This version is [up to minor typo corrections] the extended abstract submitted to FPSAC’02 (12/15/01).
LATTICE PATHS WITH AN INFINITE SET OF JUMPS

CYRIL BANDERIER AND DONATELLA MERLINI

ABSTRACT. First, this article gives a quick survey of what is known and can be done for the
enumeration of walks on N with a finite set of jumps (via language theory, Brownian motion,
generating functions and complex analysis or Riordan arrays). Then, we consider a case for
which a language theoretical approach fails: walks with an infinite set of jumps; however, their
generating function can be made explicit and the asymptotics is obtained (via the kernel method
and singularity analysis). We give numerous examples of such walks related to combinatorics
or theoretical computer science. Finally, we present several classes of open problems (for these
rewriting rules over an infinite alphabet) related to algebraicity of associated bivariate generating
functions.

RisuME. Cet article offre dans un premier temps un survol des propriétés énumératives et asymp-
totiques des marches sur N avec un nombre fini de sauts (pour lesquelles on peut utiliser la théorie
des langages, du mouvement brownien, des tableaux de Riordan, ou encore les séries génératrices
en combinaison avec 1’analyse complexe). Nous considérons ensuite des marches avec un nombre
infini de sauts, pour lesquelles il n’est plus possible d’utiliser des grammaires algébriques ; cepen-
dant, ces regles de récriture sur un alphabet infini offrent une surprenante structure. On peut
expliciter leur série génératrice (via la méthode du noyau) et faire une étude asymptotique (via
l’analyse de singularité). Nous illustrons ’intéret de telles marches en combinatoire et informa-
tique théorique par de nombreux exemples. Nous finissons par quelques problémes ouverts reliés
a la rationalité, ’algébricité des séries génératrices bivariées associées et présentons également
quelques cas de modeles bidimensionnels résolubles.

1. WALKS ON N WITH A FINITE SET OF JUMPS

1.1. Lattice paths and generating trees. A considerable number of problems from computer
science deals with a sum of independent identical distributed random variables ¥,, = X; + X5 +
-+-+ X, (where each of the X;’s assumes integer values). We will consider here the following model
of random walks: the walk starts (at time 0) from a point Xy of Z and at time n, one makes a jump
X,, € Z; so the new position is given by the recurrence ¥, = ¥,,_; + X, where, when ¥,,_; = k, the
X,,’s are constrained to belong to a fixed set P, (that is, the possible jumps depend on the position
of the walk).

We considerer in this section the case of walks homogeneous in space, i.e., all the sets P’s are
equal to a fixed set P (the simplest interesting case being P = {—1,+1}). We call them “walks
on Z with a finite set of jumps”. In the next section, we consider “walks on Z with a infinite set
of jumps”, which are not space-homogeneous. In both cases, the walks are homogeneous in time.
When the positions 3,,’s are constrained to be nonnegative, we talk about “walks on N”.

The probabilistic model under consideration here is the uniform distribution on all paths of length
n (the combinatorial approach that we present hereafter can also easily deal with a Bernoulli model
for the distribution of the jumps in Py,).

In combinatorics, it is classical to represent a particular walk as a path in a two dimensional lattice.
Thus the drawing corresponds to the walk (of length n) linking the points ((0, %), (1, 1), ..., (n, Z,)).
It is also convenient to represent all the walks of length < n as a tree of height n, where the root
(at level 0 by convention) is labeled with the starting point of the walks and where the label of each
node at level n encodes a possible position of the walk (see Figure 1).

We note wy, ; the number of walks on N of length n going from 0 to k (or, equivalently, the
number of nodes with label k at level n in the tree) and we want to find the bivariate generating
function

W(z,u) = an(u)z” = Z wy put 2™
n>0 kEZ,n>0
1

2 C. BANDERIER AND D. MERLINI

F1GURE 1. The generating tree of the walk on N with jumps P = {+1, —1} starting
in 0 (and up to length n = 4). Each branch corresponds to a path. The branch
(0,1,2,1,2) corresponds to the path drawn on the lattice.

where u encodes the final altitude of the walk (the label in the tree), z the length of the walk (the
level in the tree), and where w,(u) is a Laurent polynomial (that is, a polynomial with a finite
number of monomials of negative degree).

If the walk is constrained to remain nonnegative (or equivalently if negative labels in the tree are
not allowed), we consider similarly the bivariate generating function

F(z,u) = Z fu(u)z" = Z fn,kukzn .

n>0 kEN,n>0

Let Wi(2) := [u¥]W(z,u) be the generating function of walks ending at altitude k. Similarly, one
sets Fy(z) := [uF]F(z,u).

We consider here four classes of walks: walks (walks on Z ending anywhere), bridges (walks on
Z ending in 0), excursions (walks on N ending in 0), and meanders (walks on N anywhere). The
corresponding generating functions are W(z) = W(z, 1), B(z) = Wy(z) = W(z,0), E(z) = Fy(2) =
F(z,0), and M(z) = F(z,1).

Generating tree and rewriting rule.

The concept of generating trees has been used from various points of view and has been introduced
in the literature by Chung, Graham, Hoggatt and Kleiman [16] to examine the reduced Baxter
permutations. This technique has been successively applied to other classes of permutations and
the main references on the subject are due to West [19, 48, 49|, then followed by the Florentine
school [7, 9, 24, 35, 38, 41, 40] and other authors [3, 17, 26]. A generating tree is a rooted labeled
tree with the property that if v; and vy are any two nodes with the same label then, for each label
¢, v; and vs have exactly the same number of children with label £. To specify a generating tree it
therefore suffices to specify: 1) the label of the root; 2) a set of rules explaining how to derive from
the label of a parent the labels of all of its children. Points 1) and 2) define what we call a rewriting
rule. For example, Figure 1 illustrates the upper part of the generating tree which corresponds to
the rewriting rule [(0), {(k) ~ (k — 1)(k + 1)}].

Riordan arrays We introduce now the concept of matriz associated to a generating tree: this is
an infinite matrix {dp, i }n,ren where d,, i, is the number of nodes at level n with label k + r, r being
the label of the root. For example, the matrix associated to the generating tree of the Figure 1 is
the following:

n/k|0 1 2 3 4
0 |1

1 (0 1

2 |1 0 1

310201
41203 01

Many such matrices can be studied from a Riordan array viewpoint. In fact, the concept of a
Riordan array provides a remarkable characterization of many lower triangular arrays that arise in
combinatorics and algorithm analysis. The theory has been introduced in the literature in 1991 by
Shapiro, Getu, Woan and Woodson [44] and then examined closely from a theoretical and practical

LATTICE PATHS WITH AN INFINITE SET OF JUMPS 3

viewpoint in [32, 37, 45]. This study has pointed out that Riordan arrays are a powerful tool in the
study of many counting problems.

A Riordan array is an infinite lower triangular array {d. i }n,ken, defined by a pair of formal
power series D = (d(z), h(z)), such that d(z)(zh(2)), i.e.:

A = [2")d(2) (zh(2))*, n,k>0.
From this definition we have d,, ; = 0 for k£ > n. The bivariate generating function for D is:

Z dp, cuk 2" d(z)

w0 1o uzh()

In what follows, we always assume that d(0) # 0; if we also have h(0) # 0 then the Riordan array
is said to be proper; in the proper-case the diagonal elements d,, ,, are different from zero for all
n € N. The most simple example is the Pascal triangle for which we have

<Z>_[n]l—z<1iz>k’

where we recognize the proper Riordan array with d(z) = h(z) = 1/(1—z). Proper Riordan arrays are
characterized [42, 45] by the existence of a sequence A = {a; };en with ag # 0, called the A-sequence,
such that every element d,, 1 41 can be expressed as a linear combination, with coeflicients in A,
of the elements in the preceding row, starting from the preceding column:

Ant1,k+1 = aodp i + a1dp g+1 + a2dp py2 + -

It can be proved that h(z) = A(zh(z)), A(z) being the generating function for A. For example,
for the Pascal triangle we have: A(z) = 1 + z and the previous relation reduces to the well-
known recurrence relation for binomial coefficients. The A-sequence doesn’t characterize completely
(d(z), h(z)) because d(z) is independent of A(z). But it can be proved that there exists a unique
sequence Z = {zp,21,22,...}, such that every element in column 0 can be expressed as a linear
combination of all the elements of the preceding row:

dnt1,0 = 20dno + 21dp1 + 22dp o + -+ -

This property has been recently studied in [32], where it is proved that d(z) = d(0)/(1—zZ(zh(z))),
Z(z) being the generating function for Z. Thus the triple (d(0), Z(z), A(z)) characterizes every
proper Riordan array.

1.2. Context-free grammars and pushdown automata. For people having an analytical affin-
ity, we want to sketch here what is a classsical viewpoint of people from language theory on these
problem of “lattice paths”.

It is well known that Dyck paths (excursions with jumps (—1,+1)), Motzkin paths (excursions
with jumps (—1,0,+1)), and Lukasiewicz walks (excursions with jumps —1 and a finite set of positive
jumps) can be generated by context-free grammars, and thus have an algebraic generating function.

For example, the classical (non-ambiguous) decomposition of a Dyck path into “either a empty
walk, either a walk beginning by +1 followed by a Dyck path, itself followed by —1 jump and then by
a last (eventually empty) Dyck path” gives the grammar D = € + 1D1D. In the realm of generating
functions, one substitutes each letter by a z (so that the number of words of length n is given by
the coefficient of 2™), and this grammar gives the following functional equation D(z) = 1+ 22D(z)?,
that can be solved to obtain an explicit formula for the generating function D(z):

1—+/1—422
222

It is also possible to derive a grammar for walks ending anywhere (that is, for the set F of prefixes
of Dyck paths): F = D + D1F (where the letter 1 represents an ascent in the path). This leads to
F(z,u) = D(z) + uzF(z,u)D(z) which gives F(z,u) = #2(:).

For a generalized Dyck language D (i.e., a language associated to excursions on N with a finite
set P of jumps), the grammar is not so easy to obtain but all the known derivations [27, 36, 18, 2]
lead to the same grammar:

D(z) = =1+22"+52" +142% + 282° + 0(2'7).

4 C. BANDERIER AND D. MERLINI

Theorem 1. The generalized Dyck languages are algebraic. They are generated by the following
context-free grammar:

D=¢+ Z (@)= OaD+Zm111(c ,d) EkRk,
Li= Ev(a):i aD + Zk:i+1 LrRi—i,
Rj = u(y=—yj UD + 2jy LuRoict

where v(a) is the size of the jump encoded by a and ¢ = —minwv(a) (resp. d = maxwv(a)).

Note that this grammar is “strongly connected” (that is, from each non terminal symbol one can
access to another non terminal symbol).

Corollary 1. The set F of prefizes of a generalized Dyck language (equivalently the “meanders” of
the walk) cannot be generated by a strongly connected context-free grammar.

Proof. What is called the DrmotafLalley Woods in [22] implies that a strongly connected context-
free grammar leads to asymptotics in \/T As the fact to be strongly connected is independent from
the drift of the walk, the results in Figure 2 (for meanders without drift) imply our assertion. O

From the grammar of Theorem 1, a Grobner basis or resultant computation gives the algebraic
equation satisfied by the generating function.

EXAMPLE 1. Transformation of the pushdown automata into a context-free grammar.The relation-
ship between context-free grammar and pushdown automata was studied by Chomsky [15] and
Schiitzenberger [43]. A pushdown automata (PDA, for short) is a finite-state machine augmented
with an external stack memory.

It is easy to define an PDA which recognizes a generalized Dyck language D: This PDA is made
up of a single state, the alphabet is the set of jumps (e.g., {2,1,1,2}) and the stack alphabet is {I}
(one counts in unary). Whenever one reads 2, one pops I from the stack; if one reads 1, one adds
I in the stack and so on. From this (see e.g. [46, Section 8.3]), one gets a context-free grammar
which generates D. The converse transformation can be done via Greibach normal forms. d

1.3. An related problem in probability theory: Brownian motion. For people having a
language theory affinity, we want to sketch here what is a classical viewpoint of people from proba-
bility theory on these problem of “random walks”: consider the set of walks of length n, divide the
lattice path representation of each walk by n in the z-direction and by /n in the y-direction, put
the uniform distribution on this set of walks. One has then a random variable B,,, when n tends to
infinity, this random variable converges to the classical Brownian motion (Bt):e[o,1] -

Conditioning the walk to end in 0 (resp. to be > 0, to be > 0 and to end in 0) gives a Brownian
bridge (resp. a Brownian meander, Brownian excursion). They are in a sense canonical asymptotic
representants of our discrete random walks. In probability theory, there is a huge literature giving
the limit laws for most of the parameters of these Brownian objects. Some of these parameters (such
as the theta distribution for the height [14, 10], the Airy distribution for the area [29]) still resist to
a combinatorial approach (excepted for some simple case like Dyck paths, or more generally walks
for which —1 is the only negative jump, this is what probabilists call left-continuous random walk).
However, combinatorics is very useful as it provides at least two fundamental results not accessible
to probability theory: exact enumeration and complete asymptotic expansions.

Indeed, probabilists cannot usually access, for some reasons intrinsic to their approach, to more
than the main term in the following complete asymptotic expansion:

fo=o—2 (14 i di

" T (2mn)3/2 £ i
where C, A and the a;’s are algebraic constants which can be computed via analytic combinatorics.
Unfortunately, for combinatorialists, this kind of complete asymptotic expansion is only accessible
when the model of random walks is very “regular” (both in time and space), whereas probability

theory can deals with much more irregularities.
This article shows what can be done for some regular model of walks with different kind of jumps.

LATTICE PATHS WITH AN INFINITE SET OF JUMPS 5

1.4. Kernel method and formula for the generating function. In fact, it is possible to say
much more than what the context-free grammar approach offers: analytic combinatorics shows that
the algebraic structure of the generating function depends entirely on the roots (converging in z = 0)
of 1 — zP(u) = 0, where P(u) the characterisgic polynomial associated to the walk:

(1) P(u)= Y puf =) u'.
k=—b i€P

This approach was used in [1, 2, 4]), and allows to make explicit the generating function and the
asymptotics of its coefficients in 7 steps:

. find a recurrence ! for f,(u);
. translate this recurrence into a functional equation (via generating functions);
. solve this functional equation (via the kernel method);
. express the generating function as a product A - B where A is “simple”;
. prove that only the factor A matters asymptotically (topology of the branches);
. prove that A has a square-root behavior (analysis of singularity);
. deduce the asymptotics of the number of walks (transfer lemma).
For example, for P = {—2,0,0,+1,+3},i.e. P(u) =u 2+ 2+ u + u>, one has:
L Furt(u) = {u2O}P(u) fulu) = P(u) fulw) — = Ju=fulu) — fu>Yu=>falu) ;
2. (1= 2P)F(z,u) =1—2u"'Fi(2) — 2u™2Fy(2) ;
3. We call 1 — zP(u) the kernel. It has 2 small branches ui(z) and us(z) (~ 0in z ~ 0). As
the right hand side of the previous equation can be considered (rewritten) as a polynomial in u
of degree 2, for which one knows the two roots (u; and wus), one can factorize it. This leads to
u(l —zP(u))F(z,u) = (u—up)(u — uz).
4. The simple factor is A = u — uy(z) and we refer to [4] for the steps 5, 6, 7.

Figure 2 gives a summary of the most notable results for these one-dimensional walks. To
answer to a question of Bousquet-Mélou, it is noteworthy that these results have some non trivial
applications on two-dimensional walks: using her results from [11], and then using asymptotic results
from [4], we can prove the non D-finiteness of some generating functions of walks on the slit plane.
EXAMPLE 2. Colored Motzkin paths. In [37], the authors consider the following colored Motzkin
walk: [(0),{(k) ~ (k— 1)7(k)?(k + 1)°}] and a variation, the “Shapiro-colored Motzkin paths” :
[{(0),{(0) ~ (0)?'(1)*, (k) ~ (k —1)7(k)?(k + 1)*}] for which the sets of colors available for the
horizontal jump depends on whether one is at altitude O or not.

N O UL W N~

They proved that the Riordan array associated to these walksis (1, A, Z) where A = («, 8,7, 0,0, . ..

Z = ($,7,0,0,...) for F(z,u) (meanders), Z, = (f,27,0,0,...) for W(z,u) (walks) in the case of
colored Motzkin walks; or Z = (f',7,0,0,...) for F(z,u), Z, = (§',2v,0,0,...) for W(z,u) in the
case of Shapiro-colored Motzkin walks.

Theorem 5 for finding the rewriting rule associated to a Riordan array gives:

[(r), {(k) ~ (k — 1)7(k)?(k + 1)®}] for Motzkin meanders,

[(r), {(r +1) ~ (r)?"(r +)P (r +2)%, (k) ~ (k — 1)7(k)?(k + 1)®}] for Motzkin walks,

[(r), {(r) ~ (r=1)7(r)?"(r+1), (k) ~ (k—1)"(k)®(k+1)*}] for Shapiro-colored Motzkin meanders,
(1, () ~ (r = 1Y@ (4 1), (1 + 1) ~ ()7 (r + 157 (r +2)2, (k) ~ (k— 1) (k)% (k +1)°}] for
Shapiro-colored Motzkin walks. (The label r root can be taken arbitrarily.)

More generally, for walks “almost homogeneous in space” (where one has a specific set P, of
jumps at the altitude m) it is possible to exhibit the generating function: the recurrence is of the
type foi1(u) = Py (w){u™} fn(u) + {u=°} P(u) f,(u) and the kernel method allows to solve it.

Note that this kernel method approach allows to mark a specific jump, to do it recursively would
allow to predict the number of jumps of a given type in order to perform uniform random generation.

Another variation, the “generalized Motzkin paths” (which include the classical Dyck, Motzkin,
Schroeder paths) studied by Sulanke in [47] are also accessible via the kernel method, upon a natural
generalization: to consider dependencies of higher Markovian order (see [5]).

Finally, note that the colored Motzkin walks correspond to the cases where one has also a natural
continued fraction representation of E(z) (see some old stuff like [21]). O

r
r

I To this effect, the notation {#<°}P(u) proves convenient and stands for the sum of the monomial with a negative
degree in a Laurent polynomial P(u).

6 C. BANDERIER AND D. MERLINI

ending anywhere ending at 0
unconstrained
(on Z) bridge (B)
Walk/path (W) ¢ u{ (Z)
1—2P(1) i=1 "
W, = P(1)" By ~ o T
2mn
/
/
/
constrained
(on N) meander (M) excursion (&)
NGVt O
M) = =5 1=I B =0 T
P)" P(r)" pP()"
My ~ or or ud P(1 E, ~e¢——=—
Mo \/Tl'_TL /"0 Zm Ho () 02)

F1GURE 2. The four types of paths: walks, bridges, meanders, and excursions.
The corresponding generating functions and the asymptotics are also given (7 is
such that P'(7) = 0. For meanders, there are 3 different asymptotics corresponding
to the cases P'(1) =0, P'(1) < 0, and P'(1) > 0. Details can be found in [4]).

EXAMPLE 3. Simple families of walks: Lukasiewicz paths and tree codes.

Consider generally a finite set P that contains —1 as single negative value. The corresponding
paths are known as Lukasiewicz paths. They could also be called “simple families of walks”, as
they are related to the “simple families of trees” via the correspondence described below. Set
¢(u) := uP(u), which is a polynomial (from Formula 1). There is only one small branch satisfying

(2) u1(2) = z¢(u1(2)),

1
Zp-1
degrees are constrained to lie in 14 P, this by virtue of a well-known correspondence [28, Chap. 11].

(Traverse the tree in preorder and output a step of d —1 when a node of outdegree d is encountered.)
In this way, it is seen that Equation (2) gives the GF of trees counted according to the number of
their nodes, an otherwise classical result [31]. By Lagrange inversion, the number of trees comprised
of n nodes is

and the GF of excursions is u1(z). Lukasiewicz paths of type P encode trees whose node

1
T, = - [Jow)",
where ¢ can be directly interpreted as the polynomial of the allowed node (out)degrees. d

2. WALKS ON Z WITH A INFINITE SET OF NEGATIVE JUMPS

Consider a sequence (e;(k));>—q (for a given integer a > 0) of polynomials assuming nonnegative
integers values then the walk with an infinite set of jumps under consideration here are of the
following kind:

@ 10{K) ~ @O BB (= DA ROk + @) B

where the exponent e;(k) is the multiplicity of the jumps —i when one is at position k.

LATTICE PATHS WITH AN INFINITE SET OF JUMPS 7

It may seem counter intuitive to write the e;(k)’s in this direction; the reason is that if one takes
for e;(k) an increasing sequence (e.g. e;(k) = ¢ + 1) that one uses as exponents from left to right,
then one gets a ordinary generating function with a radius of convergence 0 (as its coefficients f, (1)
grow faster than n!, which corresponds to the rule (k) ~ (k + 1)*), whereas we show hereafter that
the GF remains algebraic for a huge class of walks, if one writes the e;(k)’s from right to left. The
intuition is that one can put a huge multiplicity around (0), but not around (k).

If the sequence of polynomials (e;(k))i>—, is ultimately e;(k) = 0, then the situation covers the
case of walks with a finite set of jumps studied in the previous section. If the sequence is ultimately
e;(k) = 1, then this covers the case of “factorial rules” which are of great interests for the generation
of combinatorial objects [8] and for which it was proven in [3] that the associated generating function
is algebraic.

We still note f,, ;, the number of walks on N of length n going from 0 to k£ and we want to find
the bivariate generating function F(z,u) =Y, psq farufz"

As in the previous section, these random walks on N can equivalently be seen as lattice paths,
generating trees and also as Riordan arrays (when a = 1).

However, as the alphabet (the jumps) is now infinite, we want to emphasize the fact that there is
no more a language theory argument (related to pushdown automata, or equivalently to context-free
grammars) proving that the generating functions F'(z,u) of these walks are algebraic. The theory
of context-free grammars with an infinite set of rules and an infinite alphabet remains to be done...

It is also noteworthy that people from probability theory (who are used to see a Brownian motion
behind each random walk!) will not have a direct and simple intuition of the limit laws for this class
of walks, as the renormalization to the Brownian (which is well known when there is a finite set of
jumps) is not so clear in the case of an infinite set of jumps.

Fortunately, combinatorics allow us to exhibit the generating function of such a walk and complex
analysis allows to give the asymptotics of its coefficients.

Finally, note that the study of walks on Z with a infinite set of positive jumps is equivalent to
the problem under consideration here, by reversion of the time axis.

2.1. Rationality and algebraicity of classes of rewriting rules.
Theorem 2. For a constant B > 0, the rule
[(r), {(k) ~ ()@ (B)+ 2B (k) (k + 1) ... (k + a)*=}]

(where ey (k),...,ex—p(k) are polynomial in k, e;(k) =0 for 0 < i < k — B and e;(k) = e;, some
fized constants, for i <0) has a rational generating function F(z,u).

Sketch of proof. We illustrate the general case by the following example:
2 —
[(0), { (&) ~ (0)* (2** ' 3) (k) (k + 1) ... (k +3)°}].
As the multiplicity 3k — 1 is obtained by 9, f,(u®)/u (which gives 3f! (1) — f,(1) once instantiated
in v = 1), one has the following recurrence:
a1 (uw) = (142w +56%) f(w) + u (£ (1) + £,(1) +w?(3f,(1) = fa(1)) + u® fu(1).
This leads to a functional equation
(1 —2P(u)F(z,u) =1+ z(u® = 1)F(2,1) + 2(3u® = 1)F'(2,1) + 2F"(2,1)

taking the first 2 derivatives and instantiating in « = 1 gives a rational system of full rank, hence

(2222 -1122% —2)+u?(4802° —6022) +5282% + —250224+-312—1 O

F(z,u) is rational: F(z,u) = (T—2P(u))(87225—21222+30z—1)

Theorem 3. For a constant B > 0, the rule
[(7), {(k) ~ (0)*®) _(B)y*=8®B (B4 1).. (k—b—1)(k—b)...(k+a)}

(where ey (k),...,ex—p(k) are polynomial in k, e;(k) =1 for b <i < k — B and e;(k) = e;, some
fized constants, for i < b) has an algebraic generating function F(z,u).

8 C. BANDERIER AND D. MERLINI

Sketch of proof. When B = 0, r = 0 and ex(k) = 1, it corresponds to the theorem giving the
algebraicity of “factorial rules” in [3]. We illustrate the general case by the following example:

[(0), {(R) ~ (0)*" (2)*¥ 2(6)(7) ... (k = 5)(k — 4)*(k — 2)* (k) (k + 3)” (k + 23)}]

The recurrence is .
Farr(u) = (" + 302 + 14 2u® +) fi(u) = {u="} P(u) fu(u) + Y ti(w)0; fa(1),
this gives the functional equation -
(1 -2P(w)F(z,u)=1-—=2 Cz_:l ri(u)Fr(z) + z i:ti(u)(?iF(z, 1).
k=0 i=0

The 4 small roots of the kernel and the 5 equations obtained by taking the first 5 derivatives and
setting v = 1 gives a system of full rank with 9 equations with 9 unknown univariate generating
functions, which are thus all algebraic, and then one has a formula for F(z,u), involving the u;,
which implies its algebraicity. O

The “kernel method” has been part of the folklore of combinatorialists for some time and is
related to the what is known as “the quadratic method” in enumeration of planar maps [13]. Earlier
references (see [25] Ex. 2.2.1.11 for Dyck paths, [39, Sec. 15.4] for a pebbling game, [20] for a queuing
theory application) deals with the case of a functional equation of the form

K(z,u)F(z,u) = A(z,u) + B(z,u)G(z)

(with F, G the unknown functions), when there is only one small branch, u;, such that K (z,u;(2)) =
0. In that case, a single substitution does the job, and G(z) = —A(z,u1)/B(z,u1).

The kernel method in its more general version was developed in a few unpublished works by
Flajolet and Banderier [1, 2] and also in their study of lattice paths [4]. Sometimes, it is not
necessary to solve the system obtained by plugging the small branches (this observation is due to
Bousquet-Mélou and first appeared in [12] and also in [3]); this is unfortunately not the case for the
Theorem 3 in its full generality.

EXAMPLE 4. Tennis ball problem. Let s > 2 be an integer and consider the following problem
known as the s-tennis ball problem. At the first turn one is given balls numbered one through s.
One throws one of them out of the window onto the lawn. At the second turn balls numbered s + 1
through 2s are brought in and now one throws out on the lawn any of the 2s — 1 remained. Then
balls 2s + 1 through 3s are brought in and one throws out one of the 3s — 2 available balls. The
game continues for n turns. At this point, one picks up the n balls in the lawn and consider the
ordered sequence B = (by,ba,...,b,) with by < by < --- < b,. This sequence will be called a tennis
ball s-sequence and the first question is: how many tennis ball s-sequences of length n exist? The
second question is: what is the sum of all the balls in all the possible s-sequences of length n 7
Obviously, if we answer to both these questions, we also know the average sum of the balls in an
s-sequence of length n. The problem with s = 1 has been solved in [30] while the general case s > 1
has been studied in [33] from a generating function viewpoint. In fact, the authors consider an
infinite tree with root 0 and with s children. Each (n + 1)-length path in this tree corresponds to
an s-sequence of length n. This infinite tree is isomorphic to the generating tree with specification
[(1),{(k) ~Q)...(k+s—=2)(k+s—1)}].

By using this result the authors find that the number of tennis ball s-sequences of length n
are counted by T),4+1, where T,, = m (s:) (the number of s-ary trees with n-nodes) and the
cumulative sum of all the balls thrown onto the lawn in n turn is

I 1 ¢ sk (s(n+1—k)
E”_E(Sn +(38—1)n+25)Tn+1_§I§<k><n+1—k '

More generally, we intend to develop in a forthcoming work the combinatorial and asymptotic
analysis of the area under factorial walks (and of a related parameter: the internal weighted path
length of the associated generating tree). d

LATTICE PATHS WITH AN INFINITE SET OF JUMPS 9

2.2. Asymptotics.

Theorem 4. The number of walks of length n for the “factorial” rule
[(0),{(k) ~ (0)(1)...(k—=b—=1)(k=b) ... (k) ...(k +a)*~°}]
(where e;(k) = 1 for b < i < k and e;(k) = e;, some fized constants, for i < b) has the following

—n

asymptotics A\/‘;TT’ where A and p are algebraic constants depending on the finite set of jumps P.

Sketch of proof. The approach consists of the same seven steps as described in the previous section,
even if there are some complications due to the fact that the kernel is now of the kind 1 —z¢(u) where
¢(u) is not unimodal, but one can however establish than up now dominates and has a square-root
behavior. O

This theorem is the key for most of the statistical properties of this class of walks. We will give
the limit laws (local time, final altitude, number of factors...) in the full version of this article.

2.3. Constant exponents. Consider now the case where, for each i, the exponent e;(k) of the
rule (3) is a constant (that is, the polynomial in e;(k) does not depend on k, so one simply writes
e;). How far can we relate the behavior of the walk

(4) [(0), (k) ~ (0)¢k(1)*—1 ... (k—2)2(k = 1) (k) (k+ 1) ...(k+a)*°]

to the generating function of the exponents E(z) = Y. e;z" ?

Conjecture 1. If the generating function of the exponents E(z) is algebraic then the bivariate
generating function of the walk F(z,u) is algebraic.

N.B.: When a = 1, the Riordan arrays approach prove that F(z,u) is indeed algebraic when
E(z) is algebraic, thanks to the following theorem [35]:

Theorem 5. Letr €N, aj €N, a9 #0, by € Z, and b,j +aj1 >0,V5 >0 and k > r, and let
k+1—r
(5) [(r), {(k) ~ ()™ I (k+1-j)%}]
7j=0
be a generating tree specification. Then, the matriz associated to (5) is a proper Riordan array D
defined by the triple (d(0), A, Z), such that

d(O):l, A:(ao,al,ag,...), Z:(br+a1,br+1+a2,br+2+a3,...).

Vice versa, if D is a proper Riordan array defined by (d(0), A, Z) with d(0) = 1 and aj,z; € N, then
D is the matriz associated to the generating tree specification (5) with by4; = z; — ajy1.

EXAMPLE 5. Some simple exponents.
When e; for i > 0 is the number of t-ary trees with 7 nodes (and a = 1, e_; = 1), F(z, u) satisfies
a algebraic equation of degree t. For the ¢t = 2 case (Catalan numbers), the generating function of

excursions F'(z,0) = ?’*'gfi_— W has some coefficients which are related to the sequence #660
in the Encyclopedia of Combinatorial Structures (see http://algo.inria.fr/encyclopedia/).

When e¢; =i+ c¢ (and a = 1, e_; = 1) F(z,u) satisfies an algebraic equation of degree 3:
(1=2w)2®+(c—(c+1)+2u?))F3+ (u—2)z+ (—c— 2+ 4u — 2u?)2?) F2 + (1 + (2 — 2u)2) F = 1.
|

EXAMPLE 6. A new rewriting rule for (4, 2)-tennis ball problem.

The problem of balls on the lawn admits many other variants. For example, one could be supplied
with s balls at each turn but now throw out ¢ balls at a time with ¢ < s. The general (s,t) case is
an open problem while the (4,2) case has been treated in [33], where the authors study the problem
by introducing a bilabeled generating tree technique. Anyway, recently Merlini and Sprugnoli found
that the problem can be expressed by the rule (4) with e; =i + 3 and a = 2, namely:

(6) [0), {(k) ~ (O)FF2(M)FF2(@)*+ .. (k + 2)}]

10 C. BANDERIER AND D. MERLINI

FIGURE 3. The partial generating tree for the specification (6)

8

| **\123\
ala

2
1]2]3]

L] -

FiqURE 4. The schedules corresponding to two particular 1-histograms.

In fact, if we don’t care of the order of the balls thrown away, so that the configuration (1,4),
(5,8), (2,10) is considered to be the same as (1,2), (4,5), (8,10), it can be proved that the number
of (4,2)-sequences of length 2n in which the last-but-one element is 2n + k — 1 corresponds to the
number of nodes with label k at level n in the generating tree of Figure 3 (for example, the possible
sequences of length 2 are (1,2), (1,3), (1,4), (2,3), (2,4) and (3,4)). O

EXAMPLE 7. Printers.

In [34] the authors present a combinatorial model for studying the characteristics of job scheduling
in a slow device, for example a printer in a local network. The policy usually adopted by spooling
systems is called First Come First Served (FCFS) and can be realized by queuing the processes
according to their arrival time and by using a FIFO algorithm. A job (printing a file) consists
in a finite number of actions (printing-out a single page). Each action takes constant time to be
performed (a time slot). If we fix n time slots, and suppose that at the end of the period the queue
becomes empty, while it was never empty before, the successive states of the jobs queue can be
described by a combinatorial structure called labeled 1-histograms. A 1-histogram of length n is a
histogram whose last column only contains 1 cell and, whenever a column is composed by k cells,
then the next column contains at least k — 1 cells. It is at all obvious that a 1-histogram corresponds
to a path in the generating tree produced by the specification [(1), (k) ~ (1)...(k + 1)]. A labeled
1-histograms of length n is a 1-histogram in which we label each cell according to some rules (see
[34] for the details). Figure 4 illustrates the possible schedules for two particular 1-histograms of
length 3: the first one, for example, corresponds to i) a first job which consists in printing two pages
and a second job, which starts at time slot 2, and corresponds to printing a page at time slot 3, and
ii) three different jobs which consists in printing a single page, the first at time slot 1, the second
at time slot 2 and the third at time slot 3, after queuing at time slot 2. It can be proved that the
number of schedules of length n with k jobs request at the first time slot corresponds to the number
of nodes at level n having label k + 1 in the generating tree with specification (7).

(7) [(1); {(k) ~ (1)(A) ... () (k) (k + 1)}]

This gives that the number S,, of possible schedules corresponds to the nt” small Schréder number,
that is, the generating function for S, is (1 — 3z — V1 — 6z + 22)/(4z2).
More generally, consider the rewriting rule (4) when the e;’s are ultimately constants (say, equal
b (s
to C). This gives the recurrence f,, 41 (u) = C’W + P(u) fn(u). So F(z,u) = Hh%_u")’(”),

where the u;’s are the b+ 1 small roots of the kernel K (u,z) = u’(1—u)(1—2zP(u)+—%5). This gives

some nice classical closed form formulae for small values of a and b, e.g., the bivariate generating

LATTICE PATHS WITH AN INFINITE SET OF JUMPS 11

function for b =0, a = 1, e_; = 1 satisfies (z + (C + u)2?)F(z,u)? — (1 + (1 — u)2)F(z,u) — 1 = 0.
|

EXAMPLE 8. Single rewriting. It has been explained before that to put a multiplicity k& on the jumps
around k gives an ordinary generating function of radius of convergence 0. Let’s now consider a
new model of generating tree for which the generating function of such walks remains algebraic. At
each level, for each label, one chooses one of the node with label k£ and one rewrites only this node
(amongst the nodes of same label). There is also a lot of closed form formula for this model. O

3. MARKED, SIGNED, COLORED GENERATING TREES

In [35, 38], the authors introduced a variant of generating trees based on the concept of marked
label: a marked label is any positive integer, marked by a bar, for which appropriate rules are given
in the specification. The idea is that marked labels kill or annihilate the non-marked labels with the
same label, i.e. the count relative to an integer j is the difference between the number of non-marked
and marked labels j at a given level. The concept of matrix associated to a generating tree can be
extended by computing the difference d,, between the number of nodes at level n with label & +r
and the number of nodes with label k£ + . A simple example is given by the following generating
tree of Figure 5. This tree can be seen as the inverse of the generating tree having specification 5
since the corresponding matrices, shown in Figure5, are the Pascal triangle and its inverse.

The concept of marked labels has also been the same concept has been used in [17] in relation
with the definition of signed ECO-systems. A different approach can be found in [40] where the
authors introduced colored rules which correspond to generating trees in which nodes with the same
label can have various colors; what makes this approach different is the fact that these labels don’t
annihilate each other and the count relative to a level in the tree is exactly the number of nodes at
that level.

n/k|0 n/k

0 |1 0

1]1 1 1 -1 1

2 |1 21 2 1 -2 1
3|1 3 3 1 3 |-1 3 -3 1
4 |1 4 6 4 1 4 1 4 6 4 1

The inverse of Pascal generating tree: [(2), {(k) ~ (k)(k + 1
The Pascal triangle and its inverse.

FIGURE 5. The Pascal generating tree: specification [(2), {(k)
)

EXAMPLE 9. Directed animals. Directed animals have been topic of interest in statistical mechanics
and in enumerative combinatorics (see, for example [6, 23]). A directed animal is a finite subset, X
of the lattice N x N such that X contains the origin and any element of X is reachable from the
origin via one or more paths consisting of unit north and east steps, and each point along the path
is also in X. In particular, if d,, ;, is the number of directed animals with n points of which £k are on
the z-axis, then it can be proved that

Anti b1 =dnp +dp—1 s +dn—1 k+1 Fdn—1,542 + ...

In the previous sections we illustrated that, what seems essential in a Riordan array is the fact that
the elements in a given row linearly depend on the elements of the row above it, starting from the

12 C. BANDERIER AND D. MERLINI

previous element. But this dependence can be made much looser, as has been proved in [32]. By
using this result, we can prove that the matrix corresponding to d,, ; is indeed a Riordan array, such
that the generating function for the A-sequence is
1 143z
A(z):Zakzk:— 1+ =1+4+2+2%—22+32°-625+0(27)
= 2 1—2

and the Z-sequence is always 0. From a generating function viewpoint, the presence of negative
coefficients in the A-sequence, corresponds to consider marked labels in the tree. The marked
generating tree corresponding to directed animals can be defined as:

(8) (1D, {(&) ~ @)¥ 1 (B)™ (b + 1), (k) ~ ()" ... ()" (k + 1)}
Whenever a coefficient has a negative value, one changes the sign and mark (or unmark) the corre-
sponding labels. O

Acknowledgements. This work was partially supported by the Future and Emerging Technologies pro-
gramme of the EU under contract number IST-1999-14186 (ALCOM-FT), by the INRIA postdoctoral pro-
gramme and by the Max-Planck Institut. The first author also benefited of pasta and of an invitation in
Florence in June and November 2001.

REFERENCES

[1] Cyril Banderier. Combinatoire analytique : application aux marches aléatoires. Mémoire de DEA, Université
Paris VII, 1998.

[2] Cyril Banderier. Combinatoire analytique des chemins et des cartes. PhD thesis, Université de Paris 6, 2001.

[3] Cyril Banderier, Mireille Bousquet-Mélou, Alain Denise, Philippe Flajolet, Dani¢le Gardy, and Dominique
Gouyou-Beauchamps. Generating functions for generating trees. To appear in Discrete Mathematics, 2000. ex-
tended version of the article from the Proceedings of FPSAC’99.

[4] Cyril Banderier and Philippe Flajolet. Basic analytic combinatorics of directed lattice paths. Theoretical Com-
puter Science, June 2001. Submitted, 37 pages.

[5] Cyril Banderier and Simone Rinaldi. Rewriting rules of higher markovian order. In preparation, 2001.

[6] E. Barcucci, R. Pinzani, and R. Sprugnoli. The random generation of directed animals. Theoret. Comput. Sci.,
127(2):333-350, 1994.

[7] Elena Barcucci, Alberto Del Lungo, Elisa Pergola, and Renzo Pinzani. A methodology for plane tree enumeration.
Discrete Mathematics, 180(1-3):45-64, 1998.

[8] Elena Barcucci, Alberto Del Lungo, Elisa Pergola, and Renzo Pinzani. From Motzkin to Catalan permutations.
Discrete Mathematics, 217(1-3):33—-49, 2000. Formal power series and algebraic combinatorics (Vienna, 1997).

[9] Elena Barcucci, Alberto Del Lungo, Elisa Pergola, and Renzo Pinzani. Permutations avoiding an increasing
number of length-increasing forbidden subsequences. Discrete Mathematics € Theoretical Computer Science.
DMTCS. An Electronic Journal, 4(1):31-44 (electronic), 2000.

[10] Philippe Biane, Jim Pitman, and Marc Yor. Probability laws related to the Jacobi theta and Riemann zeta
functions, and Brownian excursions. Bull. Amer. Math. Soc. (N.S.), 38(4):435-465 (electronic), 2001.

[11] Mireille Bousquet-Mélou. Walks on the slit plane: other approaches. Advances in Applied Mathematics, 27:243—
288, 2001.

[12] Mireille Bousquet-Mélou and Marko Petkovsek. Linear recurrences with constant coefficients: the multivariate
case. Discrete Mathematics, 225(1-3):51-75, 2000.

[13] W. G. Brown and W. T. Tutte. On the enumeration of rooted non-separable planar maps. Canad. J. Math.,
16:572-577, 1964.

[14] P. Chassaing, J. F. Marckert, and M. Yor. The height and width of simple trees. In Mathematics and computer
science (Versailles, 2000), pages 17-30. Birkh&duser, Basel, 2000.

[15] N. Chomsky. Context-free grammar and pushdown storage. Quarterly Progress Report, M.I.T. Research Labo-
ratory in Electronics, 65:187-194, 1962.

[16] F. R. K. Chung, R. L. Graham, V. E. Hoggatt, and M. Kleiman. The number of Baxter permutations. Journal
of Combinatorial Theory, Series A, 24:382-394, 1978.

[17] Sylvie Corteel. Séries génératrices exponentielles pour les eco-systémes signés. In FPSAC’00. Springer, June 2000.

[18] Philippe Duchon. On the enumeration and generation of generalized Dyck words. Discrete Mathematics, 225(1-
3):121-135, 2000. Formal power series and algebraic combinatorics (Toronto, 1998).

[19] S. Dulucq, S. Gire, and J. West. Permutations with forbidden subsequences and nonseparable planar maps.
Discrete Mathematics, 153(1-3), 1996. Proceedings of the 5th Conference on Formal Power Series and Algebraic
Combinatorics (Florence, 1993).

[20] Guy Fayolle and Roudolf Iasnogorodski. Two coupled processors: the reduction to a Riemann-Hilbert problem.
Z. Wahrsch. Verw. Gebiete, 47(3):325-351, 1979.

[21] P. Flajolet. Combinatorial aspects of continued fractions. Discrete Math., 32(2):125-161, 1980.

LATTICE PATHS WITH AN INFINITE SET OF JUMPS 13

[22] Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Book in preparation, 2001.
[23] D. Gouyou-Beauchamps and G. Viennot. Equivalence of a two-dimensional animal problem to a one-dimensional

problem. Advances in Applied Mathematics, 9:334—357, 1988.

[24] O. Guibert and E. Pergola. Enumeration of vexillary involutions which are equal to their mirror/complement.

Discrete Math., 224(1-3):281-287, 2000.

] Donald Ervin Knuth. The Art of Computer Programming, volume 1. Addison-Wesley, third edition, 1997.
| Darla Kremer. Permutations with forbidden subsequences and a generalized Schréder number. Discrete Mathe-

matics, 218(1-3):121-130, 2000.

] Jacques Labelle and Yeong-Nan Yeh. Generalized Dyck paths. Discrete Mathematics, 82:1-6, 1990.
] M. Lothaire. Combinatorics on words. Cambridge University Press, Cambridge, 1997. With a foreword by Roger

Lyndon and a preface by Dominique Perrin, Corrected reprint of the 1983 original, with a new preface by Perrin.

[29] Guy Louchard. The Brownian excursion area: a numerical analysis. Computers & Mathematics with Applications.

An International Journal, 10(6):413-417 (1985), 1984.

] C. L. Mallows and L. W. Shapiro. Balls on the lawn. Journal of Integer Sequences, 2, 1999.
] A. Meir and J. W. Moon. On the altitude of nodes in random trees. anadian Journal of Mathematics, 30:997—

1015, 1978.

[32] D. Merlini, D. G. Rogers, R. Sprugnoli, and M. C. Verri. On some alternative characterizations of Riordan arrays.

Canadian Journal of Mathematics, 49(2):301-320, 1997.

| D. Merlini, D. G. Rogers, R. Sprugnoli, and M. C. Verri. The tennis ball problem, 2000. Submitted for publication.

[34] D. Merlini, R. Sprugnoli, and M. C. Verri. Waiting patterns for a printer. In FUN with algorithms 2, E. Lodsi,

L. Pagli, N. Santoro, Editors, Carleton Scientific, pages 183-198, 2001.

[35] D. Merlini and M. C. Verri. Generating trees and proper Riordan Arrays. Discrete Mathematics, 218:167-183,

2000.

] Donatella Merlini, Douglas G. Rogers, Renzo Sprugnoli, and Maria Cecilia Verri. Underdiagonal lattice paths

with unrestricted steps. Discrete Applied Mathematics. Combinatorial Algorithms, Optimization and Computer
Science, 91(1-3):197-213, 1999.

] Donatella Merlini, Renzo Sprugnoli, and Maria Cecilia Verri. Algebraic and combinatorial properties of simple,

coloured walks. In Trees in algebra and programming—CAAP °9/ (Edinburgh, 1994), pages 218-233. Springer,
Berlin, 1994.

] Donatella Merlini, Renzo Sprugnoli, and Maria Cecilia Verri. An algebra for generating trees. In Mathematics

and computer science (Versailles, 2000), pages 127-139, Basel, 2000. Birkh&user.

[39] A. M. Odlyzko. Asymptotic enumeration methods, volume II. Elsevier, 1995. In Handbook of Combinatorics,

(R. Graham, M. Grétschel, and L. Lovész, eds.).

| Elisa Pergola, Renzo Pinzani, and Simone Rinaldi. Towards an algebra of succession rules. In Mathematics and

computer science (Versailles, 2000), pages 141-152, Basel, 2000. Birkh&user.

] Elisa Pergola and Robert A. Sulanke. Schrioder triangles, paths, and parallelogram polyominoes. J. Integer Seq.,

1:Article 98.1.7 (9 HTML documents), 1998.

. . ogers. rascal triangiles, atalan numbers and renewa arrays. iscrete at ematzcs, :301— [), 978.
. . Dchutzenberger. ontext-iree language and pus own automata. 7'”0 mation an ontrot, : — 5

1963.

[44] L. W. Shapiro, S. Getu, W.-J. Woan, and L. Woodson. The Riordan group. Discrete Applied Mathematics,

34:229-239, 1991.

] R. Sprugnoli. Riordan arrays and combinatorial sums. Discrete Mathematics, 132:267-290, 1994.
| T. A. Sudkamp. Languages and machines. Addison-Wesley, 1997.
] Robert A. Sulanke. Moments of generalized Motzkin paths. Journal of Integer Sequences, 3:Article 00.1.1, 1

HTML document (electronic), 2000.

[48] J. West. Generating trees and the Catalan and Schroder numbers. Discrete Mathematics, 146:247-262, 1995.
[49] J. West. Generating trees and forbidden subsequences. Discrete Mathematics, 157:363-374, 1996.

E-mail address: Cyril.Banderier@inria.fr, http://algo.inria.fr/banderier
INRIA-Rocquencourt, 78150 Le Chesnay (France) & Max-Planck-Institut, 66123 Saarbriicken (Germany)
E-mail address: merlini@dsi.unif.it, http://www.dsi.unifi.it/~merlini/

Dipartimento di Sistemi e Informatica, Universit degli Studi di Firenze, Via Lombroso 6/17, 50134 Firenze (Italy)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

