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holds for negative values of i� The crystal ball for the f�c�c� is obtained if we always reduce b

�say�� and that for the h�c�p� if we alternately reduce a and b� In any case we have

S�n� � P �a�n � b�n� � 
�an�� � b�n��� � � � �� 
�a� � b�� � � � �

�
�an�� � bn��� � P �an� bn�

� �Tn�� � 	n� �
n��X
i��


��n� i� � a�nb�n � anbn

� Sfcc�n� � a�nb�n � anbn � �	��

and similarly

G�n� � Gfcc�n� �
nX

i��n

aibi � �	��

The assertions of the theorem follow from �	��� �	�� after some elementary algebra which we

omit�

�� Concluding remarks

Several open questions remain� Is there a well
placed lattice that is not well
coordinated�

�See Remark following Theorem 	�� Can the reader �nd a general proof of the formulae for

the coordination sequences of A�d �Eq� �
���� Dd ��
��� and the sodalite net ���	���

The Voronoi graphs �de�ned at the beginning of Section �� should also be investigated� It

follows from the work of Rajan and Shende ������ �	� � p� xxviii� that� except for root lattices�

the Voronoi graph always properly contains the contact graph� What are the analogues of the

coordination sequences for the Voronoi graphs of A�d� D
�
d� E

�
�� E

�
� � for example�
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�� The Barlow packings

Let L denote any three
dimensional packing formed by stacking layers of the hexagonal

lattice A�� As in ��� we shall refer to these as the Barlow packings� Let S�N�� G�n� denote the

n
th terms in the coordination and crystal ball sequences with respect to an arbitrary point in

any such L�

Theorem �	
 For any Barlow packing L�

��n� � � � S�n� �
�
��n�

�

�
� � �n � �� � ����

�

	
���n� �

�

	
���n� � G�n� � �

�
���n� � ����n �

�
�n � �� � ����

For any n � �� the only Barlow packing that achieves either the left�hand value or the right�

hand value for all choices of central sphere is the face�centered cubic lattice or hexagonal close�

packing� respectively�

Remarks
 This interesting result was conjectured by O�Kee�e ����� it had in fact already

been established ���� The assertion on p� ��� of ���� that any Barlow packing has G��� � �� is

plainly incorrect� as shown in ��� there are Barlow packings with G��� � ��� �	 and ���

Proof
 Let H�a� b� denote a hexagonal arrangement of points in which the edges of the

hexagon contain respectively a��� b��� a��� b��� a��� b�� points� For example� H�
� ��

is
� � � �

� � � � �
� � � � � �
� � � � �
� � � �
� � �

The number of points in H�a� b� is P �a� b� � Ta�b���ab� where Tn � n�n����� is a triangular

number� and its perimeter is 
�a� b�� The n
th crystal ball with respect to an arbitrary point

of L consists of a stack of �n � � hexagons fH�ai� bi� � �n � i � ng� for some choice of
integers a�n � a�n�� � � � � � an� b�n � b�n�� � � � � � bn� Furthermore a� � b� � n�

a�� b� � a��� b�� � �n� �� � � �� an� bn � a�n � b�n � n� At each stage� as we proceed from

H�ai� bi� to H�ai��� bi���� for � � i � n� just one of ai and bi drops by �� a similar assertion

��



Root lattices in general

Looking back over this section� we observe several properties that hold for all root lattices�

Theorem ��
 Let  be one of Ad� Dd or E�� E�� E	�

�i	 Consider the faces in which the contact polytope meets the fundamental simplex� These

faces are in one�to�one correspondence with the nodes of the extended Coxeter�Dynkin diagram

�
��� Figs� 
��� to 
���	 that are not the extending node and whose removal does not make the

diagram disconnected�

�ii	 The fractional height of a lattice point in the cone above such a face is an integer if and

only if the weight ci associated with that node is � �see 
��� p� ��� and Fig� 
���� 
���� p� ���	�

�iii	  is well�placed if and only if the vertices on any face of the contact polytope span  �

The explanation for �ii� is that the ci�s give the index of the sublattice spanned by the

vertices of the corresponding face�

We suspect that �iii� may hold for all lattices� but do not have a proof�

The d�dimensional sodalite net

O�Kee�e ���� de�nes the d
dimensional sodalite net to consist of the holes in the A�d lattice�

with each point joined to its d � � nearest neighbors� The case d � � gives the familiar 	


hexagonal net� From the coordination sequences of these nets for d � 	 given in ����� Grosse


Kunstleve ��	� observed that the coordinator polynomial appears to be � � x� x� � � � �� xd�

If this is true in general it implies

S�n� �

�
n � d

d

�
�
�
n � �
d

�
� ��	�

G�n� �

�
n � d� �

d� �

�
�
�

n

d� �

�
� ����

The expression on the right
hand side of ���� is the number of points in a d
dimensional

centered simplex� It should therefore be possible to establish the validity of ��	� and ����

by �nding a bijection between the crystal balls in d
dimensional sodalite and the points of a

d
dimensional centered simplex� This is easy to do for d � �� but for higher d the expressions

��	� and ���� are at present only conjectures� �Theorems � and � do not apply��

�




h ! G��h� I ��h� S�h�

� � � � �
between � " � �

� ��� ��� � ���
between � " � �

� ���� �
	� ��� ����
between � " 
 �����


 	��	�� �
���� �		�� ���	��
between 
 " � �����	�

� ���
��� ��	��� 

���� �	��	�
between � " � �		�

	�

� 	��	���� ������� �����	� ���
���
� � � � � � � � � � � � �

Table II� Numbers of points in E	 lattice by fractional height� G��h� is the number with
fractional height � h� and I ��h� is the number with fractional height � h� The �nal column
gives the coordination sequence�

Besides verifying that these polynomials matched the computer results for n � �
� we also

checked that G��n� � I�n� for n � �
 �cf� Theorem ��� For n � � our values for the

coordination sequence S�n� do not agree with those given in ����� we believe the latter are

incorrect� Again� the fact that E	 is not well
coordinated is responsible for the complicated

formula in �����

We display the coordinator triangle for E
 � A� �A�� E� � A�� E� � D�� E�� E� and E	�

followed by the coordinator polynomials for E�� and E
�
� �the row for E� is omitted since that

lattice is not generated by its minimal vectors��

� � �
E
 � � � � �
E� � � �	 
	 �	 �
E� � � 
� ��� ��� 
� �
E� � � 		 	�� �
�� 	�� 		 �
E� � � ��� ��
� ���� ���� ��
� ��� �
E	 � � �
� ���� ��
�� �

��� ������ ����� �
� �
E�� � �� �	� ��	
 
��
 ���
 	�� �
E�� � � �� ��� ���� ��� �� �

In contrast to the An and Dn cases� there is no apparent pattern to these coe�cients�

Note that the last four lines of this table are not palindromic� displaying again the fact

that these lattices are not well
coordinated�

��
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Figure �� Extended Coxeter
Dynkin diagram for E	� labeled to show walls of fundamental
simplex�

The two faces in which the contact polytope meets this fundamental simplex correspond

to the left and bottom nodes of Fig� �� and have equations

�� � x � �� �� � ��� �� �� �� �� �� �� �� � ����

�� � x � �� �� �

�
�

	
�
�

	
�
�

	
�
�

	
�
�

	
�
�

	
�
�

	
�
�

	

�
� ��
�

respectively� The face de�ned by ���� contains �� points of E	� forming an orthoplex� and

spanning a sublattice D	 of index � in E	� The face de�ned by ��
� contains eight points�

forming a regular simplex and spanning a sublattice A
 of index 
 in E	� The fractional

heights of points in the cones above these two faces are given by �� � x and �� � x respectively�
The �nal result of this analysis is the following�

Theorem ��
 Any point of E	 is equivalent under the Weyl group to one satisfying ���	� for

which the fractional height is

fht�x� � max

�
x��

�x� � x� � x
 � � � �x	
	

	
�

E	 is well�rounded but not well�coordinated� and G�n� and S�n� �n � �� are polynomials of

degrees � and � respectively�

With the help of a computer we determined the numbers of points of fractional height

� �
� In order to do this we precomputed a list of the ��	 di�erent types of stabilizers of

points satisfying ����� The results of the enumeration are partially shown in Table II�

Using Theorem ��� these values su�ce to determine S�n� and G�n�� We haveG�n� � G��n��

n � �� n �Z� and S�n� � G�n�� G�n� ��� n � �� n �Z� from which it follows that

S�n� �
��	

�
n� � ���n� � 
��n� � ���n� � ��n
 � ���n� � 	��

�
n � �n � �� � ����

G�n� �
��

�
n	 �

���

�
n� � 
�n� � ��n� � 
�n� � 
	n
 �


��

�
n� � ��

�
n � � � ����

��



Using Theorem ��� these computed values su�ce to determine S�n� and G�n�� From

S�n� � S��n� � S��n� �#��� �n � ��� G�n� � G��n� �n � ��� n �Z� we �nd

S�n� �
���

�
n� � ��

�
n� � ��n� � ��n
 �

���

�
n� � ��

�
n� � � �n � �� � ����

G�n� �
���


�
n� �

��

�
n� � ��n� � ��n� �

���

��
n
 �

��

�
n� �

	�

��
n� � � ����

E
�
�
 The contact polytope for E�� is a Hesse polytope E�� ����� p� ����� There are two types

of faces� simplices� whose vertices span a sublattice of index 
 in E�� � and orthoplexes� whose

vertices span a sublattice of index �� We omit the details� and just summarize the result�

Theorem ��
 � The dual lattice E�� is well�rounded but not well�coordinated� the fractional

heights are in �
�Z� and G�n�� S�n� �n � �� are polynomials in n of degrees � and � respectively�

With the aid of a computer we found su�ciently many values to establish that

S�n� �
	�

�
n� � ��	

�
n� � ���n� � ���n
 � ���

�
n� � �	�

�
n � �� �n � �� � ����

G�n� �
	�


�
n� � �

�
n� �

��

�
n� � �n� �

�	

�
n
 �

��

�
n� �


�


�
n� � � ����

Notice that the formulae ���� and ���� for S�n� for these lattices are much more complicated

than the corresponding formula �
�� and ���� for E� and E
�
� � re$ecting the fact that E� and

E�� are not well
coordinated�

E�
 The %standard& E	 consists of the points x � �x�� � � � � x	� whose coordinates are either

all integers or all halves of odd integers and whose sum is even� The contact polytope is the

Gosset polytope ��� ���� p� ����� There are two types of faces� ��	� faces that are orthoplexes

and ����� simplicial faces� We use the extended Coxeter
Dynkin diagram shown in Fig� ��

where we have adopted the same conventions as in Fig� ��

From the planes de�ned by the nodes in Fig� � we see that the points in the fundamental

simplex satisfy

x� � x
 � x� � x� � x� � x� � jx	j �
x� � x� � x
 � x� � x� � x� � x� � x	 �

However� these together imply x� � x�� and so we can conclude that the fundamental simplex

consists of the points satisfying

x� � x� � � � � � x� � jx	j �
x� � x	 � x� � � � �� x� �

����

��



the face only generate a sublattice A�� of index � in E�� and if x � E� is in the cone above this

face�

fht�x� � �� � x � x� �
x
 � x� � x� � x� � x� � x	

�
� �

�
Z�

and ht�x� � dfht�x�e�
For a general point of E� satisfying ����� we have

fht�x� � max

�
x� � x
� x� �

x
 � x� � x� � x� � x� � x	
�

	
� ����

and

ht�x� � dfht�x�e � ��	�

By applying Theorem � we obtain�

Theorem ��
 Let E� consist of the points x � �x�� � � � � x	� of E	 in which the �rst two

coordinates are equal� Any such point of E� is equivalent under the Weyl group of E� to one

satisfying ��
	� for which the fractional height is given by ���	 and the height by ���	� E� is

well�rounded but not well�coordinated� G�n� and S�n� �n � �� are polynomials in n of degrees

� and � respectively�

A computer was now used to determine the numbers of points of fractional height up to

	��� making use of knowledge of the subgroups of the Weyl group to calculate the number of

lattice points equivalent to a given point� The results are partially shown in Table I�

h S��h� G��h�

� � �
��� � �
� ��	 ���
��� � ���
� ���� 
���
��� � 
���

 ����	 �����

�� ��	 �����
� �
��
� �	����
��� ��
� �		���
� ������ 	���
�
� � � � � � � � �

Table I� Numbers of points of fractional height exactly h �S��h�� and at most h �G��n�� in E�

lattice�

��



E�
 We de�ne E� to consist of the points x � �x�� � � � � x	� in the standard E	 for which the

�rst two coordinates are equal� The contact polytope is the polytope �
� ����� p� ����� There

are two types of faces� �	 faces that are Schl�a$i polytopes �also called ��� polytopes�� and ��	

simplicial faces� We use the extended Coxeter
Dynkin diagram shown in Fig� ��

��j� �����

��j�� ����

��j���� ��

��j��� ���
�

�

�

�
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Figure �� Extended Coxeter
Dynkin diagram for E�� labeled to show walls of fundamental
simplex�

The extending node in Fig� � is shaded� and the other nodes are labeled with the equations

that de�ne the walls of the fundamental simplex �compare �	�� Fig� ���
�b�� where slightly

di�erent coordinates were used�� In Fig� �� �� and �� have been abbreviated to � and ��
The left
most node for example de�nes the wall x
 � x� � ��

The points in the fundamental simplex therefore satisfy

x� � x�� x
 � x� � x� � x� � x� � jx	j �
x� � x� � x
 � x� � x� � x� � x� � x	 �

����

The two faces in which the contact polytope meets this fundamental simplex correspond to

the left and bottom nodes of Fig� �� and have equations

�� � x � �� �� �

�
�

�
�
�

�
� �� �� �� �� �� �

�
� ��
�

�� � x � �� �� �

�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
���
�
�

�
� ����

respectively� The face de�ned by ��
� contains �� points of E�� namely ����� ������� ��� and
�
�
�
�
�
����

��
��� forming a Schl�a$i polytope� These �� points span E�� If x is a point of E� in the

cone above this face�

fht�x� � �� � x � x� � x
 �Z�

and ht�x� � fht�x�� On the other hand the face de�ned by ���� contains seven points of E��

namely ����� ����
� and �

�
�
����

�
�
�
�
�� �

� � forming a regular simplex� Now however the points on

��



The root lattices E�� E�� E	 and their duals

The coordination sequences for E� and E�� were found experimentally by O�Kee�e ����� so

for these lattices we give only enough information to justify his results�

E�
 The contact polytope for the root lattice E� is the polytope called ��� in Coxeter�s

notation ����� p� ���� ����� p� ����� There are �� faces� all �
dimensional hemicubes� If we de�ne

E� to consist of the points in the standard E	 �see below� in which the �rst three coordinates

are equal� then the typical face has equation � � x � �� where � � ��#
� �#
� �#
� �� �� �� �� ��� The
vertices of E� on this face have coordinates

��
�
�

�

�
�
��

�

����
� the exponent �� indicating

that only even sign combinations are permitted� The fractional height of a point x � E� in the

cone above this face is fht�x� � � � x� This is an integer� so E� is well
placed� and it is also

easy to see that � � x � ht�x�� Thus we have proved�

Theorem ��
 E� is well�coordinated�

This establishes the coordination sequence

S�n� �
���

�
n� � 
	n
 �

	


�
n� �n � �� �
��

found empirically in ����� Also

G�n� �

�

��
n� �

���

��
n� �

��

�
n� � ��n
 �

�	�

��
n� �

	


��
n � � � �
��

E
�
�
 The contact polytope for the dual lattice E�� is a diplo
Schl�a$i polytope ����� p� �����

and coincides with the Voronoi polytope for E�� The contact polytope has �� faces� one

for each minimal vector of E�� For example� the face de�ned by the minimal vector � �

��#�� �#�� �#����#����#����#����#����#�� � � E� has equation � � x � �� This face contains ��

points of E�� � forming a diplo
simplex� All faces are of this type� From this it is easy to obtain�

Theorem ��
 E�� is well�coordinated�

This establishes the coordination sequence

S�n� � ��n� � 
�n
 � 	n �n � �� ����

found empirically in ����� Also

G�n� � 
n� � �n� � ��n� � ��n
 � �n� � 
n � � � ����

The remaining three lattices are not well
placed� although they are well
rounded�

��



The rows of this triangle suggest that


Pd�x� �
�

�

n
�� �

p
x��d � ���p

x��d
o
� �dx�� � x�d�� � �

�

an expression which is certainly valid for d � ��� Assuming �

� holds in general� we �nd from

��� that

S�n� �
dX

k��


�
�d

�k

�
� �d

�
d� �
k � �

���
n� k � d� �

d� �

�
� �
��

Again an equivalent combinatorial identity could be written down using �
�� �compare ��
���

The dual lattice D�
d and the generalized b�c�c� net

As was pointed out in ����� the contact graph for D�
d� for d � �� is simply the union of two

disjoint copies of the contact graph for Zd�

However� a more interesting graph is obtained if ' using the standard coordinates for D�
d�

see �	�� Section ��� of Chap� � ' each point is joined to those points that di�er from it by the

vectors ���
� ���

� � � � � ���
��� This generalizes the contact graph for the b�c�c� lattice D

�

� and we

shall refer to it as the generalized b�c�c� net� The coordination number is �d� and the crystal

balls are cubes� with

S�n� � �n� ��d � �n� ��d� n � � � �
��

G�n� � �n� ��d � nd� n � � � �
	�

The G�n� are centered cube numbers� The coordinator triangle is

�
� �

� � �
� � � �

� �� �� �� �
� �� �� �� �� �

� � �

�

and

Pd�x� � �� � x�
d��X
k��

�
d

k

�
xk � �
��

where the
D
d
k

E
are Eulerian numbers ��
�� p� ��
� ����� p� ���� ����� p� ����� In Comtet�s

notation ��
� p� ������ Pd�x� � �x� ��An�x��x� where An�x� is an Eulerian polynomial�

�We are grateful to Colin Mallows for this formula�

�	



The expressions x��
�
��x� � � � � � xd��

�
��x� � � � � � xd� then give the fractional heights of

points in the cones above these three faces� and the fractional height of a general point in the

fundamental simplex is the maximum of these three expressions� which is always an integer�

Furthermore� it is easy to show that a point with fractional height n can actually be written

as a sum of n minimal vectors� and so the lattice is well
coordinated�

Finally� the last two faces in �
�� are equivalent under the full automorphism group of Dd�

since this includes all sign changes of the coordinates�

We collect these results in the following theorem�

Theorem �
 Any point x � �x�� � � � � xd� � Dd is equivalent to one satisfying

x� � x� � � � � � xd �

For such a point we have

fht�x� � ht�x� � max

�
x��

�

�

X
xi

	
�

The number of points in Dd equivalent to x is

�d�a�
d(

nQ
i��

ai(
� �
��

where ai is the number of components xj that are equal to i� for � � i � n � ht�x�� The lattice

is well�coordinated� G�n� and S�n� �n � �� are polynomials of degrees d and d� � respectively�
and the crystal balls are ambo�orthoplexes�

We had already determined the coordination sequence for D� some years ago �see Sequence

M���� of ������ and also ����� and it was given independently by O�Kee�e ����� who also found

the coordination sequences for D� and D�� We have extended this work to D��� �nding that

the coordinator triangle is

�
� �

� � �
� � � �

� �� �� �� �
� 
� ��� ��� 
� �

� �� ��� ��� ��� �� �
� �� �
� ��	
 ��	
 �
� �� �

� � �
�We remark in passing that most of the sequences mentioned in the paper have been added to the electron�

ically accessible version of this table �����

��



triangle is
�

� �
� � �

� � � �
� 	 �	 	 �

� � �� �� � �
� � �� 	� �� � �

� � 
� �
 �
 
� � �
� �� �	 �
� ��	 �
� �	 �� �

� �� �	 ��	 
�	 
�	 ��	 �	 �� �
� � �

The last two rows� corresponding to d � � and �� were obtained by extrapolating the pattern

of the earlier rows� which appears to be

P�m�x� �
mX
k��

�
�k

k

�
xk�� � x��m��k � ����

P�m���x� � �� � x�P�m�x� � ����

Assuming these expressions hold in general� then by expanding ��� we �nd that

S�n� �
dX

k��

�
n� k � d� �

d� �

�
kX
i��

�
�i

i

��
d� �i
k � i

�
� �
��

This agrees with O�Keefe�s empirical results for d � �� and presumably for general d could be

established in a similar manner to Eq� ��
��

The root lattice Dn

We take Dd to consist of the points x � �x�� � � � � xd� � Zd with P
xi even� The con


tact polytope is an %ambo
orthoplex& ����� p� ���� having �d�d � �� vertices� all of the form

����� �d���� The Weyl group W �Dd� has order �
d��d( and contains all permutations and all

even sign changes of the coordinates�

Any point x � Dd is equivalent under this group to one satisfying

x� � x� � � � � � xd�� � jxdj �

these inequalities de�ning the fundamental simplex� As in the case of Ad� the intersection of

this simplex with the contact polytope has a face for each nonzero glue vector of Dd� There

are three faces� de�ned by
x� � � �

�
��x� � � � �� xd�� � xd� � � �

�
��x� � � � �� xd�� � xd� � � �

�
��

��



The dual lattice A�d

The contact polytope for A�d is a diplo
simplex ����� p� ���� with �d � � vertices �vi�
� � i � d� where

vi �

��
�

d� �

�d
�

� �d
d� �

���
�

with the �d��d��� entry in the ith coordinate� A typical face of the contact polytope contains

d

�
�vi�s and

d

�
�vi�s �

if d is even� and either
d� �

�
�vi�s and

d� �
�

�vi�s �

or
d� �
�

�vi�s and
d� �

�
�vi�s

if d is odd�

We will now show that A�d is well
coordinated� We use A
�
� as an illustration� the general

case being precisely similar� The face de�ned by � �x � �� where � � ��� �� ��������� contains
the vertices v�� v�� �v
 and �v�� All faces of the contact polytope are of this type�

Consider a point x � �x�� x�� x�� x
� x�� � A�� in the cone from the origin that contains this

face� Let x have fractional height h� so that � �x � h� We claim that ht�x� � h� By Theorem ��

x � c�v� � c�v� � c
v
 � c�v� � ��	�

where ci � Q� ci � ��
P
ci � h� Since x � A�� and v�� v�� v
� v� span A

�
�� x can also be written

as

x � m�v� �m�v� �m
v
 �m�v� � ����

where the mi are integers� Since v�� v�� v
� v� are linearly independent� the representation

of x is unique� and ��	� and ���� agree� Therefore h �
P
mi is an integer� and since ����

displays x as a sum of h minimal vectors� ht�x� � fht�x� � h� showing that this lattice is

well
coordinated�

O�Kee�e ���� gave polynomials for the coordination sequences for d � �� and the preceding

argument now justi�es these formulae� Using O�Kee�e�s results� we �nd that the coordinator

�




The k
th entry in the d
th row is
�d
k

��
�for k � �� �� � � ��� so that

S�x� �
Pd

k��

�d
k

��
xk

��� x�d
� ����

and hence

S�n� �
dX

k��

�
d

k

���
n � k � d� �

d� �

�
� ����

with a similar expression for G�n�� The following elegant proof of ���� is due to C� L� Mallows�

From Theorem �� Eq� ���� is equivalent to the identity

X
a

�d� ��(Qn
i��n ai(

�
dX

k��

�
d

k

���
n� k � d� �

d� �

�
� ��
�

where the sum on the left extends over all a � �a�n� � � � � an� satisfying

nX
i��n

ai � d� ��
X
i��

iai �
X
i��

ia�i � n �

If we multiply the left
hand side summand of ��
� by

xa��xy�a��xz�a���xy��a��xz��a�� � � � �

we see that the left
hand side of ��
� is equal to the coe�cient of xd��ynzn in

�d� ��( exp

�
x �

xy

�� y
�

xz

�� z

	
� �d� ��( exp

�
x

�� yz

��� y���� z�

	
�

or in other words to

coe�cient of ynzn in

�
�� yz

��� y���� z�

	d��
� ����

On the other hand the right
hand side of ��
� is

coe�cient of ynzn in

�
�� yz

��� y���� z�

	�d
� ����

Call these two expressions cL�n� d� and cR�n� d�� Contour integration now shows that

�X
n��

�X
d��

cL�n� d�u
nvd �

�X
n��

�X
d��

cR�n� d�u
nvd

�

�
�� �v � � u

�� u
� v�

	����
�

completing the proof�

It is curious� that Eq� ���� is the expansion of Ld��� � x����� x�� in powers of x� where

Ld is the d
th order Legendre polynomial �see ����� p� �	�� We are not aware of any other

connections between the root system Ad and the Legendre polynomial Ld�

�We are grateful to Herb Wilf for this remark�

��



for � � i � d� has equation

�

�
�i� � x � i

��d� ��
�x� � � � �� xd�i�� �d� �� i�

��d� ��
�xd�i�� � � � �� xd� � � � ����

This face contains i�d� i� vertices of the contact polytope� those with a single �� in any of

the �rst d� �� i coordinates and a single �� in any of the last i coordinates�
Consider a point x � Ad lying in the fundamental simplex� in the cone above the face

de�ned by ����� The re$ecting planes of the a�ne �in�nite� Weyl group of type An partition

the whole space into simplices� The height of x� and also its fractional height� is given by the

number of re$ecting planes between x and the origin� which is �
� �i� � x�

For an arbitrary point x � Ad in the fundamental simplex ����� the height is

max
i�������d

�

�
�i� � x �

which is simply �
�

P jxij� Thus a point such as ��� 
� ��������� A� can be written as the sum

of �
�

P jxij � �� minimal vectors� and no fewer� From collecting these results and applying

Theorem �� we obtain�

Theorem �
 Any point x � �x�� � � � � xd� � Ad is equivalent under the Weyl group to one with

coordinates satisfying ���	� For such a point we have

fht�x� � ht�x� �
�

�

X
jxij �

The number of points in Ad equivalent to this point is �d � ��(�
Qn
i��n ai(� where ai is the

number of components xj that are equal to i� for �n � i � n� n � ht�x�� The lattice is

well�coordinated� and G�n�� S�n� �n � �� are polynomials in n of degrees d� d� � respectively�
The crystal balls are shorter ambo�diplo�simplices�

O�Kee�e ���� empirically determined the coordination sequences for Ad for d � �� in each

case �nding that S�n� is a polynomial in n of degree d��� The correctness of these expressions
is now justi�ed� Using Theorem �� we have extended O�Kee�e�s results to d � ��� and �nd

that the coordinator triangle is

�
� �

� � �
� � � �

� �	 
	 �	 �
� �� ��� ��� �� �

� � �

��



The structure of the coordinator polynomials both here and in subsequent examples be


comes clearer if the coe�cients of the successive polynomials Pd�x� for d � �� �� �� � � � are

displayed in a triangular array �with coe�cients of highest powers on the right�� We call this

the coordinator triangle�
�

� �
� � �

� 
 
 �
� � 	 � �

� � �
In this case of course the coordinator triangle is simply Pascal�s triangle of binomial coe�cients�d
k

�
� O�Kee�e ����� Table 	� gave the coordination sequences for d � ��� but the present

description is both simpler and holds for all d� It follows from ��	� that the coe�cient of nd��

in S�n� is �d��d� ��(� as conjectured in �����

The root lattice Ad

The contact polytopes of the lattices An� Dn� E�� E�� E	 and their duals were described in

����

We de�ne Ad to consist of the points x � �x�� x�� � � � � xd� � Zd�� with P xi � �� The

contact polytope has d�d� �� vertices� of the form ������ �d���� These are at the midpoints
of the shorter edges of the diplo
simplex formed by the vectors �from coset ��� of Ad in A

�
d�

�
��

�

d� �

�d
�

� �d
d� �

���
�

The contact polytope was incorrectly described as an %ambo
diplo
simplex& in ���� a better

name would be %shorter ambo
diplo
simplex&�

A fundamental simplex for the Weyl groupW �An� of order �n���( is described in Figs� ����

and ���	 of �	�� It consists of the points satisfying

x� � x� � � � � � xd�
X

xi � � � ����

This simplex is an in�nite cone which meets the contact polytope in d faces� one for each

nonzero glue vector of Ad �cf� �	�� Chapters � and ���� The face corresponding to the glue

vector

�i� �

�
BBB� i

d� �
� � � � �

i

d� �� �z �
d���i

� �d � �� i

d� �
� � � � ��d� �� i

d� �� �z �
i

�
CCCA �

��



integral n � �� G�n� and I�n� are respectively given by polynomials g�n� and i�n� of degree d�

satisfying

g��n� � ����di�n� n �Z�

Furthermore� S��� � �� while for n � �� S�n� is a polynomial s�n� of degree d � � satisfying

s��� � �� ����d�

Proof
 The hypothesis implies that the set of points of height � n is convex� and the other

assertions follow from Ehrhart�s reciprocity law �cf� Theorem ���

In particular� Theorem � applies if the lattice is well
coordinated�

�� Root lattices and their duals

In this section we discuss the coordination sequences of the root lattices� their duals and

some related nets�

The cubic lattice Zd

The contact polytope forZd is a d
dimensional cube� and a typical point x � �x�� � � � � xd� �
Zd has

fht�x� � ht�x� �
dX

i��

jxij � ����

The coordination sequence for the �
dimensional integer lattice Zis f�� �� �� �� � � �g� with
generating function S�x� � �� � x����� x�� Therefore� for Zd� the direct product of d copies

of Z� we have S�x� � �� � x�d���� x�d�

S�n� �
dX

k��

�
d

k

��
n � k � d� �

d� �

�
� ��	�

G�n� �
dX

k��

�
d

k

��
n � k � d

d

�
� ����

and Pd�x� � �� � x�d� From ����� ��	� we have the identity

X
�a��a�����


d(�d�a�
nQ
i��

ai(
�

dX
k��

�
d

k

��
n � k � d� �

d� �

�
����

the sum being over all �a�� a�� � � � � an� �Zn�� satisfying P ai � d�
P
iai � n�

The crystal balls are orthoplexes �cf� ����� and the G�n� are centered orthoplex numbers�

�



that the lattice is not well
placed� Further investigation shows that this lattice is well
rounded�

with

G��n� � G�n� �
�



n� �

�

�
n� �

�

�
n
 �

��

�
n� �

�


	
n� � �

which is indeed not symmetric about ��#�� and that

S ��n� � S�n� �
��



n� � �



n
 �

��



n� �

�



n� � �n � �� �

Thus lattices that are not well
placed �hence not well
coordinated� exist in all dimensions

above �� As we will see� the lattices E�� E
�
� and E	 are also not well
placed�

Remark
 Well
coordinated lattices are well
rounded� and it is at �rst tempting to conjecture

that the converse is also true� However� we believe that a counterexample �a well
placed lattice

that is not well
rounded� will be found in perhaps as low as �ve dimensions� The next example

shows that in general the set of lattice points of height � n need not even be lattice�convex� i�e�

need not have the property that every lattice point in the convex hull of the points of height

n has height � n�

De�nition
 A d
dimensional lattice  is anabasic if it has the property that although it

is generated by its minimal vectors� no subset of d of the minimal vectors generates it� A

particular ��
dimensional lattice� which we call %the& anabasic lattice B� was described in ����

The anabasic lattice B has precisely �� minimal vectors �u�� � � � ��u�� �v�� � � � ��v�� sat

isfying �

P�
i�� ui � 


P�
i�� vi � 	w �say�� Then �w �

P
vi � B� 
w �

P
ui � B� so w � B�

The heights of the multiples of w are�

vector� w �w 
w �w �w 	w �w �w �w � � �
height� �� � � �� �� �� �� �� �� � � �

and fht�w� � ��
� The set of points of height � � is not lattice
convex� since it contains �w

but not w�

In this example� fht�w� � ��
 while ht�w� � ��� so the anabasic lattice is neither well


placed nor well
rounded� However� most of the lattices  we consider in this paper are well


rounded�

Theorem �
 If a d�dimensional lattice  is well�rounded� then the set of u �  with ht�u� � n

is lattice�convex� and the crystal balls are magni�ed versions of the contact polytope� For

�



from the symmetry property of Bernoulli polynomials ���� Eq� ��
�������� Thus ��
� implies

����� and ���� and ��� imply ����� showing that G is well
placed�
For example� the f�c�c� lattice is well
coordinated� since G��n� � G�n� � �#
��n� ����n� �

�n� 
� satis�es G���n� � �G��n� ��� its values at

� � � � 
 � � � � � � � 
 � � �

being respectively

� � � � �� � �
 � � � �
 �� ��� � � � �

Also

S��n� � G��n�� G��n� �� � ��n� � � � S�n� �

for n � �� an even polynomial�

Theorem 	
 Every lattice of dimension d at most � is well�coordinated�

The cases d � � and � are easy� The case d � 
 follows from Theorem � and the fact �cf�

����� that for a three
dimensional lattice� S�n� � �S���� ��n� � �� n � �� The proof for d � �

is longer and will be given elsewhere�

It follows from Theorem � that the coordination sequence for any four
dimensional lattice

is given by

S�n� �

�
S���

	
� S���




�
n
 �

�
S���

	
� �S���




�
n � ����

for n � � �compare ����� p� ��	��

On the other hand� the following �ve
dimensional lattice is not well
placed� and so not

well
coordinated� We start from the lattice D�
�� generated by the vectors v� � ��� �� �� �� ���

� � �� v� � ��� �� �� �� �� and v� � ��#�� �#�� �#�� �#�� �#��� and %squash& it in the v� direction until

v�� � � � � v� all have the same length� The resulting lattice has Gram matrix

�

��

�
������
�� �� �� �� �
�� �� �� �� �
�� �� �� �� �
�� �� �� �� �
� � � � ��

�
������ �

the entries in which are the inner products of the new vectors v�� v�� v
� v�� v�� It is easy to

check that w � v��v��v� has height 
 but fractional height ��� �in fact ht��w� � ��� showing

�



generating function for the crystal ball numbers G�n� is

�X
n��

G�n�xn �
S�x�
�� x

�
Pd�x�

��� x�d��
�

Note that if a lattice  is the direct product of lattices M and N � then the corresponding

generating functions satisfy S��x� � SM�x�SN�x�� and the coordinator polynomial for  is the
product of those for M and N �

It follows from the de�nition that G is well
placed if any one of these three equivalent

conditions holds�

�a� fht�u� �Z� for all u � G �

�b� I ��n� � G��n� ��� for n � �� �� � � � � ����

�c� S��n� � G��n��G��n� ��� for n � �� �� � � � � ����

These conditions amount to saying that every point lies on the boundary of nP � for some
integral n � ��

The polynomials g��n�� s��n� and i��n� that give the values of G��n�� S��n� and I ��n� for

integral n � � are also interesting for negative n�

Theorem �
 G is well�placed if and only if either

�d� g���n� � ����dg��n� ��� for all n �Z� ����

or

�e� s���n� � ����d��s��n�� for all n �Z� n 	� � ��
�

holds�

Equation ���� asserts that the values of jg��n�j are symmetric about n � ��#�� and ��
�

that s��n� is an even polynomial in n if d is odd� and an odd polynomial in n if d is even�

Proof
 If G is well
placed then g���n� � ����di��n� �from Theorem ��� � ����dg��n � ��

�from ������ Let ��x� � g��x� � g��x � ��� so that s��n� � ��n� for n � �� �� � � �� Then

��x� � ����dfg���x � �� � g���x�g � ����d�����x�� so s���n� � ����d��s��n�� n 	� ��

Conversely� if ��
� holds� then there is an even �if d is odd� or odd �if d is even� polynomial

��x� of degree d � � such that s��h� � ��h� for h � �� Then g��h� �
P

t�h ��t� is a sum of

linear combinations of Bernoulli polynomials of degrees d� d � �� d � �� � � �� and ���� follows

	



Theorem �
 There is a constant C depending only on the lattice  such that

ht�u� � fht�u� � C� for all u �  � �	�

Furthermore�

fht�u� � lim
n��

ht�nu�

n
� ���

Proof
 Consider a vector u �  with fractional height n� From Theorem � we can write

u �
Pd

i�� civi with ci � ��
P
ci � n� If u� �

Pbcicvi� then ht�u�� �Pbcic � fht�u�� However�

u and u� di�er only by a lattice vector in P � of which there are only �nitely many� �	� follows�
and ��� is an immediate consequence� Note that the limit in ��� exists� since height is a

subadditive function�

Theorem 
 can be interpreted as saying that for large n the clusters of points of fractional

height � n and of height � n look roughly the same� except that the faces of the latter may

be somewhat %pitted&� For well
rounded lattices they are exactly the same�

We shall make frequent use of the following result� which is a immediate consequence of

Ehrhart�s reciprocity law ����� ����� ��
�� ���� �see also Stanley ����� ������

Theorem �
 For integral n � �� G��n� and I ��n� are respectively given by polynomials g��n�

and i��n� in n of degree d� satisfying

g���n� � ����di��n�� n �Z� ���

Furthermore� S���� � �� while for n � �� S��n� is a polynomial s��n� of degree d� � satisfying
s���� � �� ����d�

Since obviously S�n� � G�n� � G�n � �� for n � �� it follows from Theorem � that for

well
rounded lattices �for which G�n� � G��n�� S�n� for n � � is also a polynomial s�n� in n

of degree d� �� If this is so then the generating function

S�x� �
�X
n��

S�n�xn

can be written as

S�x� � Pd�x�

��� x�d
� ���

for some polynomial Pd�x� which we call the coordinator polynomial� These polynomials usually

provide the most concise speci�cation of the coordination sequences� ��� implies that the

�



and so

fht�u� � ht�u� � ���

A lattice for which equality holds in ��� is called well�placed� because each point appears on

the boundary of some nP � for n � �� n � Z� A lattice for which equality holds in �
� is

called well�rounded� because its heights are obtained just by the appropriate rounding of the

fractional heights� Finally� if equality holds in ���� or equivalently if equality holds in both ���

and �
�� we call the lattice well�coordinated�

Theorem �
 A point u �  has fractional height h if and only if it can be written in the form

u �
dX
i��

civi � ���

where ci � Q� ci � ��
P
ci � h� and v�� � � � � vd are distinct minimal vectors of  belonging to a

face of the contact polytope�

Proof
 If fht�u� � h� then as we magnify the contact polytope� forming aP for increasing

a� u �rst belongs to aP when a � h� at which point u is on the boundary of hP � Since

the faces of hP are convex �d � ��
dimensional polytopes� by Carath�eodory�s theorem ������

Theorem ������� we can write u as a linear combination of at most d of the vertices of that

face�

u �
dX
i��

	i�hvi� �

with 	i � ��
P
	i � �� from which ��� follows� The converse is immediate�

On the other hand� the points of height n �n � Z� n � �� are exactly the points that can

be written as a linear combination of minimal vectors of  with nonnegative coe�cients that

sum to n� If instead we allowed real coe�cients with sum at most n� we would obtain all of

nP � Of course the vertices of nP have height n� Thus we have established�

Theorem �
 The points of fractional height at most h �h � �� are all the lattice points in or

on hP� The points of height at most n �n �Z� n� �� are a subset � which necessarily includes

the vertices � of the lattice points in or on nP� Furthermore� fht�u� � ht�u� for all u �  �
G��n� � G�n� for integers n � �� and the lattice is well�rounded if and only if G��n� � G�n�

for all integers n � ��

�



as follows�

d � � � for Z� G�n� � ���n� � �n� � �

d � � � for A�� G�n� � �
�n� � 
n
� � 
n� � �

d � 
 � for h�c�p�� G�n� �
�

�
���n� � ����n �

�
� nearest integer to

�

�
���n� �

d � � � for D�� G�n� �
�

�
���n� �

�

�
� nearest integer to

�

�
���n� �

���

However� in higher dimensions this notation is not especially useful� The formula ���� for E	�

for example� does not simplify when expressed in terms of �k�n��

The following symbols will be used� b c for integer part or $oor� d e for ceiling� Zfor the
integers� Q for the rationals� R for the reals� For unde�ned terms from lattice theory see �	��

and for the de�nition of less familiar polytopes �see as the %ambo
simplex&� see ���� This paper

is part of series dealing with the properties of low
dimensional lattices from various points of

view� the previous part being ����

�� Contact graphs of lattices

Most of this paper will be concerned with the case when G is the contact graph of a d


dimensional lattice  that is spanned by its minimal vectors� Let P denote the contact polytope
of the lattice� that is� the convex hull of the minimal vectors ����

We de�ne the fractional height of a vector u �  �or of the corresponding node of G� to be

fht�u� � min
h��

fu � hPg �

where hP � fhx � x � Pg� h � �� Let G��h� � !fu �  � fht�u� � hg� I ��h� � !fu �  �

fht�u� � hg� and S��h� � !fu �  � fht�u� � hg � G��h�� I ��h��

In fact it seems that there are three reasonable ways of measuring height�

� the fractional height� fht�u��

� the fractional height rounded up� dfht�u�e� and

� the height� ht�u��

Obviously we have

fht�u� � dfht�u�e � ���

and we shall prove in a moment that

dfht�u�e � ht�u� � �
�






u to the origin� Also� for n � �� �� �� � � �� we set

G�n� � !fu � G � ht�u� � ng �
I�n� � !fu � G � ht�u� � ng �
S�n� � !fu � G � ht�u� � ng � G�n�� I�n� �

Then S���� S���� � � � is the coordination sequence of G�
The paper is arranged as follows� In Section � we study the contact graphs of lattices� and

introduce the notion of the fractional height of a lattice point u� This measures by how much

the contact polytope of the lattice must be magni�ed before it contains u� The fractional height

never exceeds the height �Theorem �� and di�ers from it by a bounded amount �Theorem 
��

A lattice is called well�coordinated if the fractional heights are the same as the heights�

Well
coordinated lattices have many desirable properties that make them easier to analyze�

Although the root lattices Ad andDd are well
coordinated �Theorems � and ��� lattices that are

not well
coordinated exist in all dimensions above � �Theorem 	 and subsequent paragraphs��

In particular� the lattices E�� E
�
� and E	 are not well
coordinated �Theorems �������

An extreme example of a lattice that is not well
coordinated is the ��
dimensional %an


abasic& lattice described in Section �� this contains vectors u with the property that ht��u� �

ht�u�(

Section 
 studies the coordination sequences of the lattices Ad� Dd� E�� E�� E	� their duals

and some related nets� It is worth remarking that in this section we will see graphs in which

the crystal ball numbers G�n� are equinumerous with centered simplices �the sodalite net��

centered cubes �the generalized b�c�c� net�� and centered orthoplexes �Zd�� representing all the

regular polytopes in high dimensions �cf� ������

In Section � it is shown that among all Barlow packings� that is� those formed from layers of

the hexagonal lattice� the hexagonal close packing �or h�c�p�� has both the highest coordination

sequence and the highest crystal ball sequence� while the face
centered cubic �or f�c�c�� lattice

has the lowest� This establishes a conjecture made in �����

The highest crystal ball numbers for packings in dimensions d � � have a concise description

in terms of the function

�k�n� � �n� ��
k � nk �

�



�� Introduction

The coordination sequence of an in�nite vertex
transitive graph G is the sequence

fS���� S���� S���� � � �g� where S�n� is the number of vertices at distance n from some �xed

vertex of G� The partial sums G�n� � S����S���� � � ��S�n� are called the crystal ball num


bers� As in the work of Brunner and Laves ���� O�Kee�e ����� ����� Grosse
Kunstleve ��	� and

others� in our examples G will usually be the contact graph of a d
dimensional lattice packing
�	� or net �
��� formed by taking the vertices to be the points of the lattice or net and joining

each point to its closest neighbors�

Although we will not study it here� there is another way to construct a graph from a

lattice that has some advantages over the contact graph� This is the Voronoi graph� again the

vertices represent lattice points� but now two vertices are joined if the corresponding Voronoi

cells �	� p� 

� are adjacent� The contact graph is always a subgraph� The chief advantage

of the Voronoi graph is that it is meaningful for any lattice� whereas the contact graph is

of little use for general lattices �consider for instance a two
dimensional lattice in which the

generating vectors have di�erent lengths�� The Voronoi graph may also provide a better model

for crystal growth� Consider the body
centered cubic �b�c�c�� lattice D�

� for example� in which

the Voronoi cells are truncated octahedra� The vertices within distance n of a given vertex in

the Voronoi graph are the lattice points that can be reached by stacking truncated octahedra

to depth n around a �xed truncated octahedron� These points form a roughly spherical cluster�

whereas as we shall see in Section 
 the vertices at distance n from a given vertex in the contact

graph form a cluster with the shape of a cube�

The contact graph has been used by the authors cited above as a way of de�ning the density

of a lattice or net� It is worth mentioning that the theta series ��	�� ��
�� �	� may be more

appropriate for that purpose� since it exactly gives the numbers of points in ever
increasing

spheres about a particular point�

Nevertheless� for lattices and nets that are related to the root lattices Ad� Dd� Ed� the

contact graphs and the associated coordination sequences are of considerable interest in their

own right� and we shall investigate their properties in this paper� extending the work of O�Kee�e

����� �����

Throughout this paper� if G is a distance
transitive graph with some �xed choice of origin�
and u is a vertex of G� the height of u� ht�u�� is the number of edges in the shortest path from
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ABSTRACT

The coordination sequence fS�n�g of a lattice or net gives the number of nodes that are
n bonds away from a given node� S��� is the familiar coordination number� Extending work

of O�Kee�e and others� we give explicit formulae for the coordination sequences of the root

lattices Ad� Dd� E�� E�� E	 and their duals� Proofs are given for many of the formulae� and for

the fact that in every case S�n� is a polynomial in n� although some of the individual formulae

are conjectural� In the majority of cases the set of nodes that are at most n bonds away from

a given node form a polytopal cluster whose shape is the same as that of the contact polytope

for the lattice� It is also shown that among all the Barlow packings in three dimensions the

hexagonal close packing has the greatest coordination sequence� and the face
centered cubic

lattice the smallest� as conjectured by O�Kee�e�
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