some reduced form, and there is a bound for the coefficients of reduced forms in terms
of the discriminant.

Hermite reduction theory applies to higher order forms. The Hermite determinant
takes the place of the discriminant. There is an associated representative point zg € H
- usually unique. A form is reduced if z¢ in H is in the usual fundamental domain for
SL(2,Z). Every form is SL(2,Z) equivalent to some reduced form, and there is a bound
for the coeflicients of reduced forms in terms of the Hermite determinant.
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5.1 Definition of the Hermite Determinant

Take a form f € R[z;,z2] of degree k with roots (u;;v;) € P1(C). Then:
f = AH(Vz'fL'l — /,Lj.Z'Q)

for some A € C*. For t; € R* define ¢ = go(?) by:

k
p = Zt?(’/ﬂl — piz2)(Piw1 — fiT2)

i=1

This is a real quadratic form, and real values of z1,z2 with (z1,22) # (0,0) give positive
values of . So ¢ is a positive definite quadratic form for all ¢;. Let § be its determinant.
Le. if o = Px? — 2Qx122 + Rx2 then § = PR — Q2.

For a fixed set of representatives u;, v; for the roots of f define:

Al25k/2
W) = A0 -
(ITt:)
Definition 5.2 (Hermite Covariant) For our form f € R[z1,x2] and any z € C define:
o(f,7) = min lIJ(?) over all T s.t. p(z) =0
’ T 00 if o(z) =0 for all T

The use of the minimum ensures that O(f, z) is independent of the representatives for
the roots and so is a well defined function of f and 2. Since the quadratic form ¢ is always
real and positive definite it is often convenient to assume z € H.

Definition 5.3 (Hermite Determinant) For any form f € Rlz1,x2] :
0(f) = min6(f,z)

Definition 5.4 (Representative Point ) For any form f € R[z1,x2] o Representative
Point is any z € H such that O(f, z) = O(f).

5.5 Covariant Properties
Theorem 5.6 Let f € Rlxy,xz3] be homogeneous of order k. Let M € GL(2,R) have

determinant A. Then:
O(f o M, 2) = |A*O(f, M2)

a b

Write f, @, v, u be as above. Let M = ( c ) € GL(2,R) with determinant A. Define:

d

fl = foM

¢ = poM
Vo' o= av; — epg, —by; + dp;

We have:
o= Al Wiz — pixs)
k

o = >t Vim — pwe) (T — )
i=1
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and the discriminant ¢’ of ¢’ satisfies:
8§ = |A]%6
If we choose v}, p1; to represent the roots of f'. This gives:

o'(z) = o(Mz)
UML) = AR T)

The result follows.

Corollary 5.7 If f' = f o M for some M € GL(2,R) of determinant A. Then:
o(f') = |al*e(f)

5.8 Calculating the Hermite Determinant I

In Julia’s work [JulT7], he gives formulae for the representative point and Hermite deter-
minant of all real biquadratic forms with distinct roots all of which are finite. We quote
his results for finding the representative point.

If the signature of a real form is (r, s) then it will have real roots a,...as and pairs
of complex conjugate roots f1, 31,. .. 3s,3s. Using the AM/GM inequality you can show
that the weight factors (#2) at complex conjugate roots causing the Hermite determinant
to be attained can be assumed to be equal. We therefore use the naming convention that
the weights assigned to the real roots are t2, .. .t2, and those assigned to the complex roots
are uf, ui,...u2 ul.

Proposition 5.9 (4 Real Roots) Suppose f has 4 distinct real roots a; all finite. Then
weights t;, which cause the Hermite determinant to be attained are given by:
2 = #
C (a1
where f' denotes the derivative of f with respect to x1.
Proof. See [Jul?, p 59].

Proposition 5.10 (2 Real Roots) Suppose f has 2 distinct real roots a; , as, both finite,
and a complex root B € H. Then weights t1,t2,u; which cause the Hermite determinant
to be attained are given by:

i = |5—?||042—ﬁ|2
ty = |B=Bllex — B
i = o —oallar — fBllaz — 4]

Proof. See [Jul?, p 57].

Proposition 5.11 (0 Real Roots) Suppose f has 2 distinct complex roots (1, 3> € H.
Then weights uy,us which cause the representative point to be attained are given by:

U% = |ﬁ2—ﬂ_2|
u% = |ﬂ1—51|

Proof. See [Jul?, p 48].
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5.12 Calculating the Hermite Determinant II

In this section we reference some results in a paper by Stoll/Cremona [SC00] which give
us additional tools for finding the representative point and calculating the Hermite deter-
minant.

Proposition 5.13 Suppose f is a real form of order k > 3 with distinct roots then its
representative point in H is unique.

Proof. Clearly we can assume the roots are finite. This is now [SC00, Prop 3.4].

Proposition 5.14 Suppose f = A[[,(viz1 — piz2) is a real form of order k > 3 with k
distinct roots. Let (t,u) € R x Ry. Thent + ui € H is the representative point iff:

i |vjul? _ ok
= it = P+ vjul? 2

Z|"””_ G _

vit — p;? + |vjul?

The associated t; are given up to a multiplicative constant by:

2 = |vjul?
’ vt — p;]? + |vjul?

Proof. When all the roots are finite this is [SC00, Prop 3.4]. When there is a root at oo
use a limiting process.

g.e.d

Proposition 5.15 Let f be as in Proposition 5.14. Define:-

S

F(t,u) = AP I (vt = wil? + lvjul?)

=1

This is well defined. Then t + ui € H is a representative point iff (t,u) is a minimizing
point (in R x Ry ) of the function:

F(t,u)
uF

(t,u) =

Moreover, the Hermite determinant O(f) is then:

o(f) = <E>kmin F(t,u)

2/) (tw uk

Proof. If the roots are all finite this is [SC00, Prop 3.5]. (Note: the definition of the
Hermite determinant in [SC00] is 2* bigger than ours - hence the extra factor (3)* here).
When there is a root at oo use a limiting process.

g.ed
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5.16 Application to Klein Forms

Theorem 5.17 The real Klein forms fs, fs, fj‘, fs all have representative point i. They
have Hermite determinant 575,243%, 2436 61255, Furthermore i is also:

o the location of the unique complex root of fy in H.
o the representative point of ’the’ form defined by the 4 complex roots of fi‘
o the representative point of ‘the’ form defined by the 4 real roots of fs

This theorem will be proved in the following sections. Assuming the truth of the
theorem we get the following corollaries.

Corollary 5.18 All real f € C(r,d) have the same Hermite determinant. Its value is
given by:
Class | O(f)
C(3,d) | 253°%]d?/3
C(4,d) | 283°|d|
C(5,d) | 22431855|d|?

Proof. Proof. If f € C(r,d) N R[z;,z>] then by the results of section 4.10, +f = foM
where M € GL(2,R) and f = f3, fa, £, f5 depending on which of the cases we are in. By
Corollary 5.7 and the results of section 2.5

o(f) = |det(dM)*0(f)
det(M)° = B,ld]

The result follows.

g.e.d

Corollary 5.19 The representative point of any f € C(r,d) can be found as follows:
Case Method
r=3 Apply Julia’s formula (Prop 5.10)
r=4,d >0 | Its the unique complex root in H
r=4,d <0 | Construct a form from its 4 complex roots then
get its representative point using Prop 5.11
r=>5 Construct a form from its 4 real roots then
get its representative point using Prop 5.9

Proof. If f € C(r,d)NR[zy,z2] then +£f = fo M where M € GL(2,R) and f = fa, fu, fF, f5
depending on which of the 4 cases we are in. The covariant properties of the representative
point under GL(2,R) transformations means that the claims are inherited from the extra
properties of f quoted in Theorem 5.17

g.e.d

5.20 Proof of Theorem 5.17

The Tetrahedron Applying Proposition 5.10, we find that f3 has representative point
i. Applying now Proposition 5.15 gives that its Hermite determinant is 576.
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The Icosahedron We now use the Poincaré Disc model of the hyperbolic plane. (in-
tuitively we go to +i0o and look at the riemann sphere side on). Rotating the disc thru «
corresponds to an SL(2,R) action on H.

This permutes the roots of fs in their totality, as well as the 4 real roots lying on the
boundary of the disc.

By Proposition 5.13 the representative point of a form with distinct roots of order > 3
is unique, so it must be a fixed point of this action. Therefore the center of the disc is the
representative point of both f5 and the form constructed from its 4 real roots.

The center of the disc corresponds on H to i. The roots of f5 are 0, cc and r;e/ where
€ is a primitive 5th root of unity and:

_ —1++V5
- =

145
2

T1 T2

We can now apply prop 5.15 to give:

B 12 12
o = () of+ 10+ 1 =6

The Octahedron We again use the Poincaré Disc model of the hyperbolic plane. For
both f; and fj rotating the disc thru 7 corresponds to an SL(2,R) action on H

This permutes the roots of f in their totality, as well as the real roots lying on the
boundary of the disc.

By Proposition 5.13 the representative point of a form with distinct roots of order > 3
is unique, so it must be a fixed point of the action. Therefore the center of the disc is the
representative point of both fs and f;“, as well as the form defined by the 4 complex roots
of f#. It is also the location of the unique complex root of f in the upper half plane.

The center of the disc corresponds on H to i. Both fi, ﬁ have roots at 0,00 and 4
roots on the circle {|z| = 1}. We now apply prop 5.15 to get:

6

5.21 Bounding the Coefficients

Both Julia [Jul7] and Stoll/Cremona [SC00] give bounds on the coefficients of reduced
forms in terms of the Hermite determinant.

In this section I produce my own bound on the products |a;a;|. For my application, it
is stronger than anything in the 2 referenced papers. This section is devoted to proving
the following:

Theorem 5.22 Suppose

o (Y gkt
f= Z ; JaT T
i=1

is a real form of order k. Let z € H and write z = x +iy. Then:

|2r

ar? <
larl” < o

This will be proved in the next section. Assuming it is true we get the following
corollaries:

O(f,2) for all v
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Theorem 5.23 We say that a form is Hermite reduced if its representative point is in
the usual fundamental domain for SL(2,7). Suppose f as in Theorem 5.22 is Hermite

reduced, then:
L\
laras| < (W) o(f) whenever r +s < k

Proof. This follows from the fact that y > @ in the fundamental domain.

5.23.1 Proof of Theorem 5.22

q.e.d

Set @ = O(f, z). Choose (u;,v;) to represent the roots in such a way that f = [[(v;z1 —

1iz2). By the definition of © there is 6 > 0 and ¢; > 0 s.t.:

f = \g;? H(tz’Vz'fL'l — tij1iT2)
with :
¢ = Pz?—-2Qx,z5 + Ra3
where

P=> 8w’ Q=Y t:(wvi+pivi), R=Y t|v|”

(5)

a positive definite quadratic form of determinant § = PR — Q? which has z as a root.

Writing 2z = x + ¢y this means:-
Q=zP, R=P|z>, §=P%?
Define b;, ¢; € C by:
VPb; = Witi, VRe; = —vit;

Then
Sl = D el = 1
We have :
ar = VOY,E,

where

. \/ﬁkfr\/ﬁr _ Pk

’ 54 yk/?

= = (’:) ' stcsl

#S=k

Where S is a variable denoting a set of distinct integers in [1, k], S’ denote the complement

of S'in [1, k], and

bs =[] bs

i€S

The theorem now follows from Lemma, 5.24
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5.23.2 A nice Inequality
Lemma 5.24 Suppose b;,¢; € C with 3¢ |b;]> = S2¥ |ei|2 = 1 then:

k
k 1)?
|#§Tb5051| : ( r ) (E)

Proof. Wlog b;,c; are real and non negative. By the Cauchy Schwartz inequality

([BB90][p9)) :
(o) +(59)52)
S S S

By the generalized AM/GM Inequality ([BB90][p15, exercise 22]):

< () (3
ge = (1))

Combining these inequalities gives the result.

IN

6 The Algorithm for X2+ Y3 +dZ" =0

This section presents the explicit algorithm. Let » € {3,4,5} and d a non-zero integer.
Consider the diophantine equation:

X24+Y34dZ"=0

An algorithm to produce a finite set of Z[z1,z2] solutions such that all relatively prime
integer solutions occur by specializing the parameters (z1,22) in one of these parameteri-
zations to integers is:

ALGORITHM (X2 4+ Y3 +dzZ" =0)
INPUT (r,d)
Produce a complete list of Hermite reduced f € C(r,d) N X, (section 6.1)
Reduce the list down to a set of GL(2,Z) inequivalent forms (section 6.4)
Remove forms not specializing to rel.prime integers (section 6.8)
OUTPUT(f1, f2,--- fn)
STOP

We arrive at a finite set of forms: fi, f2... fn. A finite set of solutions in Z [z, 22] with
the claimed properties is given by:

X =*t(f)/2, Yi=H(f:), Zi=f;

By Theorem 3.5, this list is optimum: No f; can be removed, and any other list includes
a form GL(2,Z) equivalent to f;.
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If you do not like the £+ you should add f;(z1,z2)* := fi(x1, —22) to the list for every
fi whose GL(2,Z) equivalence class splits into 2 SL(2,7Z) classes. Section 6.6 shows how
to identify such forms. The larger list fi, fo... f,, gives a finite set of solutions:

By Theorem 3.5, this list is optimum: No f; can be removed, and any other list includes
a form SL(2,Z) equivalent to f;.

6.1 Listing Hermite Reduced forms

For a given r € {3,4,5} and non zero integer d we show how to find all Hermite reduced
forms in C(r,d) N X,,.

Theorem 6.2 If we restrict to Hermite reduced forms inside C(r,d) N R[z1,z2] we can
suppose that |aras| satisfy :

max{|aqas| | 7+ s < k} < B?

where the bound B is given by:
Class | B

C(3,d) | 2v/3|d|'/3

C(4,d) | 164/]d]|

C(5,d) | 1600+/5|d| ~ 3578|d|
In particular |a;| < B for all i < k.

Proof. The bounds are gotten applying Theorem 5.23 to the Hermite determinant calcu-
lations listed in Corollary 5.18.

g.e.d

If ag # 0 then the coefficients are totally determined by the relations given in section 3.1
once a1, as, ag are given. ag can have at most 2 possible values once ag, az, as are given. The
values a3 are gotten by finding the possible values of X,Y, Z when the parameterization
would be specialized at (1,0).

The following algorithm outputs all f € C(r,d) N X,.[z1,z2] whose coefficients satisfy
the bounds of the theorem with ag # 0:

ALGORITHM( Bounded Solutions, ag # 0)
INPUT (r,d)
Calculate B from table above
FOR ag,a1,as € Z with |a,| < B,ag 75 0 DO
Z = ag, Y :=apaz — af
FOR the at most 2 integers X := £v/—-Y3 —dZ™ DO
Determine a3 from aas — 3apaiaz + 2a3 = 2X
The remaining a4, .. .ay are determined from
the relations in section 3.1

IF all of 0, are integers
AND the a; satisfy the bounds of Theorem 6.2
OUTPUT the associated parameterization
END-IF
END-FOR
END-FOR
STOP
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If ap = 0 then a; # 0 and the coefficients are totally determined by the relations given
in section 3.1 once a1, as are given.

ALGORITHM( Bounded Solutions, ag = 0)
INPUT (r,d)
Calculate B from table above
FOR ap,a1,a2 € Z with |a,| < B,ay =0DO
The remaining as, .. .ay are determined from
the relations in section 3.1
IF all of 2, are integers
AND the a; satisfy the bounds of Theorem 6.2
OUTPUT the associated parameterization
END-IF
END-FOR
STOP

Running these 2 algorithms produces exactly the set of f € C(r,d) N X,[21, 23] whose
coeflicients satisfy the bounds in the table above. By the theorem this includes all Hermite
reduced f € C(r,d) N X,[z1,z2]. Using corollary 5.19, we now calculate the representative
point of each form. We discard forms for which the point is not in the fundamental domain.

Remark 6.3 (Implementation )

e For practical reasons (size of list) it is wise to also discard forms if ged(Q,) # 1.
By Proposition 2.18, we have f,H(f) € Z[Q.)[x1,22]. These parameterizations can
never specialize to relatively prime XY, Z.

o We can speed up everything by a factor 2 by only taking a1 > 0 in the algorithms,
and changing the output statement to "OUTPUT f(x1,x2) and f(x1,—x2)”. The
representative point of these forms differ by a reflection in the y-axis so they are both
or neither reduced. The even coefficients are the same, their odd coefficients differ
m sign.

o This is the computationally expensive part of the algorithm. My C program running in
a 350 Mhz Pentium II took 6 hours to produce the list associated with the icosahedral
equation X2 +Y?3 + 75 = 0.

6.4 Identifying GL(2,Z) equivalent forms

We show how to take a list of Hermite reduced forms, and reduce the list to a set of
GL(2,Z) inequivalent forms.

GL(2,Z) acts on C — R. Note that conjugation acts freely on C — R and commutes
with the GL(2,Z) action. Since H = (C — R)/ < conjugation > it follows that GL(2,Z)
acts on H The GL(2,Z) map z — —2z becomes x + iy — —x + iy on H.

A fundamental domain for GL(2,Z) is given by

1
D i={z=z+iy||z[>1,-5 <z <0}

Every z € H is GL(2,Z) equivalent to a unique z € D~. We say that a form F is GL(2,7Z)
reduced if z(F) € D~. We throw away all but the GL(2,Z) reduced forms.

Furthermore 2 reduced forms Fi, F> are GL(2,Z) equivalent iff z(Fy) = 2(F2) =: z and
Fy = F5 0 g for some g € Stab(z) := Stab(z, GL(2,Z))/ £ I. The following lemma gives us
a definite test of which forms are equivalent.
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Lemma 6.5 Let i = /-1,w = — + z? Suppose z = x + iy € D~. Stab(z) is trivial
on the interior of D~. On the boundary of D~ it is the finite group given in the table below:

z | Stab(z) #Stab(z) | z #i,w | Stab(z) | #Stab(z)
w | <ST,US > 6 =0 <U> 2
i | <SU> 4 z2|=1 | <US> 2
z=-1|<U> 2
where:

0 1 11 1 0
=(Lo)m=(i)e=(o 2 )

6.6 When f is SL(2,Z) equivalent to f(z;,—x2)

Only listing GL(2,Z) representatives keeps our lists as short as possible. However by
Theorem 3.5, every f gives us potentially two parameterizations £1t(f), H(f), f. These
correspond to one or two distinct parameterization depending on whether the GL(2,7)
class of f splits into one or two SL(2,Z) classes. This can also be recognized using the
representative point.

Proposition 6.7 Let a GL(2,7Z) class be represented by f with representative point in
D~. Let z = x+iy be that point. f remains a single SL(2,7Z) class iff z is on the boundary
of D~ and:

(z=w) f(s+t,—t)= f(s,t),f(=t,s+1t) or f(s+1t,—s)
(z=1) f(z,y) = f(y,x) or the odd coefficients of f are zero.
(z #1,w)

o =0 and the odd coefficients of f are zero.

o orlz[ =1 and f(z,y) = f(y, )
e orz=—1 and f(s+t,—t) = f(s,t)

Proof. If it is also an SL(2,Z) class, there must be an M € SL(2,Z) so that f o M =
f(z1,—z2). This must map z = z + iy — —x + 4y. The proposition enumerates the
possibilities.

q.e.d

6.8 Checking we can specialize to rel.prime integers

Now we check that a given parameterization specializes somewhere to relatively prime
integers. If not we can throw it away. We define Res to be the resultant of 2 forms as in
[Lag5, IX].

Proposition 6.9 Let f1, fo € Z[x1,%2] be two forms of orders ki, ks and M € GL(2,C)
a matriz of determinant §. Then:

Res(fio M, fro M) = 6% Res(fi1, fo)
See [La95, IX, Cor 3.14].

Corollary 6.10 Res(f, H(f)) is an invariant of the class C(r,d). For integer d, Res(f, H(f)) €
Z and for primes p:

p|Res(f, H(f)) <= pINd
where for r = 3,4,5, N = 12,24,60 as usual.
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Proof. This follows by calculating Res(f, H(f)) when f = fs, f4, f5, then applying Propo-
sition 2.9 and Proposition 6.9.

g.e.d

Proposition 6.11 Let f1, fo € Z[z1,x2] be two forms of orders ky,kz. Let R := Res(f1, f2) €
Z be their resultant. Let k = max(ki,k2). Then there are g; ; € Z[x1,%2] such that:

JUfR = qgafi+qiaf
28R 92,11+ g22f2

Proof. By Proposition 6.9:

Res(fi(21,22), fa(21,22)) = £Res(f1 (22, 21), f2(22,21))
The result now follows from [La95, IX, Theorem 3.8].

q.ed

We can now check whether a parameterization specializes anywhere to relatively prime
integers using. The following shows that we only have to test via a finite set of parameters

(s, )+
Corollary 6.12 Fizr € {3,4,5} and d € Zyo. Take f € X, NC(r,d) and s,t € Z X 7.
Z = [(s,t), Y =H(f)(s,1)
Let so = s( mod dN) and to = t( mod dN)
Zo = f(s0,t0), Yo = H(f)(s0,%0)
then
ged(X,Y) =1 < ged(s,t) = ged(Xo,Yp) =1

Proof. If gcd(s,t) = 1, then by Proposition 6.11 the ged of X, Y divides Res(f, H(f)). By
cor 6.10 this only contains primes dividing Nd, so it is 1 iff gcd(Xo, Yo) = 1. Conversely if
plged(s, t), some prime, then p|ged(X,Y"). Thisis because f, H(f) € Z[x1,z2] by prop 2.18.

g.e.d

7 Generalizing to Az? + By? + Cz" =0

Proposition 7.1 We fizr € {3,4,5} and a non zero integer d and a finite set of primes
S. There is a finite set of solutions in Zg[z1,x2] to :

P+ +d” = 0 (6)

such that
o their integer specializations include all integer solutions with gcd(X,Y,Z) € Z%

e their Zg specializations include all Zg solutions with gcd(X,Y, Z) € Z%.
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Proof. Fix r € {3,4,5} and let N = 12,24,60 as usual. Fix a parameterization x =
(%t(f),H(f),f) For any A € C:

x(5:t) = (X,Y,2) < x(\s,\t) = AWN2X, \N3y, \N/m) (7)

The claim about Zg solutions now follows from the claim about Z solutions. We now
assume X,Y,Z are Z-integers. By (7) we we can also assume that the valuation of
ged(X?,Y3, Z™) at any prime p is less than N.

Take a prime p|ged(X,Y). If p5|dZ" then :

X =pX', Y=pY' dZ=d{p'Z)
for some s > 0 and some X', Y’ Z' d' integers satisfying:
X?4+Y? +d2" =0 (8)
In this way we can reduce to a finite set of equations in which we can assume that:
plged(X,Y) = 1,(Z7) <5

For r = 5 this is equivalent to assuming ged(X,Y, Z) = 1. Forr = 3,4 itisp|ged(X,Y) =
vp(Z) <1.

The proofs go through producing f € Zs[z1,z2] with coeflicients of both bounded
absolute value and bounded denominator. (if » = 5, f € Z[z1, x2]). Hermite reduction can
therefore still be used to produce the parameterizations.

g.ed

Theorem 7.2 Fizr € {3,4,5}. Fiz a finite set of primes S. Fix A, B € Z§ and non zero
C € Zg. Then: There is a finite set of solutions in Zg[z1,x2] to :

Az’ + By*+C2" = 0 9)
such that

o their integer specializations include all integer solutions with gcd(X,Y,Z) € Z%

o their Zg specializations include all Zg solutions with gcd(X,Y, Z) € 7.
Proof. Wlog A, B,C € Z. Multiply the diophantine equation by A3B? to give:
(A’Bz)? + (ABy)® + (A3B?C)2" = 0

Since A?B, AB € Z?% the theorem follows from Proposition 7.1.

A Parameterizing X2+ Y3+ 2"

This section gives complete parameterizations to X2 +Y 34 Z" To keep the lists as short as
possible, we identify the parameterizations identifying +X. If the corresponding GL(2,Z)
class of f breaks into two SL(2,Z) classes these are really 2 distinct parameterizations.

The case r = 3 was already done by Mordell in [Mo69][ch 25] using a syzygy from
invariant theory. The cases r = 4 were done by Zagier and quoted in [FB98][appendix A].
The r = 5 case is new.
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A.1 Complete Parameterization of X2 +Y3 4+ 73 =0

Using the algorithm, we get a complete list of parameterizations:

f Representative Point
Al [0,1,0,0,—4] V2i
A2 [-1,0,0,2,0] V2i
Bl [-2,-1,0,—1,-2] —0.268 + 0.963i
B2 [-1,1,1,1,-1] —0.268 + 0.963i
c1  [-1,0,-1,0,3] V/3i
c2 [1,0,—1,0,—-3] V/3i

In Mordell’s book [Mo69] he further shortens the list by assuming that Y is odd.
This means that A1, Bl can be omitted. However, Mordell gives 5 parameterizations:
A2,B2,C1,C2 and f = [-1,—2,—4,—6,0] According to my theory the 5th should be
superfluous. It is. I calculate its representative point to be —2 + 1/2i. This means that
f(x1 — 2x2,22) must be Al or A2. It is A2!

Beukers [FB98][p 78] omits parameterizations gotten by interchanging Y and Z. For
f € C(3,1) we have H?(f) = f, so that interchanging Y <« Z is the same as swapping
between f < H(f). The naming has been chosen so that A2 = H(Al) e.t.c. Therefore
a full set of parameterizations in this sense is given by A1, B1,C1 - the same number as
given in that paper.

A.2 Complete Parameterization of X2+ Y3+ 7% =0

These two equations were solved by Zagier, see Beukers. To keep the lists short we identify
+X and £Z. This means every parameterization in the list is shorthand for +f(z1, £x3).
The first £ is the +Z.

A21 X?+Y3*+2Z'=0

Now applying the algorithm gives 4 parameterizations:

f Representative Point
£ [0,1,0,0,0,-12,0] 1.86i
f2 [0,3,0,0,0,—4,0] 1.07i
f2 [-1,0,1,0,3,0,-27] 1.73i
fi [-3,-4,-1,0,1,4,3]  —0.268 + 0.964i

In Beukers, we also have 4 parameterizations: fi, f2, f3 and a 4th one involving denomi-
nators

A2.2 X?24+VY3-2Z4=0

Now applying the algorithm gives 7 parameterizations:

f Representative Point

i [0,1,0,0,0,12,0] 1.86i

f2 [0,3,0,0,0,4,0] 1.074

£z [-1,0,0,2,0,0,32] 1.78

f1 [=1,0,-1,0,3,0,27] 1.73i

fs [-1,1,1,1,-1,5,17]  —0.158 + 1.50i

fo [-5,-1,1,3,3,3,9] —0.436 + 1.013

fo o [=7,-1,2,4,4,4,8] w



Beukers gives 6 parameterizations: fi,... fg. This means that the list there is incomplete,
since the minimality property proven in section 6 shows that f; cannot be dropped!

A.3 Complete Parameterization of X% + Y3 + Z°

The 2, 3,5 case is new. Beukers was able to produce parameterizations, though his method
was unable to produce a complete set. If we identify £X, the algorithm produces the
following complete set:

fi = [0,1,0,0,0,0,—144/7,0,0,0,0,—20736,0]
f» = [~1,0,0,—2,0,0,80/7,0,0,640,0,0, —102400]
fs = [-1,0,—1,0,3,0,45/7,0,135,0, —2025,0, —91125]
fi = [1,0,—1,0,—3,0,45/7,0,—135,0, —2025,0,91125]
fs = [-1,1,1,1,-1,5,—25/7,—35,—65, —215,1025, — 7975, —57025]
fo = [3,1,—2,0,—4,—4,24/7,16, —80, —48, —928, —2176, 27072
fr = [-10,1,4,7,2,5,80/7,—5, —50, —215, —100, —625, —10150]
fs = [-19,—5,—8,—2,8,8,80/7,16,64,64, —256, —640, —5632]
fo = [=7,-22,—13,—6,—3,—6,—207/7,—54,—63, —54, 27, 1242, 4293
fio = [-25,0,0,—10,0,0,80/7,0,0,128,0,0, —4096]
fir = [6,—-31,-32,—-24,-16,—8,—144/7, —64, —128, —192, —256, 256, 3072
fiz = [—64,—32,—32,—32, —16,8,248/7,64, 124, 262, 374,122, —2353)
fis = [—64,—64,—32 —16,—16,—32, —424/7, —76, —68, —28, 134, 859, 2207

fia [-25, 50, —25, —10, —5, —10, —235,7, —50, —49, —34, 31,614, 1763]
fis [55,29,—7,—3,—9, —15,—81/7,9, -9, —27, —135, —459, 567]
fie = [-81,—27,-27,-27,-9,9,171/7,33,63,141,149, —67, —1657]

fir = [-125,0,-25,0,15,0,45/7,0,27,0,—81,0, —729]

fis = [125,0,—25,0,—15,0,45/7,0,—27,0,—81,0, 729]

fie = [-162,-27,0,27,18,9,108/7,15,6,—51, 88, —93, —710]

f20 = [0,81,0,0,0,0,—144/7,0,0,0,0, —256, 0]

foo = [—185,-12,31,44,27,20,157/7,12, —17, —76, —105, —148, —701]
for = [100,125,50,15,0,—15,—270/7, —45, —36, —27, —54, —297, —648]
fos = [192,32,-32,0,—16,—8,24/7,8,—20, —6, —58, —68, 423

for = [—395,—153,—92,—26,24,40,304/7,48,64,64,0, —128, —512]

fos = [—537,—205,—133,—123, —89, —41,45/7,41, 71,123,187, 205, —57]
foe = [359,141,—1,—21,—33,—39,—207/7, -9, —9, —27, —81, —189, —81]
for = [295,—17,—55,—25,—25,—5,31/7, =5, —25, —25, —55, —17, 295]

Just in case anyone was wondering, the associated Representative points z(f) = z + 1y
are:-
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l2(f)] z z + iy
fi 2701 0 2.701
fs 2615 0 2.615i
f5 2.590 0 2.5904
fi o 2.590 0 2.5904

fs 2464 —0.06962 —0.06962 + 2.463i
fo 2142 —0.03610 —0.03610 + 2.1415
fr 1765 —0.2189 —0.2189 + 1.752i
fs 1.603 —0.2272 —0.2272+ 1.586i
fo 1530 —0.3756 —0.3756 + 1.483i
fio 1.529 0 1.529;

fir 1413 —0.4664 —0.4664 4 1.334i
fiz 1.388 —0.5000 —0.5000 + 1.295i
fis 1.316 —0.4652 —0.4652+ 1.231i
fia 1313 —0.3451 —0.3451 + 1.266i
fis 1298 —0.1409 —0.1409 + 1.291i
fie 1295 —0.3560 —0.3560 + 1.245i

fir 1158 0 1.158i
fis  1.158 0 1.158i
fio 1135 —0.1915 —0.19154+ 1.119i
foo 1.121 0 1.1214

for 1111 —0.2856 —0.2856 4+ 1.073i

for 1106 —0.3119 —0.3119+ 1.061i

fos 1.071 —0.01805 —0.01805 + 1.070i
fosr 1.022 —0.3479 —0.3479 + 0.9612i
fos 1.000 —0.4131 —0.4131+ 0.9106i
fo6 1.000 —0.2619 —0.2619 + 0.9650i
for 1.000 —0.1459 —0.1459 + 0.9893i

Using the techniques of section 6.6, we get that the GL(2, Z) classes of f3, f4, f17, f18, fo7
are also SL(2,7Z) classes, otherwise they become 2 SL(2,Z) classes. This means that the
above list becomes 49 parameterizations if we do not identify £X.
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