Self-generating sets, integers with missing blocks, and

substitutions

J.-P. Allouche J. Shallit

CNRS, LRI School of Computer Science
Batiment 490 University of Waterloo

F-91405 Orsay Cedex Waterloo, Ontario, N2L 3G1

France Canada

allouche@lri.fr shallit@graceland.uwaterloo.ca
G. Skordev

CEVIS, Universitat Bremen
Universitatsallee 29
D-28359 Bremen
Germany
skordev@cevis.uni-bremen.de

Abstract

We give a new construction of the Kimberling sequence defined by:
(a) 1 belongs to S;
(b) if the positive integer x belongs to S, then 22 and 4z — 1 belong to S; and
(c) nothing else belongs to S,

hence
S$=12346781112141516 ---

which is sequence A052499 in the Sloane’s On-line Encyclopedia of Integer Sequences,
by proving that this sequence is equal to sequence 14+ A003754, the sequence of in-
tegers whose binary expansion does not contain the block of digits 00. We give a
general framework for this sequence and similar sequences, in relation to automatic or
morphic sequences and to nonstandard numeration systems such as the lazy Fibonacci
expansion.
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1 Introduction

In a recent paper, Kimberling [11] studied the set of positive integers S defined as follows:
(a) 1 belongs to S;
(b) if the positive integer x belongs to S, then 2z and 4x — 1 belong to S; and
(c) nothing else belongs to S.

Hence, writing the integers in S in increasing order, we obtain
S=12346781112141516 ---.
Kimberling found a close relationship between this set and the Fibonacci sequence
0100101001 ---,

defined as the fixed point of the morphism 0 — 01, 1 — 0.

Here we give a different proof of Kimberling’s result, showing in particular that the
Kimberling sequence (sequence A052499 in [19]) is equal to 1+ A003754, where A003754 is
the sequence of integers whose binary expansion does not contain the block of digits 00. We
show furthermore that Kimberling’s result can be considered as a typical example of results
for sequences defined by a “missing digits” or “missing blocks” property.

2 The sequence studied by Kimberling

2.1 Kimberling’s result

The main statement in [11] can be summarized as follows.

Theorem 1 (Kimberling) Let S be the increasing sequence of integers whose correspond-
ing set, also denoted S, is defined as follows:

(a) 1 belongs to S;
(b) if the positive integer x belongs to S, then 2x and 4z — 1 belong to S; and
(¢) nothing else belongs to S.

Hence
S:(S(n))n20:123467811 1214 1516 ---

Then, omitting the first term, this sequence reduced modulo 2 is the Fibonacci sequence
0100101001 ---, defined as the fived point of the morphism 0 — 01, 1 — 0.
In particular the ranks of the even terms of this sequence, i.e., the terms of the sequence

are given by R(n) = [ (255)n].



Remark 1 The occurrence of the golden ratio % is unexpected, since the condition defin-

ing S is a condition on the binary expansion of the integers involved.

Remark 2 For more about the sequence R = (R(n)),>0, see sequence A000201 in [19].

2.2 Integers whose binary expansion has no 00

Let us change the set S slightly by translating it. Define the set 7" by T := S — 1. In other
words,
T := (T(n))nZOZOI 2356710111314 15 ---

The following lemma is straightforward.

Lemma 1 The set of integers in the increasing sequence T = (T'(n))n>o, also denoted T,
can be defined as follows:

(a) 0 belongs to T;
(b) if the non-negative integer x belongs to T, then 2x + 1 and 4x + 2 belong to T; and
(¢) nothing else belongs to T.

The next lemma is an easy consequence of Lemma 1. We remark that we assume the
binary expansion of a number does not start with any leading zeros.

Lemma 2 The set T is the set of integers that do not contain the block 00 in their binary
ETPAnsLon.

As an immediate corollary we have

Corollary 1 Sequences A052499 and A003754 in [19] are related by the formula A052499 =
1+ A003754.

2.3 The characteristic function of the set 7' is 2-automatic

In this section we prove that the characteristic function of the sequence 1" is 2-automatic,
and also that the sequence 7" reduced modulo any integer > 2 is morphic. For definitions
and properties of automatic and morphic sequences we refer to [5]. It is known that the
characteristic function of a set defined by conditions similar to those in Lemma 1 is 2-
automatic. However, we give a quick proof for the characteristic function of 7', since we will
need an explicit uniform morphism.

Proposition 1 Define the morphism o over the alphabet {a,b,c,d} as follows: o(a) = ab,
o(b) = ¢b, o(c) = db, and o(d) = dd. Define the map f : {a,b,c,d} — {0,1} by f(a) =
f(b) = f(c) =1, f(d) = 0. Then the image under f of the fized point of the morphism o
beginning with a s the characteristic function of the set T'.



Proof. Using Lemma 1 it is clear that the characteristic function of T', say (u,)n,>0, satisfies
the relations

o uy =1,

® Uyl = Uy, for all n > 0,

{0, if n > 1;
® Uyp =

1, if n=0.
Up, 010 1 00
Hence, defining Vi(n) := [ wug, |, Ag:= | 0 0 1 J,and 4 :== | 1 0 0 |, we
Udn 0 01 000
have
V(2n) = 4oV (n), and V(2n+1) = A,V (n)
1 1 1 0
for all n > 0. Defining a :=V(0)=1| 1 |,b:=| 1 ],e:=| 0 |,andd:=| 0 |,
1 0 0 0

and the morphism o by o(a) = ab, o(

hence the result. O

2.4 Generating the sequence (7" modulo 2) by substitution

If we consider the 2-dimensional sequence tn , i.e., the sequence
n mod 2 50

(%) (4) (5) (%)

it is clear that it can be obtained by combining the two morphisms o and A\, where A is
defined on {0,1} by A(0) = 01, A(1) = 01. In other words we have just proved the following
proposition.

Unp,

Proposition 2 The sequence << 1 mod 2

>> can be obtained by taking the itmage under
n>0

@ B =

the map g of the fixed point of the morphim A defined on the alphabet A := ( 0 )

(v)e=(5)o=(0)e=() m

A(A) = AB, A(B) =CB, A(C) = DB, A(D) = DE, A(E) = DE,

s = (o) amr= (1) s0=() ao= (7). am= (7).



An immediate corollary gives a way of generating the sequence T mod 2; it suffices, in
the construction of Proposition 2, to erase the letters whose first coordinate is d, i.e., the
letters D and E. But this can also be done by restricting the morphism to the alphabet

{A, B,C} and erasing the letters D and E from the images of A, B and C by the original
morphism.

Proposition 3 The sequence (T mod 2) can be obtained as the image by the map h of the
fized point of the morphism 1 on the alphabet {A, B,C'}, where 1) and h are defined by

W(A) = AB
W(B) = CB
¥»(C) =B

and h(A) =0, h(B) = 1, h(C) = 0.

Actually the same method gives a more general result.

Proposition 4 Let e be an integer > 2. Then the sequence (T mod e) is morphic (i.e., it
can be obtained as the image of the fized point of a morphism on some finite alphabet).

Proof. The proof is left to the reader. The main two ideas are to take a cartesian product
of two morphisms where the second morphism is a 2-morphism that generates the periodic
sequence (012 --- (e—2) (e—1)012 ---). One can take

if e is even, if e is odd,
(0 01 (0 — 01
1 — 23 1 — 23
2 45 2 — 45
-2 — (e—=2)(e—1) el — (e—1)0
¢ — 01 efl — 12
1+¢ — 23 efd — 34
(L (e—=1) — (e—=2)(e—1) L (e—1) — (e—=2)(e—1)

For example the patient reader can check that the sequence (7' mod 3) can be generated as
the image under the map

p,s,t—0, qgov—1, ru—2

of the fixed point of the morphism

p—pq, q—rs, s—tq, r—u, t—q, uU—vVU, V—S.



Remark 3 The construction of a morphism obtained by “erasing” some letters in a given
morphism was easy here, since the letters we erased had the property that their images under
the original morphism were also erased. Nevertheless this restriction can be dropped (see
Theorem 3 below).

2.5 Complements

Actually it happens that the sequence (7" mod 2) is a fixed point of a simpler morphism,
namely the morphism defined on {0,1} by 0 — 01, 1 — 011. Furthermore the shifted
sequence obtained from (7" mod 2) by erasing the first 0 is the fixed point of the morphism
1 — 10,0 — 1 (i.e., it is equal to the Fibonacci sequence beginning with 1).

Proposition 5

e The sequence (T mod 2) = (T'(n) mod 2),>¢ is the fized point of the morphism p defined
on {0,1} by u(0) =01, p(1) = 011.

e The sequence (T'(n + 1) mod 2),>¢ is the fixed point of the morphism 1 — 10, 0 — 1
(i.e., it is equal to the Fibonacci sequence beginning with 1).

Proof.

e We know from Proposition 3 that the sequence (7'(n) mod 2),>¢ is equal to the se-
quence klim h(y*(A)).
—00

We first prove by induction on k > 0 that 1 h(*(A)) = h(v*(BC)). Namely the
result clearly holds for £ = 0. Then, if the result holds for k, we have:

BH(A)) =1 b (ABCB)) = 1 h(y* (A)h(y* (BCB))
W (BC))h(u* (BCB)) = h(y* (BCBCB))
= h(y+2(BC)).

Now we prove by induction on k > 0 that p*™1(0) = h(¥?*(A)) 1 and 1 pF(1) =
h(¢*(B)) 1. The result holds for ¥ = 0 and k = 1. If it holds for k£ > 1, we have

LpftH(1) =1 pM(011) = 1 p*(0)p* (1) p*(1)
1 k(1) k(1

=1 h(yp*72(A)) 1 (1) (1)
=1 h(yp*72(A)h(¢*(B)) 1 p*(1)
=1 h(*72(A))h(* (B))h(4?*(B)) 1
= h(*2(BC))h(v** (B))h(¢**(B)) 1
h(@/JZ’“ 2(BC))h(¢?*2(¢*(B)))h(v* 2(4*(B))) 1
= h(y*~2(BCBCBBCB)) 1
= h(¢y**(B)) 1

and

prr2(0) = pt(01) = h(y*(A)) 1 pFH(1)
h(y**(A))h(p**+2(B)) 1 = h(¢**(ABCB)) 1
h

(¥**2(B)) 1.
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This finally implies:
(T(n) mod 2)pzp = lim h(yF(A)) = Jim h(*(A)) = lim p*t(0) = lim 1*(0).
- —00 —00

k—o0 k—o0

e To prove the second claim, it clearly suffices to prove that we have klim 1/)'“(A) =
— 00

A lim 7%(B), where 7 is the morphism defined on the alphabet { B, C'} by 7(B) = BC,

k— o0
7(C) = B.
Clearly 72(B) = 7(B)B, so by applying 7% to both sides, we obtain the relation
7*+2(B) = 7**1(B)7*(B). We will now prove by induction on k > 0 the relations:

B y(m*(C)) = m*(B) B and B v(r*(B)) = 7**'(B) B.
These relations are clearly true for £ = 0. If they are true for &, then
B (" (B)) = B ¢(r"(BC)) = B ¢(t"(B)) ¥(m*(C))
= TH4(B) B (r(0)) = T (B)rH(B) B
= 7*2(B) B.
and
B ¢(r**1(C)) = B ¢(r*(B)) = 7**1(B) B.
Our last step is to prove that for all £ > 0 we have
YF(A)=AT(B) " YB) --- 7(B) B.
Again this is true for £ = 0, and if it is true for k, then
YMHA) = o(WF(A)) = v(A) »(T(B)) ¥(t*"1(B)) - ¥(r(B)) ¥(B)
= A By(8(B)) w(r*1(B)) -+ Y(7(B)) ¥(B)

= AY(B) By(r*H(B)) -+ ¢(r(B)) ¥(B)
) TH(B) B -+ ¥(7(B)) ¥(B)

It is now clear that
lim ¢*(A) = A lim 7%(B).

k—o0 k—o0

O

2.6 The sequence T and the lazy Fibonacci expansion

We have seen that the integers in 7" are exactly the integers whose binary expansion does
not contain the block 00. Writing these expansions in increasing order:

0, 1, 10, 11, 101, 110, 111, 1010, ...
we obtain exactly the representations of the integers 0, 1, 2, ... in the “lazy Fibonacci
expansion” (i.e., as expansions in the Fibonacci base Fy =1, F3 =2, ..., F, 10 = F, ;1 + F,

that do not contain two consecutive 0’s; see for example [10]). In other words, we have the
following proposition:



Proposition 6 The binary representation of T'(n) is given by the lazy Fibonacci expansion
of n.

Remark 4 The above proposition, which can be read between the lines of [11], contains in
particular the equality (with our notation)

T(Fpys —2) =2" — 1,
due to Bottomley (see sequence A052499 in [19]). Namely,
Foz—=2=F+F3+- -+ Fup1.

Actually, introducing the concept of generalized automatic sequences in [17] and the
concept of generalized regular sequences in [2], we can prove the following theorem.

Theorem 2 The sequence (1'(n))n>o is Fibonacci-reqular. For each e > 2, the sequence
(T'(n) mod e),>o is Fibonacci-automatic.

Proof. As a consequence of [2, Theorem 5.2|, it suffices to prove the first assertion. We
define two maps and two languages as follows:
- the maps © — [z]; and © — [z]p are defined from {0,1}* to N by

[w0w1 cre ’Ujk]g = ’UJ[)2]C + w12k’1 + -+ ’Ujk20
[w0w1 . ’U}k]p = wOFk-l—Z + 'UJ1F]H_1 + et kaQ.

- the set F (resp. L) is the subset of {0,1}* consisting of all words beginning with 1 and
having no subword equal to 11 (resp., beginning with 1 and having no subword equal to 00).
In other words, F is the set of Fibonacci expansions of integers, and L is the set of lazy
Fibonacci expansions of integers.

We then define a map A from F to £ by noting that for all w € F, there exists a unique
AMw) € L such that [w]p = [AM(w)]r (by the uniqueness of lazy Fibonacci expansions of
integers). For w in F, it is clear that A(w) can be computed from w by repeatedly applying
the rewriting rule 100 — 011 and erasing leading zeros if any; this process converges (look at
the total number of 0’s at each step), and the order in which the rewriting rules are applied
does not matter, since the final result must be the unique lazy Fibonacci expansion of the
integer with Fibonacci expansion equal to w.

Note that, applying the rewriting rules to w € F without erasing the leading zeros if any
appears during the process, leads to some word \'(w) with the same length as w, and which
must be either A\(w) or 0A(w) (easy induction on the length of w). In particular if w and z
are two words beginning with 1, we have A\(wz) = A(A(w)N'(z)).

Notice that, with this notation, Proposition 6 can be written as follows: for all w € £ we
have T'([w]r) = [AM(w)]s.



To prove the claim in our Theorem 2 it suffices to prove the following relations that were

discovered experimentally:

[

[100010z) )
[100102] )
[1010002]p) =
[1010010z]7) =
[101012]p) =

We will prove only the first one;

-2T
-2T
-2T
—6T
—6T
—4T

102]7) + T([1002]) + 27([10002] )
10002] ) + T([10102]) + 2T([10010z] )
102]p) + 3T([1000])

10z]p) + 7T([1000x] »)

10002] ) + 77([10010z] )

1z]p) + 5T ([101z]F)

NN AN N N N
— e — —

the remaining relations are proved analogously. We also

will prove the first relation only in the case = begins with 1 (if x begins with 0---01 the
proof is the same, it is also similar if z = 0---0). We will use the fact that = begins with 1,
and the above reformulation of Proposition 6. Let us distinguish two cases.

e First case: X (z) = \(x).

Then
T([10000z)F) = T([A(10000x)]r) = T([1011A(z)]r) = [1011A(z)]>
T([10z]r) = T([A(10z)]r) = T([10A(z)]r) = [10A(z)]>
T([100x] ) = T([M100x)]r) = T([11\(x)]r) [11A(z)]2
T([1000z]r) = T([A(1000x)]r) = T([110A(2)]r) = [110A(2)]2

Looking at the binary expansions, it is then apparent that

[1011A(z)]s — [11A(2)]> = 2[110A(2)]> — 2[10A ()]s,

which is exactly the relation we want to prove.

e Second case: N'(x) = 0A(z).

Then
T([10000z)F) = T([A(10000x)]Fr) = T([10110A(z)]F) = [10110A(z)]2
T([10z]p) = T([A(10z)]r) = T([11A(z)]r) = [11A(z)]>
T([100x] ) = T([M100x)]r) = T([110\(x)]r) [110A(x)]2
T([1000x]r) = T([A(1000x)]r) = T([1011A(2)]r) = [1011A(z)]>

Looking at the binary expansions, it is then apparent that

[10110A(x)]2 — [110A(x)]2 = 2[1011A(x)]o — 2[11A(z)]2,

which is exactly the relation we want to prove.



3 A general framework

The sequence studied by Kimberling can be seen as a typical example of a family of similar
sequences. Before giving the general result, we need some intermediate statements. The first
one, due to Cobham [8] (see also [5, Theorem 7.7.4]), states that erasing given symbols in
automatic (or, more generally, morphic) sequences essentially gives morphic sequences.

Theorem 3 (Cobham) Let U be a morphic sequence defined on the finite alphabet 3. Let
' C X. Let'V be the sequence obtained from U by erasing all occurrences of the letters
belonging to I'. Then the sequence V 1is either finite or morphic.

Now we recall that two-dimensional sequences whose coordinates are k-automatic are
also k-automatic, and that periodic sequences are k-automatic.

Lemma 3 Let k be an integer > 2.

o If the sequences (uy)n>o and (vn)n>o are k-automatic, then the sequence ((un,vy))n>0
18 k-automatic.

e Any periodic sequence is k-automatic.

Proof. The first assertion is clear: look at the k-kernel of the sequence ((uy,vy))n>0 (for the
definition of the k-kernel, see for example [5, p. 185 and p. 409]).

For the second assertion, let ¢ > 1 be the period of the sequence and let w be the
prefix of this sequence of length e, say w = apa; -+ -a._1. Let A := {Ag, A1,..., Ac_1} be
an e-letter alphabet. Write the word w” as the concatenation of e words of length k, say
wk := 2921 - - 2._1. It is clear that our periodic sequence is the image under the map A4; — a;

of the fixed point beginning with A, of the morphism
A[] — 20, Al A Aefl — Ze—1-

O

Now we can prove a general theorem similar to Propositions 3 and 4.

Theorem 4 Let k be an integer > 2. Let (u,)n>0 be a k-automatic sequence. Let a be an
element of the set of values of (up)n>0. Let iy < i3 < iy < --- < i, < --- be the increasing
sequence of the integers j such that u; = a. Let e be an integer > 2. Then either the
sequence (i, mod e),>q is finite or it is the image of the fized point of a (not necessarily
uniform) morphism.

Proof. The proof goes as above. First, the characteristic function of the set of the integers
j such that u; = a is k-automatic. Then, if the sequence (v,),>¢ is the periodic sequence
012 --- (e—1)012--- the sequence ((un,v,))n>0 is k-automatic (use Lemma 3).

Finally, if the sequence (i, mod e),> is not finite, then it is morphic from Theorem 3:
it suffices to erase in the sequence ((un,vy))n>0 all terms for which (uy,v,) is equal to (b, )
for b # a and ¢ € [0,e — 1].

Actually, even more is true. By using a result of Dekking [9], we can prove the following
result.
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Theorem 5 Let (u,),>0 be a morphic sequence. Let a be an element of the set of values of
(Un)n>o0. Let ig < 1y < iy < -+ < ip < --- be the increasing sequence of the integers j such
that u; = a. Let e be an integer > 2. Then either the sequence (i, mod e),>q is finite or it
is the image of the fized point of a (not necessarily uniform) morphism.

Proof. (sketch) Dekking proved [9] that any transduction of a morphic sequence is morphic.
The sequence (uy)n>o is transduced by just looking at the value of each letter to see whether
it is equal to a, while counting the rank of this letter modulo e. As output take the residue
modulo e in this count. [

4 Other examples in the literature

Actually, other examples of the situation described in the previous section can be found in
the literature. We describe some of them below.

4.1 A result of Cateland

The following result is due to Cateland (see the chapter “Sur la représentation en base (g, d)”
pages 90-108 in [7]). It shows how sequences of integers obtained by forbidding digits are
p-regular (in the sense of [3]) while their characteristic functions are known to be g-automatic.

A particular case of the sequences studied by Cateland is given by Kimberling in [12]:
take ¢ = 3, d = 0, and look at the integers that contain only the digits {0, 1} in their ternary
expansion. Then the increasing sequence S of these integers can be defined by: 0 belongs to
S; if the non-negative integer x belongs to S, then 3x and 3z 4 1 belong to S; nothing else
belongs to S (see below).

Theorem 6 (Cateland) Let q and d be two integers such that ¢ > 3, and 2 —q < d < 0.
Let ng) ={d,d+1,---,d+q—1}. Every integer n > 1 can be uniquely written as

with £j(n) € E,(ld), for all j € [0, L] and er(n) > 0. Call this expansion the (q, d)-expansion of
n. Fizp digits in the set E,(Id) where at least one of these digits belongs to {1,2,---,d+q—1}.
Then, the increasing sequence of the integers whose (q,d)-expansion contains only these p
digits is p-reqular.

An immediate corollary is:

Corollary 2 With the above notation, reducing modulo e > 2 the increasing sequence of the
integers whose (q, d)-expansion contains only these p digits gives a p-automatic sequence.

11



4.2 The examples of Kimberling

In the paper [12] Kimberling studies sets of integers defined as follows. Let F' be a countable
set of affine functions with integer coefficients. The set of integers Sr is the smallest set
of integers that contains 1 and is closed under any function in F'. We now show how the
examples of sets Sp given by Kimberling enter our framework.

— Example 1 of [12] considers the sequence Sp where F' := {2t + 1,4¢,4¢ + 1} which is
sequence A003159 in [19]:

134579111213 15161719 20 21 23 25 ---

It is not difficult to see from Kimberling’s definition that this sequence consists exactly of
the integers whose binary expansion does not end with an odd number of 0’s. The reader
can check that the characteristic sequence y of A003159 (with a 0 inserted at the beginning)
satisfies

Vn >0, x(2n+1) =1, x(4n) = x(n), x(4n+2) = 0.

It is an easy exercise to prove that the sequence (x(n))n>0 is 2-automatic: it is the image by
the mapa — 1, b — 1, ¢ — 0, of the fixed point of the 2-morphism

a — ab, b— cb, ¢ — bb.

Note that it easily proved that, for n > 1, we have x(n) = |M(n) — M(n — 1)|, where
(M(n))n>o is the celebrated Thue-Morse sequence

01101001100101101 -~~~

(the Thue-Morse sequence can be defined as the fixed point beginning with 0 of the 2-
morphism 0 — 01, 1 — 10, see for example [4]). In other words, x(n) = 1 if and only if
M(n — 1) # M(n). This implies that the sequence A003159 is the summatory function of
the sequence

12112221121121122 -+

the fixed point of the morphism 1 — 121, 2 — 12221. (Note that the shifted sequence
2112221121121122 -+,

is the fixed point of the morphism 2 — 211, 1 — 2; see [6]; for more on the links between
the Thue-Morse sequence and the sequence A003159 see also [1]).

— Example 2 of [12] considers the sequence S where F' := {3t, 3t + 1} which, up to inserting
0, is sequence A005836 in [19]:

01349101213 2728 30 31 36 37 39 40 81 ---

As noted by Kimberling, this sequence consists exactly of the integers whose ternary repre-
sentation does not contain the digit 2.

12



Theorem 6 implies that this sequence (U(n)),>o is 2-regular: it satisfies the relations
U(2n) =3U(n), U(2n+1) = 3U(n) + 1. Note that the reduction modulo 2 of this sequence
is the Thue-Morse sequence.

— Example 3 of [12] considers the sequence S where F' := {2t, 4t + 1} which, up to inserting
a 0, is sequence A003714 in [19]:

01245891016 17182021 32333436 ---

As noted by Kimberling, this sequence consists exactly of the integers whose binary expansion
has no two adjacent 1’s (sometimes called “Fibbinary numbers”; see [19]). The reader can
easily check that the characteristic sequence x of A003714 is 2-automatic: it is the image by
the mapa — 1, b — 1, ¢ — 0, of the fixed point of the 2-morphism

a— ab, b— ac, c¢— cc.

Reasoning analogous to the proof of Proposition 6 gives a way to compute this sequence by
showing that, with the notation of Section 2, we have for all w € F the relation V ([w]r) =
[w]y. In particular this sequence reduced modulo 2 is nothing but the Fibonacci sequence.

— Example 4 of [12] considers the sequence Sp where F := {2t, 4t+3}U{2F 1t +2F+1: k > 2}
which is sequence A000069 in [19]:

1247811131416 19 21 22 25 26 28 31 32 ---

As noted by Kimberling, this sequence consists exactly of the integers whose binary expansion
has an odd number of 1’s. It is not hard to deduce that the characteristic sequence y of
sequence A000069 is 2-automatic: this is the fixed point of the 2-morphism

0—01, 1—10

hence (x(n))n>o is the Thue-Morse sequence beginning in 0. As noted in [19], sequence
A000069 is the sequence 2n + 1 — M (n), where (M(n)),>o is the Thue-Morse sequence
beginning with 0. Hence sequence A000069 is 2-regular. We see that sequence (A000069
modulo 2) is also the Thue-Morse sequence up to changing 0’s into 1’s and 1’s into 0’s.

— Example 5 of [12] considers the sequence Sp where F' := {2¢+1, 4t }u{2** 1t +2F—2: | > 2}
which is sequence A059010 in [19] (note that the integer 16 is incorrectly missing in the
sequence given in [12]):

1347910121516 19 21 22 25 26 28 31 33 34 ---

As noted by Kimberling, this sequence consists exactly of the integers whose binary expansion
has an even number of 0’s. It is easy to show that the characteristic sequence of sequence
A059010 with a 0 inserted is 2-automatic: it is the image by the mapa — 1,6 — 1, ¢ = 0,
of the fixed point of the 2-morphism

a — ab, b—cb, c¢— bc.

Note that it can be proved that sequence A059010 is the sequence (2n — 1 — Q(n — 1)),>1,
where QQ(n) is the parity of the number of 0’s in the integer n, hence sequence A059010 is
2-regular.
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5 Questions
We list below some related questions.

e How far can the sequence proposed by Kimberling be generalized? One possible answer
is given in the paper [12] with the sets Sg quoted above. Under which conditions is the
corresponding characteristic sequence automatic? More precisely if we have “mixed
base” rules (for example, Sr := {2t + 1,3t}), then the corresponding characteristic
sequence is probably not k-automatic for any k.

e Are the sequences of integers with missing blocks always particular cases of sequences
defined a la Kimberling as above?

e [s it possible to study a more general situation where notions of “automaticity” or
“regularity” in the sense of [17] or of [14, 16] and of [2] are considered? In particular
the papers [18, 15, 13] might prove useful in this context.

Acknowledgments. Part of this work was done while JPA visited Cevis at Bremen Uni-
versity. JPA wants to thank all the colleagues of Cevis (with a special mention to H.-O.
Peitgen) for their warm welcome.

Note added October 28, 2004. The equality A052499 = 1+ A003754 has also been noted
by C. Kimberling, see p. 144 of C. Kimberling, Ordering words and sets of numbers: the

Fibonacci case, in Applications of Fibonacci numbers, Vol. 9, 2004, Kluwer Acad. Publ.,
Dordrecht, 137-144.
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