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Abstract

Exact and asymptotic distributions of the degree variance are in-
vestigated for Bernoulli graphs and uniform random graphs. In par-
ticular the range of values of the degree variance and its maximum
value are considered. We show that the degree variance is approx-
imately gamma distributed with parameters obtained from the …rst
two moments of the degree variance. Since centrality of a graph can
be interpreted as a measure of its heterogeneity in terms of vertex de-
grees, we can perform a centrality test with a critical value obtained
from the gamma distribution.
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1 Introduction
Several measures of graph centrality have been developed over the years,
see for example Freeman (1978), Snijders (1981a) and Wasserman&Faust
(1994). According to Buckley (1997) the motivation for their development
has generally been to …nd an appropriate way to measure where the ”middle”
of a certain graph is. One of the reasons why such a rich variety of centrality
measures has arisen is that di¤erent applications have produced di¤erent
ideas on what the ”middle” should be. Hence, there is no general centrality
concept. This paper is concerned with a standard statistical measure; the
degree variance in undirected graphs. Thus, centrality of a graph can be
interpreted as a measure of its heterogeneity in terms of vertex degrees.
Consider a graph on n vertices and r edges, i.e. a graph of order n and

size r, and let xi be the degree of vertex i, i.e. the number of edges incident
to vertex i: Denote the mean degree by x = 1

n

Pn
i=1 xi = 2r=n: The degree

variance is de…ned as

s2 =
1

n

nX
i=1

(xi ¡ x)2:

How shall we interpret a value s2 obtained from a given graph? Regular
graphs, i.e. graphs for which all degrees are equal, have clearly the property of
non-centrality, but, howmuchmust the given graph departure from regularity
in order to be regarded as central? There are many reasons why there is no
simple answer to the question. One of them is the counter question ”couldn’t
the observed value s2 be obtained by mere chance?”
In order to make a more precise statement about the centrality, we will

assume that no centrality is present if the edges are generated according to
either a Bernoulli probability model or a uniform random graph model. The
uniform random graph model is equivalent to a Bernoulli model conditional
on the number of edges. Random variables will be denoted with uppercase
letters and the realized values of a variable will be denoted by the corre-
sponding lowercase letter. Thus, the random variable S2 can take the value
s2: By deriving an approximate probability distribution of S2 given that the
null hypothesis H 0: no centrality is true, we can assess a critical value to
test H0 against alternatives with centrality. The null hypothesis will be re-
jected if the observed value s2 is large enough, that is, if the probability value
P (S2 > s2jH0 is true) is small enough. Hence, it is of great importance to
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investigate the upper part of the approximate distribution e.g. the upper
10% tail.
Note that we have to reject the Bernoulli model (and the uniform random

graph model) if the null hypothesis is rejected. In fact the null hypothesis of
no centrality is modeled by the Bernoulli graph. But, departures from the
Bernoulli graph does not imply centrality. Centrality here means, that the
degrees vary more than they do in Bernoulli or conditional Bernoulli graphs.
If the degrees vary less, as they do for instance in regular graphs, then this
is not considered to be a violation of H0:
The two models of this paper are simple and easy to interpret, but they

don’t deliver any distribution for the alternative hypothesis H 1:centrality.
Hence, we can’t calculate the power of the test. Tallberg (2000) has ana-
lyzed models for the alternative hypothesis. For the alternative hypothesis,
Tallberg assumes a modi…ed Bernoulli block model that generates edges with
di¤erent probabilities within and between di¤erent blocks of vertices. See
also Frank (2000).

2 Some distributional properties of Bernoulli
graphs

We consider a graph on n labeled vertices. The vertices are labeled by integers
1; :::; n. With probability p; each pair of distinct vertices i and j is connected
by an edge. These connections are made independently of each other. Let
Xi be the number of edges incident to vertex i and let R be the total number
of edges. Since a vertex can have no more than n¡ 1 edges it follows that

Xi 2 Bin(n¡ 1; p) ; i = 1; 2; :::; n ;
R 2 Bin

µµ
n

2

¶
; p

¶
(2.1)

and

X =
2R

n
2 2
n
Bin

µµ
n

2

¶
; p

¶
: (2.2)
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Let q = 1¡ p: From the properties of the binomial distribution it follows
that

E (Xi) = (n¡ 1) p ; V ar (Xi) = (n¡ 1) pq;

and since
P
Xi = 2R;we have

V ar

Ã
nX
i=1

Xi

!
= 4

µ
n

2

¶
pq = 2n (n¡ 1) pq: (2.3)

The last variance can also be expanded as
PP

Cov(Xi;Xj) = nV arXi+
n (n¡ 1)Cov (Xi; Xj) and it follows that Cov(Xi; Xj) = pq so that

Corr(Xi;Xj) =
1

n¡ 1 : (2.4)

Thus, we see that the correlation between Xi and Xj tends to zero for in-
creasing n.
We will estimate the parameter p by its maximum likelihood (ML) esti-

mator

bP = R¡
n
2

¢ : (2.5)

We have

E( bP ) = p and V ar( bP ) = 2pq

n(n¡ 1) ;

and bP is approximately normally distributed if n (n¡ 1) pq is su¢ciently
large. Hence

bp§ 2sbp (1¡ bp)¡
n
2

¢ (2.6)

is an approximate 95% con…dence interval for p:
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Conditional on the number of edges, Xi is hypergeometricly distributed
i.e.

P (Xi = xi j R = r) =
¡
n¡1
xi

¢¡(n2)¡(n¡1)
r¡xi

¢¡(n2)
r

¢
xi = 0; 1; :::;minfn¡ 1; rg for i = 1; :::; n. (2.7)

It follows that

E (Xi j R = r) = 2r

n
; V ar (Xi j R = r) = 2r (n2 ¡ n¡ 2r)

n2 (n+ 1)
(2.8)

and since V ar (
P
Xi j R = r) = 0; we have

0 = nV ar (Xi j R = r) + n (n¡ 1)Cov (Xi; Xj j R = r)

which implies

Cov (Xi; Xj j R = r) = ¡V ar (Xi j R = r)
n¡ 1

and

Corr(Xi; Xj j R = r) = ¡ 1

n¡ 1 for i 6= j: (2.9)

Thus, the correlation is negative and has the same absolute value as in
the unconditional case. We also note that the simultaneous distribution of
(X1; :::; Xn j R = r) is multivariate hypergeometric. See, for instance, John-
son, Kotz & Balakrishnan (1997).

3 Moments of the degree variance
The moments of the degree variance S2 are the building blocks of the results
in this paper. Some of them are complicated to derive and these derivations
are left in Appendix A. To avoid fractions, we will often use the integer valued

random variable Z = n2S2 = n
nP
i=1

¡
Xi ¡X

¢2
=
P
i<j

(Xi ¡Xj)2 : Denote the
kth moment of Z by mk = E

¡
Zk
¢
. The …rst three moments are given below,
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where the falling factorial n(n ¡ 1) ¢ ¢ ¢ (n ¡ j + 1) = n!= (n¡ j)! is denoted
by n(j).

m1 = E
X
i<j

(Xi ¡Xj)2

= n (n¡ 1)E ¡X2
i ¡XiXj

¢
= n (n¡ 1) ((n¡ 1) pq ¡ pq)

= n(3)pq (3.1)

m2 = 2 (n¡ 2)n(3)pq + (n¡ 2) (n+ 4)n(4)p2q2 (3.2)

m3 = 4n (n¡ 1) (n¡ 2)3 pq
+2n(4) (3n¡ 4) ((n¡ 2) (n+ 6)¡ 8) p2q2
+n(4)

£
n4 (n+ 3)¡ 4 (3n¡ 4) [3 (n¡ 2) (n+ 6)¡ (n+ 4)]¤ p3q3

(3.3)

It follows from m1 and m2 that

E
¡
S2
¢
=
(n¡ 1) (n¡ 2)

n
pq (3.4)

and

V ar
¡
S2
¢
=
2(n¡ 1)(n¡ 2)2

n3
pq (1 + (n¡ 6)pq) : (3.5)

If theXi are approximated by independent normal variables we get nS2= (n¡ 1) pq
asymptotic Â2n¡1; and it follows that ((E (S

2)) =n)! pq and ((V ar (S2))=n)!
2p2q2; which agree with (3.4) and (3.5). It can also be shown that

Cov
¡
S2;X

¢
=
2 (n¡ 1) (n¡ 2) (q ¡ p)

n2
pq (3.6)

and

Corr
¡
S2; X

¢
=

q ¡ pp
1 + (n¡ 6) pq (3.7)

= §
r
2

n
if pq =

1

6
:
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Further, let

S2i =
1

n

¡
Xi ¡X

¢2
;

Cov
¡
S2i ; S

2
j

¢
= Cov

µµ
1

n

¡
Xi ¡X

¢2¶
;

µ
1

n

¡
Xj ¡X

¢2¶¶
, i 6= j and

Corr
¡
S2i ; S

2
j

¢
=

Cov
¡
S2i ; S

2
j

¢p
V ar (S2i )

q
V ar

¡
S2j
¢ = Cov

¡
S2i ; S

2
j

¢
V ar (S2i )

, i 6= j:

By use of the technique outlined in Appendix A, it can be shown that

V ar
¡
S2i
¢
=

(n¡ 1) (n¡ 2) ((n¡ 2) (n¡ 4) + 4)
n5

pq (3.8)

+
2 (n¡ 1) (n¡ 2)

³
(n¡ 1)(3) + 9 (n¡ 3)¡ 3

´
n5

p2q2

and

Cov
¡
S2i ; S

2
j

¢
=

(n¡ 2) [(n+ 6) (n¡ 2)¡ 2n]
n5

pq

¡4 (n¡ 2) [(n+ 6) (n¡ 2)¡ 6]
n5

p2q2: (3.9)

We have

V ar
¡
S2i
¢! 2p2q2 , n2Cov

¡
S2i ; S

2
j

¢! pq (1¡ 4pq)

and

n2Corr
¡
S2i ; S

2
j

¢! 1¡ 4pq
2pq

= 1 if pq =
1

6
: (3.10)

Hence, S2i and S
2
j are practically uncorrelated and S

2 can be regarded as
a sum of almost uncorrelated random variables. For n = 10 we …nd that
Corr

¡
S2i ; S

2
j

¢
= 27¡122pq

9(282pq+13)
and Figure 1 below shows how this correlation

depends on p.
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Figure 1. Corr
¡
S2i ; S

2
j

¢
for n = 10.

Further,

Cov
¡
S2i ; X

¢
=
2 (n¡ 1) (n¡ 2) pq (q ¡ p)

n3
; (3.11)

Corr
¡
S2i ; X

¢
=

Ã
2 (n¡ 2) (q ¡ p)2

2
¡
(n¡ 1)2 ¡ 1¢ (n¡ 1) pq + ¡(n¡ 3)2 + 3¢ (1¡ 6pq)

!1
2

(3.12)

and if pq = 1
6
we have that p = 1

2
§ 1

6

p
3 and

Corr
¡
S2i ; X

¢
= §

µ
2

n (n¡ 1)
¶ 1

2

= §
µ
n

2

¶¡ 1
2

if pq =
1

6
: (3.13)

For the uniform random graph model or the R-conditional Bernoulli
graph, we have according to (2.8) that

E
¡
S2 j R = r¢ = V ar (Xi j R = r) = 2r (n2 ¡ n¡ 2r)

n2 (n+ 1)
(3.14)

and

V ar
¡
S2 j R = r¢ =

1

n2

X
i

X
j

Cov
¡
X2
i ;X

2
j j R = r

¢
=

8r (r ¡ 1) (n2 ¡ n¡ 2r) (n2 ¡ n¡ 2r ¡ 2)
n2 (n+ 1)2 (n+ 2) (n2 ¡ n¡ 4) :(3.15)
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The derivation of (3.10) can be found in Snijders (1981b) and a brief outline
is given in Appendix A.
Finally, the same technique can be used to show that

n3V ar
¡
S2i j R = r

¢! 2r , n4Cov
¡
S2i ; S

2
j j R = r

¢! ¡2r for i 6= j:

and

nCorr
¡
S2i ; S

2
j j R = r

¢! ¡1:

4 Extreme values and other attained values
of the degree variance

4.1 The maximum value

The order values of the degree variance for a graph of order n is the set of
possible values S2 can attain such that

s21 < s
2
2 < ¢ ¢ ¢ < s2m

where s21 is the minimal value and s
2
m is the maximal value.

The maximum value of the degree variance S2 has been derived by Sni-
jders (1981b). An alternative proof and a simple formula are given below,
showing the exact structure of the graphs that attain the maximal degree
variance.. Let bxc denote the greatest integer less than or equal to the num-
ber x .

Theorem 1 For Bernoulli graphs of order n, the maximal degree variance
is given by

s2max = k (n¡ k)
µ
n¡ k ¡ 1

n

¶2
where k =

¹
n+ 1

4

º
:
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Theorem 2 A disconnected Bernoulli graph of order n has maximal degree
variance if and only if it consists of

¥
n+1
4

¦
isolated vertices and a complete

subgraph on the other vertices. A connected Bernoulli graph of order n has
maximal degree variance if and only if it consists of

¥
n+1
4

¦
vertices of degree

n¡ 1 and no other edges.

Corollary 3

lim
n!1

s2max
n2

=
33

44
:

Corollary 4 For Bernoulli graphs of order n the maximal degree variance
is attained with probability

P
¡
S2 = s2max

¢
=

µ
n

k

¶³
p(

n¡k
2 )q(

n
2)¡(n¡k2 ) + p(

n
2)¡(n¡k2 )q(

n¡k
2 )
´

where k =

¹
n+ 1

4

º
:

For large n we have

c1 (pq)
7N=2 ¡pN + qN¢ 6 P ¡S2 = s2max¢ 6 c2 (pq)7N=2 ¡pN + qN¢

where c1 =
¡
4£ 3¡3=4¢nq 8

3¼n
e¡

1+24n+117n2

(12n+1)(9n+1)(3n+1) ; c2 =
¡
4£ 3¡3=4¢nq 8

3¼n
e¡13=36n

and N = n2

16
:

Corollary 5 Let p¤ denote the value of p that is 6 1
2
and yields the highest

probability to obtain the maximal degree variance in a Bernoulli graph of order
n: Further, let c1 =

k(2n¡k¡1)
n(n¡1) and c2 =

n(n¡1¡4k)+2k(k+1)
n(n¡1¡4k)+2k(k+1)¡2 where k =

¥
n+1
4

¦
:

It holds that

min (c1; c1c2) < p
¤ 6 max (c1; c1c2)

and p¤ = 1
2
for ten values of n only, i.e. for n = 3; 4; 5; 7; 8; 9; 11; 12; 15; 19:

For increasing n, p¤ tends to 7=16:

Proof: Let G be a graph of order n with degree variance S2(G). Denote
the complement of G by Gc. Since Gc has degrees Xc

i = n ¡ 1 ¡ Xi and
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average degree X
c
= n ¡ 1 ¡ X we have that a graph and its complement

have the same degree variance, i.e.

S2(G) = S2(Gc): (4.1)

Multiply S2 by n2 and rewrite the variance formula according to (4.2)

n
nX
i=1

¡
Xi ¡X

¢2
=
X
i<j

(Xi ¡Xj)2 (4.2)

Focus on the right hand side of the equality above and assume that we have
three distinct degree values, d1 < d2 < d3: The sum (d2 ¡ d1)2+(d3 ¡ d2)2+
(d3 ¡ d1)2 will then be included in (4.2). However, for positive a = d2 ¡ d1
and b = d3 ¡ d2, the inequality a2 + b2 < (a+ b)2 states that (d2 ¡ d1)2 +
(d3 ¡ d2)2 < (d3 ¡ d1)2 : Assume that we have c1 vertices of degree d1; c2
vertices of degree d2 and n¡c1¡c2 vertices of degree d3:We can increase the
degree variance by removing all edges incident to the vertices of degree d3
and d2 and then make a complete subgraph of order n ¡c1: The c1 vertices
previously of degree d1 shall now be of degree d01 6 d1: That is, exactly two
distinct degree values is a necessary condition for maximum. Further, from
(4.2), we see that one solution is to put d1 = 0 and d2 > 0: Let k be the
number of vertices of degree 0, which implies that the other n ¡ k vertices
must be of maximal degree d2 = n¡ k ¡ 1: This yields the degree variance

s2k =
kx

n
+
(n¡ k) (n¡ k ¡ 1¡ x)2

n
(4.3)

where x =
(n¡ k) (n¡ k ¡ 1)

n

that is

s2k = k (n¡ k)
µ
n¡ k ¡ 1

n

¶2
and it follows that s2max = max

k
s2k: By writing

s2k = fn (k) = k (n¡ k)
µ
1¡ k + 1

n

¶2
it follows that
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fn¡1 (k) 6 fn (k) for all k

and

fn (k) = 0 for k = 0; n¡ 1; n:

Further, denote by kn any value of k for which

fn (k § 1) 6 fn (k) .

That is, k should satisfy the inequalities A and B below.

A : 0 6 k(n¡ k)(n¡ k ¡ 1)2 ¡ (k + 1)(n¡ k ¡ 1)(n¡ k ¡ 2)2
4k2 ¡ (5n¡ 8) k + (n¡ 2)2 6 0

an 6 k 6 An (4.4)

where

an =
5n¡ 8¡p9n2 ¡ 16n

8
; An =

5n¡ 8 +p9n2 ¡ 16n
8

: (4.5)

B : 0 6 k(n¡ k)(n¡ k ¡ 1)2 ¡ (k ¡ 1)(n¡ k + 1)(n¡ k)2
4k2 ¡ 5nk + n (n+ 1) > 0

k 6 bn or k > Bn (4.6)

where

bn =
5n¡p9n2 ¡ 16n

8
; Bn =

5n+
p
9n2 ¡ 16n
8

: (4.7)

That is, k should belong to the interval [an; An] but not to the interval
(bn; Bn). Since bn = an+1 and Bn = An+1, this means that bn¡1 6 kn 6 bn.
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If bn is an integer both bn ¡ 1 and bn are possible values for kn. Otherwise
there is a unique kn = bbnc.
If we rewrite bn as

bn =
5n¡p9n2 ¡ 16n

8
=
n

4
+
3n

8

Ã
1¡

r
1¡ 16

9n

!
=

n

4
+ °n: (4.8)

we see that °2 =
1
2
. Using a generalization of the binomial theorem, it can

be shown that

°n =
3n

8

Ã
1¡

Ã
1¡ 2

1X
j=1

1

j

µ
2j ¡ 2
j ¡ 1

¶µ
4

9n

¶j!!

=
1

3

1X
j=1

1

j

µ
2j ¡ 2
j ¡ 1

¶µ
4

9n

¶j¡1
: (4.9)

Hence, for n > 2 we have that 1
3
< °n <

1
2
; i.e. bn is an integer if and only if

n = 2. Thus, kn =
¥
n
4
+ °n

¦
is unique for n > 2 and

n

4
+
1

3
< bn <

n

4
+
1

2
, n > 2: (4.10)

Thus, since the cases n = 1 and n = 2 are trivial, we have kn =
¥
n
4
+ 1

4

¦
=¥

n+1
4

¦
for all n.

A rather lengthy proof of the formula for the maximal degree variance
in a Bernoulli graph conditional on size R = r, that is s2max for uniformly
random graphs of order n and size r, can be found in Snijders (1981b). An
alternative proof similar to the previous proof is given here.
Let G(r) be a graph of order n and size r consisting of

k vertices of degree 0

1 vertex of degree r0
r0 vertices of degree n¡ k ¡ 1
n¡ k ¡ 1¡ r0 vertices of degree n¡ k ¡ 2

where r0 = r ¡
µ
n¡ k ¡ 1

2

¶
and k is given by (4.11)

14



µ
n¡ k ¡ 1

2

¶
< r 6

µ
n¡ k
2

¶
: (4.12)

This inequality implies that for r = 1; 2; 3; :::, the values of n¡k¡1 should be
given as 1; 2; 2; 3; 3; 3; 4; 4; 4; 4; 5; 5; 5; 5; 5; 6; :::, that is by

¥
1
2
+
p
2r
¦
(Sloane

& Plou¤e (1995)). Thus

k = n¡ 1¡
¹
1

2
+
p
2r

º
for r > 0: (4.13)

For such graphs we have the degree variance

s2 (r) =
1

n

£
r20 + r0 (n¡ k ¡ 1)2 + (n¡ k ¡ 1¡ r0) (n¡ k ¡ 2)2

¤¡µ2r
n

¶2
=

1

4n
[(n¡ k) (n¡ k ¡ 1) (n¡ k ¡ 2) (n¡ k ¡ 3)]

+
1

n

£
r
¡
5 (n¡ k ¡ 1) + r ¡ (n¡ k)2¢¤¡ µ2r

n

¶2
=

(n¡ k)(4) + 4r
¡
5 (n¡ k ¡ 1) + r ¡ (n¡ k)2¢

4n
¡
µ
2r

n

¶2
(4.14)

where k is given by (4.13).

Theorem 6 For graphs of order n and size r the maximal degree variance
is given by the largest of the two values s2 (r) and s2

¡¡
n
2

¢¡ r¢ : Except for
n = 7, r = 11

max

½
s2 (r) ; s2

µµ
n

2

¶
¡ r
¶¾

=

½
s2 (r) if r >

¡
n
2

¢
=2

s2
¡¡
n
2

¢¡ r¢ if r <
¡
n
2

¢
=2:

For n = 7, r = 11 s2 (10) > s2 (11) :

Proof. The complement of G(r) has
¡
n
2

¢ ¡ r edges and has the same
degree variance. However, s2

¡¡
n
2

¢¡ r¢ might be larger or smaller than s2 (r)
and the largest of these two numbers is the maximal degree variance. To see
this, consider the maximal degree variance without specifying the number of
edges. According to Theorem 1 the optimal graph then has

r =

µ
n¡ ¥n+1

4

¦
2

¶

15



edges. This r is larger than or equal to
¡
n
2

¢
=2 except when n = 3 or n = 7

since

µ
n¡ k¤
2

¶
¡
µµ
n

2

¶
¡
µ
n¡ k¤
2

¶¶
=

8>>><>>>:
(n¡1)(n+3)

16
for n = 1; 5; 9; :::

n(n+8)¡4
16

for n = 2; 6; 10; :::
n(n¡10)+5

16
for n = 3; 7; 11; :::

n(n¡4)
16

for n = 4; 8; 12; :::

where k¤ =
¥
n+1
4

¦
: These numbers are all non-negative except for n = 3 and

n = 7: For n = 3; s2 (1) = s2 (2) but for n = 7, s2 (10) > s2 (11) :
If r¤ = max

¡
r;
¡
n
2

¢¡ r¢ then the optimal graph should be G (r¤) and
s2max = s

2 (r¤) with the exception mentioned above.
The expressions for s2max in some particular cases are given by

s2max =
r (r + 1)

n
¡
µ
2r

n

¶2
for r 6 n¡ 1 (4.15)

and

s2max =
n2 ¡ 5n+ 6

n

=
(n¡ 2) (n¡ 3)

n
for r = n > 2: (4.16)

For r = n > 2 the optimal graph is a star with one extra edge and it is
possible to give an simple expression for its probability of occurance:

P
¡
S2 = s2max j R = n

¢
=

n (n¡ 1) (n¡ 2)
2
¡(n2)
n

¢ : (4.17)

4.2 The minimum value

Theorem 7 The minimum degree variance for a graph G of order n and
size r is equal to

s2min = µ (1¡ µ)
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where µ =

(
2r
n
¡ ¥2r

n

¦
if r 6

¡
n
2

¢
=2

n(n¡1)¡2r
n

¡
j
n(n¡1)¡2r

n

k
if r >

¡
n
2

¢
=2:

Proof. If 2r
n
= m where m is an integer, then µ = 0 and G should be

regular with all degrees equal to m, i.e. an m-regular graph. Otherwise G
should have n (1¡ µ) vertices of degree ¥2r

n

¦
= m and nµ vertices of degree

m+1: Such graphs exist, since if n is even it is possible to constructm-regular
graphs for m = 0; 1; 2; :::; n¡ 1 and if n is odd it is possible to construct m-
regular graphs for m = 0; 2; 4; :::; n ¡ 1: See, for example, Chartrand and
Lesniak (1996). Hence,

s2min =
1

n

nX
i=1

(xi ¡ x)2

=
n (1¡ µ) (m¡ x)2 + nµ (m+ 1¡ x)2

n

where x = 2r
n
= m+ µ: It follows that

s2min = (1¡ µ) µ2 + µ (1¡ µ)2 = µ (1¡ µ) :

4.3 Other attained values

If we multiply s2 by n2 we get z = n
P
x2i ¡4r2 and by ordering the distinct

values of z, we get the integer sequence z1 < z2 < ¢ ¢ ¢ < zm where z1 is the
minimal and zm is the maximal value.

Theorem 8 For 4 6 r 6 n¡ 2; z attains

m =

8<:
4 +

¡
r¡1
2

¢
if 4 6 r 6 n

2

n+ (r¡2)(r¡5)
2

if n
2
6 r 6 n¡ 2

(4.18)

distinct values z1 < z2 < ¢ ¢ ¢ < zm given according to

zj =

½
2r (n¡ 2r) + 2n (j ¡ 1) if 4 6 r 6 n

2

2 (2r ¡ n) (n¡ r) + 2n (j ¡ 1) if n
2
6 r 6 n¡ 2 (4.19)

17



for j = 1; :::;m¡ 1 and

zm = nr (r + 1)¡ 4r2
= zm¡1 + 2n (r ¡ 3) : (4.20)

Proof. Consider
P
x2i which attains the values

2r; 2 (r + 1) ; 2 (r + 2) ; :::; 2(r +m¡ 2); r(r + 1) if 4 6 r 6 n

2

for any sequence of graphs G1; :::; Gm; satisfying the following requirements:

G1 has 2r vertices of degree 1 and n¡ 2r vertices of degree 0;

G2 has 1 vertex of degree 2; 2 (r ¡ 1) vertices of degree 1
and n¡ 2r + 1 vertices of degree 0;

G3 has 2 vertices of degree 2; 2 (r ¡ 2) vertices of degree 1
and n¡ 2r + 2 vertices of degree 0;

¢ ¢ ¢

Gr+1 has r vertices of degree 2; and n¡ r vertices of degree 0;

Gr+2 has 1 vertex of degree 4; r ¡ 5 vertices of degree 2,
6 vertices of degree 1 and n¡ r ¡ 2 vertices of degree 0. If the
graph is of size 4; Gr+2 has 1 vertex of degree 3, 2 vertices of

degree 2, 1 vertex of degree 1 and n¡ 4 vertices of degree 0,

Gr+3 has 1 vertex of degree 4; r ¡ 4 vertices of degree 2, 4 vertices
of degree 1, and n¡ r ¡ 1 vertices of degree 0,

¢ ¢ ¢

18



Gm¡3 has 1 vertex of degree r ¡ 1; r + 1 vertices of degree 1 and
n¡ r ¡ 2 vertices of degree 0;

Gm¡2 has 1 vertex of degree r ¡ 1; 1 vertex of degree 2;
r ¡ 1 vertices of degree 1 and n¡ r ¡ 1 vertices of degree 0;

Gm¡1 has 1 vertex of degree r ¡ 1; 2 vertices of degree 2;
r ¡ 3 vertices of degree 1 and n¡ r vertices of degree 0;

Gm has 1 vertex of degree r; r vertices of degree 1 and

n¡ r ¡ 1 vertices of degree 0.

Figure 2 illustrates such a sequence of graphs for n = 10 and r = 5.

Figure 2. The graphs G1; :::; G10 for n = 10 and r = 5.

According to Theorem 7,

z1 = n2
µ
2r

n
¡
¹
2r

n

º¶µ
1¡ 2r

n
+

¹
2r

n

º¶
= 2r (n¡ 2r) + n2

¹
2r

n

ºµ
4r ¡ n
n

¡
¹
2r

n

º¶
: (4.21)
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Thus, for r 6 n¡ 2 the minimum value of
P
x2i is given by

z1 + 4r
2

n
=

8<: 2r if 4 6 r 6 n
2

2 (3r ¡ n) if n
2
6 r 6 n¡ 2

For 4 6 r 6 n
2
the graphs G1 and Gm have minimum and maximum values

of
P
x2i . Every possible intermediate value is attained by the other graphs

in the sequence. For n
2
6 r 6 n¡2 some of the initial graphs in the sequence

can not be constructed and the sequence starts with the graph G2r¡n+1: The
same argument applies to this sequence. Theorem 8 follows.
For graphs of size r 6 3 we have

z1 (n; r) =

8>><>>:
0 if r = 0

2 (n¡ 2) if r = 1
4 (n¡ 4) if r = 2
6 (n¡ 6) if r = 3

m =

8>><>>:
1 if r = 0
1 if r = 1
2 if r = 2
4 if r = 3

and the di¤erence between any two successive values is 2n. Thus, Theorem
8 is valid for r 6 n¡ 2: Theorem 8 is in general not valid for r > n¡ 1: For
r > n¡ 1 there are some exceptions to the recurrence relation

zj = 2n+ zj¡1 for j = 2; :::;m¡ 1 (4.22)

where z1 is given by (4.21) and for some j in the right tail zj ¡ zj¡1 > 2n.
It is not known for all n and all r where in the right tail zj ¡ zj¡1 > 2n. All
possible degree variances for graphs of order 7 are given in Table 1:
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r z = n2s2

0 0
1 10
2 12,26
3 6,20,34,48
4 6,20,34,48,62,76
5 12,26,40,54,68,82,110
6 10,24,38,52,66,80,94,108,150
7 0,14,28,42,56,70,84,98,112,140
8 10,24,38,52,66,80,94,108,122,136
9 12,26,40,54,68,82,110,124,138
10 6,20,34,48,62,76,90,104,118,132,146,160

Table 1. The possible values of z = n2s2 for graphs of
order n = 7 and size r = 0; :::; 10:

Turning to graphs with no restriction on size, the recurrence relation is
given by

zj = 2n+ zj¡¸ for j = 2; :::;m¡ 1 (4.23)

where ¸ is a integer valued lag length of the recurrence relation and zj¡zj¡¸ >
2n in the tails. It is not known for all n where in the right tail zj¡zj¡¸ > 2n,
but all values in the left tail can be derived by starting from (4.21). In
particular, the …rst three values of zj are

z1 = 0 ; z2 = 2 (n¡ 2) , z3 = 2n if n is even, and
z1 = 0 ; z2 = n¡ 1 , z3 = 2 (n¡ 2) if n is odd :

The parameter ¸ i.e. the lag length, tells us in how many subsequences
z1; :::; zm can be separated so that the di¤erence between any two succesive
terms, except for the right tail, is 2n in every subsequence. From Table 1
where n = 7, we can see that ¸ = 4,

zj = 14 + zj¡4 , z1 = 0 , z2 = 6 , z3 = 10 , z4 = 12

and in this case ¸ is equal to the size of the set of initial values. In general,
¸ and the initial values are obtained in the following way: Calculate the
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minimum value of z for every r 6
¡
n
2

¢
=2 and order the distinct minimum

values a1 < a2 < ¢ ¢ ¢ < am: Denote the set fa1; :::; amg by A: Remove those
aj that are equal to ai + 2kn = aj for some i and some k: The remaining
set is denoted ¤: The number of elements in ¤ equals the lag length ¸ of
the recurrence relation (4.23). Further, ¤ µ I; the set of initial values, and
I consists of all possible z-values within the range of ¤: It should be noted
that I might contain elements not in A: The reason is that the minimum
value z1 for …xed r might be larger than z2 for another r. For example, for
n = 15 we have

A = f0; 14; 26; 36; 44; 50; 54; 56g;
¤ = f0; 14; 26; 36; 50; 54g;
I = f0; 14; 26; 30; 36; 44; 50; 54g;
zj = 30 + zj¡6 for j = 9; 10; 11; ::: so that

z9 = 56; z10 = 60; z11 = 66; :::

The lag length of the recurrence relation (4.23) and the initial values for
n = 7; :::; 20 are listed in Table 2. For n = 4; 12; 20; 28; ::: it is possible to
replace (4.23) by an alternative recursion with lag ¸=2 so that fewer initial
values are needed. This recursion is zj = n+ zj¡¸=2:

n ¸ The initial values of z = n2s2

7 4 0,6,10,12
8 2 0,12,16
9 4 0,8,14,18
10 3 0,16,20,24
11 6 0,10,18,22,24,28,30
12 4 0,20,24,32,36
13 7 0,12,22,26,30,36,38,40,42,48
14 4 0,24,28,40,48
15 6 0,14,26,30,36,44,50,54
16 3 0,28,32,48
17 9 0,16,30,34,42,50,52,60,66,68,70,72
18 4 0,32,36,56,72,80
19 10 0,18,34,38,48,56,60,70,72,76,78,84,86,88,90
20 6 0,36,40,64,76,80,84,96
Table 2: The lag length and initial values of zj = 2n+ zj¡¸.
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All possible values of z = n2s2 for graphs of order n = 3; :::; 10 are listed
in Appendix C.

5 The distribution of the degree variance

5.1 The exact distribution

The distribution of the degree variance S2 is related to the distribution of
the ordered degree sequence, but is even more complicated to determine.
Without restriction the vertices can be labeled so that (x1 6 x2 6; :::;6 xn):
Any given ordered degree sequence and its ordered complement, (n ¡ 1 ¡
xn; :::; n ¡ 1 ¡ x1) have the same degree variance, s2, but that value is not
necessarily unique among di¤erent degree sequences. No e¤ective method of
degree sequence enumeration is known, and the number of graphs and the
number of distinct values of the degree variances increase rapidly with n, as
indicated by Table 3. For methods of graphical enumeration see, for example,
Harary (1969) , Deo (1973) or Sloane & Plou¤e (1995).

n Number of unlabeled graphs Number of distinct S2values
3 4 2
4 11 4
5 34 11
6 156 14
7 1 044 43
8 12 346 34
9 274 668 102
10 12 005 168 110

Table 3: The number of distinct S2 values and the number of
unlabeled graphs of order n for 3 6 n 6 10.

Hence, it is very time consuming to …nd the exact distribution of S2 if
n > 7: Even the task of determining the possible values of S2 is cumbersome
for modest values of n, as shown in the previous section. If we let gn(t) =
EtZn be the probability generating function of Zn and Mn (t) = EetZn be
the corresponding moment generating function, then for n = 3 and n = 4 we
have

g3(t) =
£
3pqt2 + (1¡ 3pq)¤ ; M3 (t) =

£
3pqe2t + (1¡ 3pq)¤ ; (5.1)
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g4(t) =
£
2pqt4 + (1¡ 2pq)¤3 ; M4 (t) =

£
2pqe4t + (1¡ 2pq)¤3 : (5.2)

Due to the structure of the recurrence relation (4.23), the irregularities in
the tails and the rapidly increasing number of graphs, it is much harder or
in practice impossible, to derive the corresponding functions or the distribu-
tion function for Bernoulli graphs of high order. Thus, there is a need for
approximate methods.
The exact distributions of the degree variance for Bernoulli graphs and

conditional Bernoulli graphs of order n for 3 6 n 6 6 are given in Appendix
B.

5.2 Gamma approximations

A random variable Y has a gamma distribution with parameters ® > 0 and
¯ > 0;denoted by Y 2 Gamma (®; ¯) ; if its density function is given by

g®;¯(y) =
1

¡ (®) ¯®
y®¡1e¡y=¯ ; 0 6 y <1:

For Y 2 Gamma (®; ¯) it holds that

E(Y k) =
¯k

¡ (®)
¡ (®+ k) = ¯k

k¡1Y
j=0

(®+ j) ; k > 0: (5.3)

In particular the …rst two moments yield

E(Y ) = ®¯ and V ar(Y ) = ®¯2: (5.4)

Let Ui; i = 1; 2; :::; n be a sequence of n independent identically distributed
normal random variables with mean ¹ and variance ¾2, that is, U1; :::; Un
are iid N(¹; ¾2). Let W = 1

n

Pn
i=1

¡
Ui ¡ U

¢2
where U = 1

n

Pn
i=1 Ui. Then,

according to known results (Johnson & Kotz 1970), W is gamma distributed
i.e.

W 2 Gamma
µ
n¡ 1
2
;
2¾2

n

¶
(5.5)
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and according to (5.3)

E (W ) =
n¡ 1
n

¾2 and V ar (W ) = 2
µ
n¡ 1
n2

¾4
¶
: (5.6)

The degrees of the vertices in a Bernoulli graph are binomially distributed
with ¹ = (n¡ 1) p and ¾2 = (n¡ 1) pq; and binomially distributed random
variables are approximately normally distributed if their variances are su¢-
ciently large. Thus, neglecting the weak pairewise dependence between the
vertex degrees, we can argue that S2 is approximately

Gamma

µ
n¡ 1
2
;
2 (n¡ 1) pq

n

¶
: (5.7)

However, due to the dependence between the vertex degrees, this gamma dis-
tribution does not have the correct mean and variance. A gamma distribution
with the correct mean and variance can be obtained by choosing the gamma
distribution parameters ® and ¯ so that ®¯ = E (S2) and ®¯2 = V ar (S2),
where E (S2) and V ar (S2) are given by (3.10) and (3.11). This leads to

® =
n(n¡ 1)

2 [1 + (n¡ 6)pq]pq and ¯ =
2(n¡ 2)
n2

[1 + (n¡ 6)pq] : (5.8)

The ®-parameters given by (5.7) and (5.8) are equal when pq = 1=6:
Table 4 shows the …rst three moments of S2 derived under independence

assumptions (unadjusted gamma) and adjusted for the dependence (adjusted
gamma).

Moment Unadjusted gamma Adjusted gamma

1 (n¡1)2
n
pq (n¡1)(n¡2)

n
pq

2 (n+1)(n¡1)3
n2

p2q2 (n¡1)(n¡2)2pq((n+4)(n¡3)pq+2)
n3

3 (n+3)(n+1)(n¡1)4
n3

p3q3 8(n¡1)(n¡2)3
n5

pq

+
2(n¡1)(n¡2)3(3n2+5n¡48)

n5
p2q2

+
(n¡1)(n¡2)3(n¡3)(n+4)(n2+3(n¡8))

n5
p3q3

Table 4. The …rst three approximate moments of S2:
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The exact …rst two moments of S2 equal the adjusted gamma moments,
and the exact third moment obtained from (3.3), is equal to

E
³¡
S2
¢3´

=
4 (n¡ 1) (n¡ 2)3

n5
pq (5.9)

+
2 (n¡ 1)(3) (3n¡ 4) [(n¡ 2) (n+ 6)¡ 8]

n5
p2q2

+
(n¡ 1)(3) [n4 (n+ 3)¡ 4 (3n¡ 4) [3 (n¡ 2) (n+ 6)¡ (n+ 4)]]

n5
p3q3:

Let Dn denote the di¤erence between the exact third moment of S2 and
the third adjusted gamma moment. We have that

Dn = ¡4 (n¡ 1) (n¡ 2)
3

n5
pq +

4 (n¡ 1) (n¡ 2) (3n3 ¡ 22n2 + 48n¡ 24)
n5

p2q2

¡64 (n¡ 1)
2 (n¡ 2) (n¡ 3) (n¡ 4)

n5
p3q3:

For …xed p; jDnj increase with n and the stationary points of Dn tends to
p = 1

2
and p = 1

2
§ 1

4

p
2: Thus

lim
n!1

Dn = 4p
2q2 (3¡ 16pq) , maxDn = 1

16
and minDn = ¡1

4
: (5.10)

The corresponding di¤erences between the exact moments and the moments
of the unadjusted gamma distributed variableW are tending to the following
limits: £

E
¡
S2
¢¡ E (W )¤ ! ¡pq ,

E
³
(S2)

2
´
¡ E (W 2)

n
! ¡2p2q2 and

E
³
(S2)

3
´
¡ E (W 3)

n2
! ¡3p3q3: (5.11)

Thus, the unadjusted gamma approximation gives a bias to the mean and
increasing biases to higher moments. The adjusted gamma approximation
with correct …rst two moments has a bias for the third moment which is
bounded by ¡1=4 and 1=16:
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Since the distribution of S2 is discrete and the gamma distribution is
continuous, we can improve the approximation by the use of a continuity
correction. Let Z = n2S2 , denote the ordered distinct values of Z by z1 <
z2 < ¢ ¢ ¢ < zm and let s2j = zj=n2 for j = 1; :::;m: We have

P (S2 = s2j) = P

µ
zj ¡ zj ¡ zj¡1

2
< Z < zj +

zj+1 ¡ zj
2

¶
= P (zj ¡ a < Z < zj + b) = P

µ
s2j ¡

a

n2
< S2 < s2j +

b

n2

¶
¼ G®;¯

µ
s2j +

b

n2

¶
¡G®;¯

³
s2j ¡

a

n2

´
¼ a+ b

n2
g®;¯

¡
s2j
¢
=
s2j+1 ¡ s2j¡1

2
g®;¯

¡
s2j
¢
; (5.12)

P (S2 6 s2j) = P (S2 6 s2j +
b

n2
) ¼ G®;¯

µ
s2j +

b

n2

¶
(5.13)

and

P (S2 > s2j) = P (S2 > s2j ¡
a

n2
) ¼ 1¡G®;¯

³
s2j ¡

a

n2

´
: (5.14)

where a = zj¡zj¡1
2

and b = zj+1¡zj
2

:
The values z4; z5; :::; zm¡1 are not all known for n > 10: However by

writing

z = 2n

"
r +

nX
i=1

µ
xi
2

¶#
¡ 4r2; (5.15)

where r is the number of edges, we see that z is even and z is also divisible
by 4 if n is even.

Theorem 9 For n > 2 it holds that

min
16j<m

(zj+1 ¡ zj) = 2 if n is odd;

min
16j<m

(zj+1 ¡ zj) = 4 if n is even.
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Proof. Let G be a graph of order n, size r and let zj+1 = nc¡ 4r2
where c =

P
x2i . Add one edge to G and let

zj = n (c+¢)¡ 4 (r + 1)2 : We have that

zj+1 ¡ zj =
½
2 if r = n¢¡2

8

4 if r = n¢
8
:

i) For n = 3; 7; 11; :::; and r = n¢¡2
8

: Let the new edge connect
two vertices previously of degree one, i.e. ¢ = 6 and zj+1 ¡ zj = 2:
ii) For n = 5; 9; 13; :::;and r = n¢¡2

8
: Let the new edge connect two

vertices previously of degree zero, i.e. ¢ = 2 and zj+1 ¡ zj = 2:
iii) For n = 4; 6; 8; :::;and r = n¢

8
: Let the new edge connect a vertex

previously of degree zero to a vertex previously of degree
one, i.e. ¢ = 4 and zj+1 ¡ zj = 4:
That is, if we observe a value s2j and don’t know the values of s

2
j¡1 and

s2j+1 we can use

a = b =

½
1 if n is odd
2 if n is even

(5.17)

in (5.12) - (5.14).

Since hypergeometric random variables can be approximated by the bi-
nomial distribution it follows that gamma approximation is valid for S2 in
Bernoulli graphs conditional on the size. Thus, S2 in the R-conditional
Bernoulli graph is approximately Gamma (® ; ¯) where

® =
r (n+ 2) [n (n¡ 1)¡ 4] [n (n¡ 1)¡ 2r]
2n2 (r ¡ 1) [n (n¡ 1)¡ 2 (r + 1)] (5.18)

and

¯ =
4 (r ¡ 1) [n (n¡ 1)¡ 2 (r + 1)]
(n+ 2) (n+ 1) [n (n¡ 1)¡ 4] : (5.19)

As above for unconditional Bernoulli graphs, we can improve the approx-
imation by the use of a continuity correction. For the degree variance S2 in
R-conditional Bernoulli graphs we use

a = b = n: (5.20)

in (5.12) - (5.14).
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5.3 Simulation results

In the …gures of this section F (s2) means the simulated distribution function
of S2 and G (s2) means the gamma distribution function in the adjusted
approximation. Results based on the exact distribution of S2 for n = 6
and results based on the approximate distribution of S2 obtained from 107

simulated graphs for each n = 7; 8; :::; 15; 20; 30 and 106 simulated graphs for
n = 100 show that the adjusted gamma approximation to the distribution
function of S2 in Bernoulli graphs works well, especially when P (S2 > s2) 6
0:10. For n = 8; :::; 12 the adjusted approximation is very good when p is
close to 0:2: For graphs of higher order the approximation is better when the
variance is higher i.e. when p tends to 0:5. When p is …xed the accuracy of
the approximation for graphs of order n is better than the accuracy for graphs
of order n+1 if n is even. The latter is due to the relative smoothness of the
distribution when n is even and it is re‡ected by a lower lag length of the
recurrence relation (4.23). Figure 3 and 4 show the di¤erence in smoothness
of the distribution for n = 7 and n = 10. Table 5 shows the di¤erences
between the exact distribution of S2 and the adjusted and unadjusted gamma
approximations respectively for n = 6, p = 0:1 and p = 0:5. From Table
6 it can be seen that the unadjusted gamma approximation is bad, which
agree with (5.11). Details of the di¤erences between the simulated and the
approximated distribution function are shown in Figure 5 and 6.
Further, to investigate the accuracy of the adjusted gamma approxima-

tion to the distribution function of S2 conditional on R, 106 graphs were
simulated for n = 7; :::; 12; 15 and various values of r. The results in Table
7 show that the gamma approximation to the distribution function of S2 in
uniform random graphs is better than the corresponding approximation in
Bernoulli graphs. This is explained by the smoothness of the distribution in
uniform random graphs, which agree with the recurrence relation (4.22) and
can also be seen from Figure 7.
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n = 6 , p = 0:1

z P (Z = z) Adj. di¤. Unadj. di¤. P (Z 6 z) Adj. di¤. Unadj. di¤.

0 .210155 -.036779 .125352 .210155 -.036779 .125352
8 .467669 .133990 .145285 .677824 .097211 .270637
12 .051256 -.147356 -.228063 .729080 -.050145 .042573
20 .171050 .063438 .005814 .900130 .013293 .048388
24 .051431 -.004643 -.031431 .951561 .008651 .016957
32 .015618 -.012975 -.022267 .967179 -.004324 -.005311
36 .023013 .008633 .006686 .990192 .004308 .001376
44 .007374 .000210 .000620 .997566 .004519 .001996
48 .000314 -.003230 -.002396 .997880 .001289 -.000400
56 .001913 .000170 .000850 .999793 .001459 .000450
60 .000140 -.000715 -.000270 .999933 .000744 .000180
68 .000017 -.000400 -.000138 .999950 .000344 .000042
72 .000029 -.000174 -.000029 .999980 .000170 .000013
80 .000021 -.000078 -.000001 1.000000 .000093 .000013

n = 6, p = 0:5

z P (Z = z) Adj. di¤. Unadj. di¤. P (Z 6 z) Adj. di¤. Unadj. di¤.

0 .005249 .002218 -.003899 .005249 .002218 -.003899
8 .097961 .047829 .038574 .103211 .050047 .034675
12 .076904 -.048359 -.024155 .180115 .001688 .010520
20 .202148 .033779 .082007 .382263 .035467 .092526
24 .104370 -.065564 -.017482 .486633 -.030098 .075045
32 .181274 .035667 .068299 .667908 .005570 .143344
36 .070801 -.041438 -.028068 .738709 -.035868 .115276
44 .106201 .025849 .023094 .844910 -.010020 .138370
48 .049439 -.005033 -.018376 .894348 -.015052 .119994
56 .056763 .021352 .002674 .951111 .006300 .122668
60 .021973 -.000295 -.020396 .973084 .006005 .102273
68 .021973 .008342 -.010732 .995056 .014348 .091541
72 .004578 -.003582 -.020363 .999634 .010766 .071178
80 .000366 -.004427 -.018460 1.000000 .006338 .052718

Table 5. The di¤erences between the:exact distribution of Z = n2S2

and the adjusted and unadjusted gamma approximations respectively
for n = 6, p = 0:1 and p = 0:5:
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Table 6 below shows the Kolmogorov distance, i.e.the greatest absolute
deviation between the simulated distribution function of S2 and the adjusted
and the unadjusted gamma approximation respectively for various values of
n and p: The corresponding distance in the upper 10% tail is given within
parenthesis. Table 7 on page 35 shows the corresponding values for the
adjusted gamma approximation to S2 conditional on R:

n p = 0:1 p = 0:2 p = 0:4 p = 0:5

7 Adj. .1132 (.0252) .0609 (.0112) .0455 (.0077) .0474 (.0088)
Unadj. .2854 (.0547) .1586 (.0629) .1319 (.1234) .1334 (.1064)

8 Adj. .0348 (.0063) .0121 (.0017) .0197 (.0047) .0202 (.0048)
Unadj. .1557 (.0104) .1088 (.0661) .1118 (.0973) .1100 (.0946)

9 Adj. .0873 (.0162) .0193 (.0053) .0241 (.0042) .0236 (.0051)
Unadj. .1617 (.0332) .1157 (.0573) .1053 (.0867) .1076 (.0936)

10 Adj. .0370 (.0019) .0057 (.0014) .0114 (.0028) .0121 (.0033)
Unadj. .1387 (.0113) .0981 (.0552) .0939 (.0781) .0944 (.0801)

12 Adj. .0245 (.0054) .0081 (.0012) .0101 (.0025) .0106 (.0028)
Unadj. .1366 (.0164) .0949 (.0508) .0883 (.0698) .0883 (.0734)

15 Adj. .0257 (.0087) .0135 (.0034) .0108(.0028) .0107 (.0027)
Unadj. .1205 (.0213) .0888 (.0466) .0822 (.0595) .0816 (.0614)

20 Adj. .0136 (.0029) .0056 (.0013) .0046 (.0014) .0049 (.0015)
Unadj. .0417 (.0727) .0715 (.0352) .0668 (.0478) .0668 (.0486)

30 Adj. .0111 (.0018) .0045 (.0013) .0028 (.0012) .0039 (.0017)
Unadj. .0716 (.0110) .0548 (.0281) .0546 (.0357) .0544 (.0367)

100 Adj. .0020 (.0011) .0033 (.0015) .0011 (.0006) .0009 (.0004)
Unadj. .0301 (.0075) .0287 (.0131) .0287 (.0154) .0289 (.0162)

Table 6: The Kolmogorov distances for S2: The distances
in the 10% quantiles are given within parenthesis.

Figure 3 and 4 on page 32 show the distribution of Z i.e. n2S2 for p = 0:5
and n = 7 and 10 respectively. Note that the di¤erent lag lengths of the
recurrence relation (4.23) are re‡ected in the …gures. For n = 7 the lag
length is 4 and the lag length is 3 for n = 10.
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Figure 3 The simulated distribution of Z for n = 7 and p = 0:5.
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Figure 4 The simulated distribution of Z for n = 10 and p = 0:5.

Figure 5 below shows the di¤erences F (s2)¡G(s2) plotted against F (s2)
for n = 15: The dependence structure of the di¤erences varies for di¤erent
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values of n and p and can hardly be modeled without knowledge of the true
distribution. In Figure 6 the di¤erences between the simulated distribution
function of S2 and the adjusted gamma approximation are plotted against z
for n = 15 and p = 0:5: From Figure 6 we get an inkling of the structure of
the di¤erences.
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Figure 5. F (s2)¡G(s2) plotted against F (s2) for n = 15:
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n

7 r = 5 r = 7 r = 9 r = 10
.0301 (.0074) .0421 (.0071) .0355 (.0083) .0282 (.0084)

10 r = 5 r = 10 r = 17 r = 22
.0103 (.0103) .0125 (.0030) .0116 (.0036) .0117 (.0035)

12 r = 5 r = 10 r = 15 r = 30
.0118 (.0064) .0052 (.0038) .0077 (.0028) .0111 (.0034)

15 r = 5 r = 10 r = 20 r = 50
.0201 (.0075) .0041 (.0029) .0034 (.0028) .0062 (.0024)

Table 7. The Kolmogorov distances for S2conditional on R = r:
The distances in the upper 10% tails are given within parenthesis.
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Figure 7. The simulated distribution of Z conditional on R = 50.

6 Application to Padgett’s Florentine fami-
lies

One part of the network data compiled by Padgett, (Padgett & Ansell (1993))
consist of marriage relations among 16 families in the 15th century Florence,
Italy. In Figure 8 we have drawn an edge between a pair of vertices i.e. a
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pair of families if a member of one family marries a member of the other.
A more detailed description of the network can be found in Wasserman &
Faust (1994).

Figure 8. Marital relations between Padgett’s Florentine families.

The statistics of the network are:

n = 16 , r = 20 , bp = 1

6
and s2 = 2:125:

If we assume that the edges are generated according to a Bernoulli model,
S2 is approximately Gamma(6:977 , 0:261) and P (S2 > 2:125) = 0:2588:
Conditional on R = 20, S2 is approximately Gamma(8:827 , 0:208) and
P (S2 > 2:125) = 0:2443: Thus, there is no strong evidence against the hy-
pothesis that there is no centrality. Wasserman and Faust (1994) come to
the same conclusion in some of their investigations of these data. However,
they also demonstrated some other …ndings obtained with other models.
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A Product moments and moments of the de-
gree variance

If U 2 Bin(n ¡ t; p); then is E ¡Uk¢ = Pk
j=1

S(k;j)(n¡t)!
(n¡t¡j)! p

j ; where S(k; j) =

1
j!

jP
i=0

(¡1)i ¡j
i

¢
(j ¡ i)k are the Stirling numbers of the second kind (Johnson,

Kotz & Kemp, 1992). The product moment EXw1
1 X

w2
2 ¢ ¢ ¢Xwt

t is denoted by
Aw1w2¢¢¢wt. Using conditional expectation we can, for instance, obtain A22 in
the following way. Let X1;2 = 1 if there is an edge connecting the vertices 1
and 2, and let X1;2 = 0 otherwise.

EX2
1X

2
2 = A22 = pE

¡
X2
1 jX1;2 = 1

¢
E
¡
X2
2 jX1;2 = 1

¢
+qE

¡
X2
1 jX1;2 = 0

¢
E
¡
X2
2 jX1;2 = 0

¢
= p

¡
E(U + 1)2

¢2
+ q

¡
EU2

¢2
; (U 2 Bin(n ¡ 2 ; p))

=
£
(n¡ 1) p + (n¡ 1) (n¡ 2) p2¤2 + [2 (n¡ 2) p+ 1]2 pq

In general, for Xi 2 Bin(n ¡ 1; p), i = 1; :::; n and Ui 2 Bin(n ¡ t; p),
i = 1; 2; :::; t , t = 1; :::; n we have

Aw1w2¢¢¢wt =
2(

t
2)P

i=1

ai , where

a1 = q(
t
2)EUw11 EU

w2
2 ¢ ¢ ¢ EUwt¡1t¡1 EU

wt
t

a2 = pq(
t
2)¡1EUw11 EU

w2
2 ¢ ¢ ¢ E (Ut¡1 + 1)wt¡1 E (Ut + 1)wt

¢
¢ (A.1)

¢
a
2(

t
2)¡1

= p(
t
2)¡1qE (U1 + t¡ 1)w1 ¢ ¢ ¢E (Ut¡1 + t¡ 2)wt¡1 E (Ut + t¡ 2)wt

a
2(

t
2) = p(

t
2)E (U1 + t¡ 1)w1 ¢ ¢ ¢E (Ut¡1 + t¡ 1)wt¡1 E (Ut + t¡ 1)wt
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For example,

A321 =
8X
i=1

ai where

a1 = q3EU1EU
2
2EU

3
3

a2 = pq2EU1E (U2 + 1)
2E (U3 + 1)

3

a3 = pq2E (U1 + 1)EU
2
2E (U3 + 1)

3

a4 = pq2E (U1 + 1)E (U2 + 1)
2EU33

a5 = p2qE (U1 + 1)E (U2 + 1)
2E (U3 + 2)

3

a6 = p2qE (U1 + 1)E (U2 + 2)
2E (U3 + 1)

3

a7 = p2qE (U1 + 2)E (U2 + 1)
2E (U3 + 1)

3

a8 = p3E (U1 + 2)E (U2 + 2)
2E (U3 + 2)

3

Although the calculations based on (A.1) are straight forward they are
somewhat cumbersome. An alternative approach is given by Frank (1979).
Below follows some general formulas and formulas for special cases deduced
from (A.1), that are integral parts of the moments of Section 3.

EX1X2 ¢ ¢ ¢Xt = A[t]

=

b t2cX
c=0

µ
t

2c

¶µ
2c

c

¶
c!

2c
(n¡ 1)t¡2c pt¡cqc

= (n¡ 1)t pt + t!
b t2cX
c=1

2¡c (n¡ 1)t¡2c
c! (t¡ 2c)! pt¡cqc

EXw
1 X2 = Aw1

= (n¡ 1) p
wX
j=1

S (w; j) (n¡ 1)!
(n¡ 1¡ j)! pj + q

wX
j=1

jS (w; j) (n¡ 2)!
(n¡ 1¡ j)! pj

=
wX
j=1

S (w; j)
¡
(n¡ 1)2 p+ jq¢ (n¡ 2)!

(n¡ j ¡ 1)!p
j
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EXw
1 X

w
2 = Aww

= p

Ã
wX
k=1

kX
j=1

µ
k

j

¶
S(k; j) (n¡ 2)!
(n¡ 2¡ j)! p

j + 1

!2
+ q

Ã
wX
j=1

S(w; j) (n¡ 2)!
(n¡ 2¡ j)! pj

!2

A211 = (n¡ 1)4 p3 + (3n¡ 1) p2q + (n¡ 3)
¡
2 (n¡ 1)¡ n2 (n¡ 2)¢ p3q

A42 = p+ (n+ 16) (n¡ 2) p2
+2 (n¡ 2) ¡4n2 + 15n¡ 59¢ p3
+(n¡ 2) (n¡ 3) ¡13n2 + 21n¡ 114¢ p4
+(n¡ 2) (n¡ 3) ¡7n3 ¡ 22n2 ¡ 49n+ 136¢ p5
(n¡ 2)2 (n¡ 3) (n¡ 4) ¡n2 ¡ 2n¡ 7¢ p6

A411 = (3n+ 11) p2 +
¡
n3 + 32n2 ¡ 69n¡ 64¢ p3

+
¡
7n4 + 7n3 ¡ 212n2 + 362n+ 66¢ p4

+
¡
6n5 ¡ 39n4 + 12n3 + 339n2 ¡ 570n+ 36¢ p5

+
¡
n6 ¡ 12n5 + 47n4 ¡ 40n3 ¡ 144n2 + 268n¡ 48¢ p6

A321 = (3n+ 5) p2 +
¡
n3 + 17n2 ¡ 30n¡ 40¢ p3

+(n¡ 3) ¡4n3 + 23n2 ¡ 59n¡ 26¢ p4
+2 (n¡ 3) ¡2n4 ¡ 3n3 ¡ 28n2 + 51n+ 5¢ p5
+(n¡ 2) (n¡ 3) ¡n4 ¡ 5n3 ¡ 2n2 + 26n¡ 2¢ p6

A3111 = 3p2 +
¡
6n2 + 24n¡ 48¢ p3

+
¡
n4 + 23n3 ¡ 81n2 ¡ 46n+ 142¢ p4

+
¡
3n5 ¡ 6n4 ¡ 69n3 + 210n2 ¡ 42n¡ 132¢ p5

+
¡
n6 ¡ 9n5 + 20n4 + 26n3 ¡ 120n2 + 58n+ 36¢ p6
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A222 = 3 (n+ 1) p2 +
¡
n3 + 12n2 ¡ 21n¡ 20¢ p3

+3 (n¡ 3) ¡n3 + 6n2 ¡ 10n¡ 6¢ p4
+3 (n¡ 3) ¡n4 ¡ 17n2 + 20n+ 4¢ p5
+n (n¡ 3)2 ¡n3 ¡ 3n2 + 12¡ 6n¢ p6

A2211 = 3p2 +
¡
6n2 + 12n¡ 28¢ p3

+
¡
n4 + 14n3 ¡ 40n2 ¡ 58n+ 98¢ p4

+
¡
2n5 + n4 ¡ 68n3 + 145n2 + 12n¡ 104¢ p5

+
¡
n6 ¡ 8n5 + 13n4 + 34n3 ¡ 96n2 + 28n+ 32¢ p6

A21111 = 3 (5n¡ 1) p3 + ¡10n3 + 9n2 ¡ 105n+ 50¢ p4
+
¡
n5 + 9n4 ¡ 70n3 + 68n2 + 102n¡ 74¢ p5

+
¡
n6 ¡ 7n5 + 6n4 + 40n3 ¡ 62n2 ¡ 18n+ 28¢ p6

From the product moments we have

m2 = E
¡
Z2
¢
= E

Ã
n

nX
i=1

(Xi ¡X)2
!2

= n2
£
nEX4 + n (n¡ 1)A22

¤
+ n4EX

4

¡2n2 £EX4 + 2 (n¡ 1)A31 + (n¡ 1)A22 + (n¡ 1) (n¡ 2)A211
¤

= (n¡ 2)EX4 ¡ 4 (n¡ 1)A31 + (n¡ 1) (n¡ 2)A22
¡2 (n¡ 1) (n¡ 2)A211 + n4EX4

= 2n (n¡ 1) (n¡ 2)2 pq + n(4) (n¡ 2) (n+ 4) p2q2 ;
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m3 = E
¡
Z3
¢
= E

Ã
n

nX
i=1

(Xi ¡X)2
!3

= n6EX6
i ¡ 3n4EX4

i

Ã
nX
i=1

Xi

!2
+ 3n2EX2

i

Ã
nX
i=1

Xi

!4
¡E

Ã
nX
i=1

Xi

!6
= n2 (3 + n (n¡ 3))EX6 ¡ 6n ¡n(3)¢A51 + 3n2 (n¡ 1) (n (n¡ 3) + 7)A42

¡3n ¡n(3)¢ (n¡ 6)A411 ¡ 6n ¡n(3)¢A33 ¡ 12n ¡n(3)¢ (n¡ 4)A321
+12n

¡
n(4)

¢
A3111 + n

¡
n(3)

¢
(n (n¡ 3) + 9)A222

¡3n ¡n(4)¢ (n¡ 6)A2211 + 3n ¡n(5)¢A21111 ¡ n6EX6

= 4n(3) (n¡ 2)2 pq + 2n(4) (3n¡ 4) [(n¡ 2) (n+ 6)¡ 8] p2q2
+n(4)

£
n4 (n+ 3)¡ 4 (3n¡ 4) [3 (n¡ 2) (n+ 6)¡ (n+ 4)]¤ p3q3

and

n5E
³¡
S2i
¢2´

= n5E

Ãµ
1

n

¡
Xi ¡X

¢2¶2!

= (n¡ 2) ¡(n¡ 1)2 + 1¢EX4 ¡ 4 (n¡ 1) ¡(n¡ 2)2 + n¢A31
+6 (n¡ 1) (n¡ 2)A22 + 6 (n¡ 1) (n¡ 2) (n¡ 4)A211
¡4 (n¡ 1)(3)A[4] + n3EX

4

= (n¡ 1) (n¡ 2) (n (n¡ 6) + 12) pq + 3 (n¡ 1)(3) (n (n¡ 2) + 8) p2q2:

For R-conditional Bernoulli graphs we have (Johnson, Kotz & Kemp,
1992)

EX(k) =
r! (n¡ 1)!

³
n(n¡1)
2

¡ k
´
!

(r ¡ k)! (n¡ 1¡ k)!
³
n(n¡1)
2

´
!
:
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Lengthy computations yield

EX1 =
2r

n
, EX2

1 =
2r

n
+
4r (r ¡ 1)
(n+ 1)n

;

EX3
1 =

2r

n
+
12r (r ¡ 1)
(n+ 1)n

+
8r (r ¡ 1) (r ¡ 2) (n¡ 3)
(n+ 1)n (n2 ¡ n¡ 4) ;

EX4
1 =

2r

n
+
28r (r ¡ 1)
(n+ 1)n

+
48r (r ¡ 1) (r ¡ 2) (n¡ 3)
(n+ 1)n (n2 ¡ n¡ 4)

+
16r (r ¡ 1) (r ¡ 2) (r ¡ 3)

(n+ 2) (n+ 1)n (n2 ¡ n¡ 4)
and

EX2
1X

2
2 =

2r

n (n¡ 1) +
4r (r ¡ 1) (4 + n)
(n+ 1)n (n¡ 1) +

16r (r ¡ 1) (r ¡ 2) (n2 ¡ 5)
(n+ 1)n (n¡ 1) (n2 ¡ n¡ 4)

+
16r (r ¡ 1) (r ¡ 2) (r ¡ 3) (n¡ 2)
(n+ 2)n (n¡ 1) (n2 ¡ n¡ 4) :

Finally we get

E
¡
S2 j R = r¢ = E

Ã
1

n

nX
i=1

X2
i ¡

µ
2r

n

¶2!
= EX2

1 ¡ (EX1)2

=
2r (n2 ¡ n¡ 2r)
n2 (n+ 1)

;

E
³¡
S2 j R = r¢2´ = 1

n
EX4

1 +
n¡ 1
n

EX2
1X

2
2 ¡

8r2

n2
EX2

1 +

µ
2r

n

¶4
and

V ar
¡
S2 j R = r¢ =

1

n
EX4

1 +
n¡ 1
n

EX2
1X

2
2 ¡

¡
EX2

1

¢2
=

8r (r ¡ 1) (n2 ¡ n¡ 2r) (n2 ¡ n¡ 2r ¡ 2)
n2 (n+ 1)2 (n+ 2) (n2 ¡ n¡ 4) :
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B The exact distribution of the degree vari-
ance for 36n66

Table B1 below contains the values of the parameters needed to determine
the following probabilities:

P
³
S2 =

z

n2

´
=

mX
i=1

aip
riq(

n
2)¡ri +

mX
i=1

aip
(n2)¡riqri

P
³
S2 =

z

n2
j R = ri

´
=

ai¡(n2)
ri

¢
where m = m (n; z) , ai = ai (n; z) , ri = ri (n; z) for i = 1; :::;m:
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n z m a1; :::; am r1; :::; rm

3 0 1 1 0
3 2 1 3 1
4 0 2 1; 3 0; 2
4 4 2 6; 6 1; 3
4 8 1 12 2
4 12 1 4 3
5 0 2 1; 6 0; 5
5 4 2 15; 30 2; 3
5 6 2 10; 70 1; 4
5 10 1 60 5
5 14 2 30; 60 2; 3
5 16 1 75 4
5 20 1 30 5
5 24 1 30 3
5 26 1 60 4
5 30 1 30 5
5 36 1 5 4

6 0 3 1; 15; 70 0; 3; 6
6 8 5 15; 45; 270; 465; 810 1; 2; 4; 5; 7
6 12 2 180; 1080 3; 6
6 20 4 60; 480; 972; 1800 2; 4; 5; 7
6 24 2 180; 1530 3; 6
6 32 3 405; 810; 1755 4; 5; 7
6 36 2 80; 1080 3; 6
6 44 3 180; 480; 1080 4; 5; 7
6 48 1 810 6
6 56 3 30; 270; 630 4; 5; 7
6 60 1 360 6
6 68 1 360 7
6 72 1 75 6
6 80 1 6 5

Table B1. The exact distribution of the degree
variance for 3 6 n 6 6:
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C The possible values of the degree variance
times n2 for 36n610

n = 3 :
0 2

n = 4 :
0 4 8 12

n = 5 :
0 4 6 10 12 14 16 20 24 26 30 36

n = 6 :
0 8 12 20 24 32 36 44 48 56 60 68 72 80

n = 7 :
0 6 10 12 14 20 24 26 28 34 38 40 42 48 52 54 56 62 66 68 70 76 80 82 84

90 94 96 98 104 108 110 112 118 122 124 132 136 138 140 146 150 160

n = 8 :
0 12 16 28 32 44 48 60 64 76 80 92 96 108 112 124 128 140 144 156 160

172 176 188 192 204 208 220 224 236 240 252 272 300

n = 9 :
0 8 14 18 20 26 32 36 38 44 50 54 56 62 68 72 74 80 86 90 92 98 104 108

110 116 122 126 128 134 140 144 146 152 158 162 164 170 176 180 182 188
194 198 200 206 210 216 218 224 230 234 236 242 248 252 254 260 266 270
272 278 284 288 290 296 302 306 308 314 320 324 326 332 338 342 344 350
356 360 362 368 374 378 380 386 392 396 398 404 410 414 416 422 428 432
434 446 450 458 470 504

n = 10 :
0 16 20 24 36 40 44 56 60 64 76 80 84 96 100 104 116 120 124 136 140

144 156 160 164 176 180 184 196 200 204 216 220 224 236 240 244 256 260
264 276 280 284 296 300 304 316 320 324 336 340 344 356 360 364 376 380
384 396 400 404 416 420 424 436 440 444 456 460 464 476 480 484 496 500
504 516 520 524 536 540 544 556 560 564 576 580 584 596 600 604 616 620
624 636 640 644 656 660 664 676 680 684 696 700 704 716 744 756 784
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