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Lecture 1: Introduction and History

The set of squares is closed under multiplication because: x2y2 = z2, where
z = xy. Similarly the sums of two squares also form a multiplicatively closed
set, because:

(x2
1 + x2

2) · (y2
1 + y2

2) = z2
1 + z2

2

where z1 = x1y1 − x2y2 and z2 = x2y1 + x1y2.

In this example z1 and z2 are bilinear forms in X = (x1, x2) and Y = (y1, y2).
This 2-square identity can be interpreted as the “law of moduli” for complex
numbers: |αβ| = |α|·|β|, where α = x1 + ix2 and β = y1 + iy2.

In 1748 Euler used a 4-square identity in his attempt to prove that every
positive integer is a sum of four squares. Here is aversion of Euler’s identity:
(x2

1 + x2
2 + x2

3 + x2
4) · (y2

1 + y2
2 + y2

3 + y2
4) = z2

1 + z2
2 + z2

3 + z2
4 where

z1 = x1y1 − x2y2 − x3y3 − x4y4

z2 = x2y1 + x1y2 − x4y3 + x3y4

z3 = x3y1 + x4y2 + x1y3 − x2y4

z4 = x4y1 − x3y2 + x2y3 + x1y4.

After Hamilton’s discovery of the quaternion algebra in 1843, this formula
was interpreted as the law of moduli for quaternions. In 1848 the octonion
algebra was discovered by Graves and Cayley, providing a similar 8-square
identity.

For the next 50 years various mathematicians tried to construct a 16-square
identity, and began to suspect that none can exist. Finally in 1898 Hurwitz
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proved that result using ideas from linear algebra. To discuss Hurwitz’s ideas
we make a basic definition.

Definition 1. A composition formula of size [r, s, n] is a formula of the
type

(x2
1 + x2

2 + · · ·+ x2
r) · (y2

1 + y2
2 + · · ·+ y2

s) = z2
1 + z2

2 + · · ·+ z2
n

where X = (x1, . . . , xr) and Y = (y1, . . . , ys) are systems of indeterminates
and each zk = zk(X, Y ) is a bilinear form in X and Y , with coefficients in a
field F .

Let’s view X, Y and Z as column vectors. Then z2
1 + z2

2 + · · · + z2
n =

ZTZ, where “T” denotes the transpose. Since Z is linear in Y we have
Z = AY where A is an n× s matrix with entries in F (X). The composition
formula then becomes: (

∑
x2
i )Y

TY = ZTZ = Y TATAY . Since Y consists of
indeterminates, this equation is equivalent to

ATA = (x2
1 + x2

2 + · · ·+ x2
r)Is.

But Z is also linear in X, so the entries of A are linear forms in X. Therefore
A = x1A1+· · ·+xrAr, where each Ai is an n×s matrix with constant entries.
Substitute this into the equation above and cancel like terms to find:

There are n× s matrices A1, . . . , Ar over F satisfying

AT
i Ai = Is,

AT
i Aj + AT

j Ai = 0 whenever i 6= j.

This system of “Hurwitz Matrix Equations” exists if and only if there is a
composition formula over F of size [r, s, n]. Since rectangular matrices are
hard to deal with, let’s restrict to square matrices: assume s = n. In that
special case the system is greatly simplified by defining the n × n matrices
Bi = A−1

1 Ai. Then B1, . . . , Br satisfy the equations above and B1 = In.
Therefore, for i and j ranging from 2 to r:

BT
i = −Bi

B2
i = −In,
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BiBj +BjBi = 0 whenever i 6= j.

Such a system of r − 1 n× n matrices exists if and only if there is a com-
position formula of size [r, n, n]. The existence of such matrices puts some
restrictions on n. For example,

Lemma 2. If there exists a composition of size [r, n, n], then:

r ≥ 2 implies 2 | n.

r ≥ 3 implies 4 | n.

2r−2 ≤ n2.

Proof. See Exercise 2 below for an outline of the ideas.

This information suffices to prove the Hurwitz Theorem of 1898.

Corollary 3. A composition of size [n, n, n] implies n = 1, 2, 4, or 8.

These ideas were pushed further by Hurwitz (1923)2 over the complexes, and
by Radon (1922) over the reals. They determined all the possible sizes for
compositions of type [r, n, n]. The answer involves the so-called Hurwitz-
Radon function ρ(n) determined by the following rules:

If n = 1, 2, 4 or 8 then ρ(n) = n.

If k is odd, then ρ(2mk) = ρ(2m).

ρ(16n) = 8 + ρ(n).

Theorem 4. (Hurwitz-Radon) There exists a composition of size [r, n, n] if
and only if r ≤ ρ(n).

This theorem generalizes the older result: ρ(n) = n ⇐⇒ n = 1, 2, 4, or 8.
The proof involves a careful analysis of those anti-commuting square matrices
Bj. Hurwitz considered those matrices to have complex entries, but his ideas
work just as well using any field of coefficients, provided that 2 6= 0 in F .

2Hurwitz died in 1919.
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After the work of Hurwitz and Radon in the 1920s several mathematicians
found new proofs of their theorem. For example Eckmann (1943) used the
representation theory of certain finite groups to prove the theorem over R,
and Dubisch (1946) and Lee (1948) used the representation theory of Clifford
algebras. However the first results about compositions of size [r, s, n] when
r, s < n were obtained by topologists.

Some further history might help explain the connection with topology. We
have seen that an n-dimensional algebra for which the norm is multiplicative
(|xy| = |x| · |y|) provides a composition formula of size [n, n, n]. The classical
examples, R (reals), C (complexes), H (quaternions), and O (octonions), are
real division algebras of dimensions 1, 2, 4, and 8. Can there be any other
dimensions for division algebras over R? We consider only finite dimensional
real division algebras.

Frobenius (1877) proved that if A is an associative real division algebra with
1, then A ∼= R, C, or H. Zorn (1933) investigated alternative rings (these
satisfy a weak form of associativity: x ·xy = xx ·y and y ·xx = yx ·x) and
proved that the alternative real division algebras with 1 are exactly the four
standard examples. Still weaker algebraic properties have been analyzed,
like the “flexible property” (x ·yx = xy ·x). But what if all assumptions of
associativity are dropped? Define a real division algebra to be simply a vector
space A ∼= R

n with a bilinear multiplication which admits no nontrivial zero
divisors. Is its dimension restricted to 1, 2, 4 or 8?

We make a more general definition.

Definition 5. Let f be a real bilinear map of size [r, s, n]. That is,
f : Rr × Rs → R

n.

f is normed if |f(x, y)| = |x| · |y| for every x ∈ Rr and y ∈ Rs.

f is nonsingular if f(x, y) = 0 implies that either x = 0 or y = 0.

Then a composition formula is exactly a normed bilinear map of that size.
Since |x| = 0 implies x = 0, every normed map is nonsingular. A nonsingular
bilinear map of size [n, n, n] is exactly an n-dimensional real division algebra.
(We can always arrange an identity element. See Exercise 4.)

In the late 1930s the topologists Stiefel and Hopf attacked the problem of real
division algebras. They noted that a nonsingular bilinear map Rr × Rs → R

n
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induces a map of real projective spaces Pr−1×Ps−1 → P
n−1. Hopf applied his

newly constructed theory of the ring structure of cohomology, while Stiefel (a
former student of Hopf) applied his characteristic classes of vector bundles.
Both methods led to the same result, published in 1940.

Hopf-Stiefel Theorem 6. If there exists a nonsingular bilinear map of size
[r, s, n] over R, then

(x+ y)n = 0 in the ring F2[x, y]/(xr, ys).

Here F2
∼= Z/2Z is the field of two elements. By the Binomial Theorem

this criterion can also be stated as:
(
n
k

)
is even whenever n − s < k < r.

This Hopf-Stiefel criterion is fairly easy to apply. For example, a nonsingular
bilinear [3, 5, 6] cannot exist over R because

(
6
3

)
is odd.

Corollary 7. (Hopf-Stiefel) If there is an n-dimensional real division algebra
then n is a power of 2.

Proof. Check that (x + y)n = xn + yn in F2[x, y] if and only if n is a power
of 2. See Exercise 4(a).

Of course the expectation was that the only possible division algebra dimen-
sions here are 1, 2, 4 and 8. That was finally proved in 1958 as a consequence
of the Bott Periodicity Theorem, and those ideas were later incorporated
into topological K-theory. Topologists studied nonsingular bilinear maps for
other reasons as well. For example a map of size [r, n, n] provides a system
of r− 1 linearly independent vector fields on the sphere Sn−1. A nonsingular
[r, r, n] provides an immersion of Pr−1 into euclidean space Rn−1. Nonsingu-
lar bilinear maps are also involved in the analysis of the homotopy groups of
spheres.

Let’s summarize what has been discussed so far by introducing some new
notations.

Definition 8. Let r, s be positive integers.

r ◦ s = min{n : (x+ y)n = 0 in F2[x, y]/(xr, ys)}.

r # s = min{n : there is a nonsingular bilinear [r, s, n] over R}.

r ∗ s = min{n : there is a normed bilinear [r, s, n] over R}.
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We already know some basic facts about these functions:

r ◦ s ≤ r # s ≤ r ∗ s.

r ∗ n = n if and only if r ≤ ρ(n).

The first inequality here is a restatement of the Hopf-Stiefel Theorem. The
second statement is the Hurwitz-Radon Theorem.

The values of r # s and r ∗ s are known for only a few values of r, s. For
example, if there exists a composition formula of size [r, s, r◦s] then all three
values are equal. Such constructions can be done whenever r is small:

Lemma 9. If r ≤ 9 then r ∗ s = r # s = r ◦ s.

Similarly 10 ◦ 10 = 16 and there is a normed [10, 10, 16], as we will see in
Lecture 2. Therefore 10∗10 = 10#10 = 10◦10 = 16. On the other hand, for
larger values the lower bound r◦s is not sharp. For example, 16◦16 = 16, but
Hurwitz-Radon implies 16∗16 > 16. In fact, K. Y. Lam (1972), (1985) proved
that 16 # 16 = 23 while 16 ∗ 16 > 23. It is easy to construct a composition of
size [16, 16, 32] and it is conjectured that 16∗16 = 32. The best result known
in this direction is due to Lam and Yiu (1989): 29 ≤ 16 ∗ 16 ≤ 32.

To clarify the Hopf-Stiefel result, and for future use, let’s investigate those
values r ◦ s in more detail. For small values of r and s it is not hard to check
the binomial coefficients to determine the value of r ◦ s. A table of some of
the small values is given below.

When I look at this table of the values of r ◦ s, some patterns seem to jump
out. For example,

• The rows and columns are non-decreasing.

• The entries 2, 4, 8, 16 occur in triangular patterns.

• The upper left 2× 2 square, with various constants added, is repeated
in several places. Similar patterns hold for the upper left 4× 4 square.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
2 2 2 4 4 6 6 8 8 10 10 12 12 14 14 16 16 18
3 3 4 4 4 7 8 8 8 11 12 12 12 15 16 16 16 19
4 4 4 4 4 8 8 8 8 12 12 12 12 16 16 16 16 20
5 5 6 7 8 8 8 8 8 13 14 15 16 16 16 16 16 21
6 6 6 8 8 8 8 8 8 14 14 16 16 16 16 16 16 22
7 7 8 8 8 8 8 8 8 15 16 16 16 16 16 16 16 23
8 8 8 8 8 8 8 8 8 16 16 16 16 16 16 16 16 24
9 9 10 11 12 13 14 15 16 16 16 16 16 16 16 16 16 25
10 10 10 12 12 14 14 16 16 16 16 16 16 16 16 16 16 26
11 11 12 12 12 15 16 16 16 16 16 16 16 16 16 16 16 27
12 12 12 12 12 16 16 16 16 16 16 16 16 16 16 16 16 28
13 13 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16 29
14 14 14 16 16 16 16 16 16 16 16 16 16 16 16 16 16 30
15 15 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 31
16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 32
17 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 32

Table of values of r ◦ s when r, s ≤ 17.

These observations can be formulated algebraically as follows.

Proposition 10. r ◦ s is a commutative binary operation on Z+.

(1) If r ≤ r′ then r ◦ s ≤ r′ ◦ s.

(2) r ◦ s = 2m if and only if r, s ≤ 2m and r + s > 2m.

(3) If r ≤ 2m then r ◦ (s+ 2m) = (r ◦ s) + 2m.

These properties are not hard to prove directly from the definition of r ◦ s.
Moreover the r ◦ s function is uniquely determined by these rules.

In the remaining lectures we will mention how this same function r ◦ s arises
in quite different ways in the study of composition formulas.
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Exercises.
EXERCISE 1. (a) Check that for the original [2, 2, 2] formula the matrix A

is

[
x1 −x2

x2 x1

]
. Then A1 =

[
1 0
0 1

]
and A2 =

[
0 −1
1 0

]
.

(b) Write the 4× 4 matrix A corresponding to Euler’s [4, 4, 4] identity.

(c) Construct an 8-square identity. This can be viewed as an 8× 8 matrix A
with orthogonal rows, where each row is a signed permutation of (x1, . . . , x8).
(Another method is described in Lecture 2.)

EXERCISE 2. Proof of the 1, 2, 4, 8 Theorem.

Suppose F is a field in which 2 6= 0, and let V = F n. (a) View an n × n
matrix A as a mapping V → V . If ATA = In then A is an isometry of V ,
preserving lengths and angles (using the standard scalar product). If also
AT = −A show that Av is always perpendicular to v. Prove that there is
an orthogonal basis of V of the type {v1, Av1, v2, Av2, . . . }. Consequently n
must be even.

(b) Suppose A,B ∈ GLn(F ) are skew-symmetric isometries, as in part (a)
and suppose AB = −BA. Show that there is an orthogonal basis of V of the
type {v1, Av1, Bv1, ABv1, v2, Av2, Bv2, ABv2, . . . }. Consequently n must be
a multiple of 4.

(c) Suppose C1, . . . , Ck are nonsingular n×n matrices which anticommute in
pairs: CiCj = −CjCi whenever i 6= j. Ignoring scalar multiples, there are 2k

matrices obtained as products of distinct Cj’s. If k is even, prove that these
2k matrices are linearly independent.

(d) Complete the proof of the Hurwitz 1, 2, 4, 8 Theorem.

(Hints. (a) Recall that the scalar product 〈x, y〉 satisfies 〈Ax, y〉 = 〈x,ATy〉.
Choose v1 ∈ V with nonzero length: 〈v1, v1〉 6= 0. Choose v2 with nonzero
length in {v1, Av1}⊥, the orthogonal complement. Etc.

(b) Choose v1 ∈ V with nonzero length. Then v1, Av1, Bv1, ABv1 are mutu-
ally perpendicular. Choose v2 with nonzero length in {v1, Av1, Bv1, ABv1}⊥.
Etc.
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(c) If false, choose a dependence relation with the minimal number of nonzero
terms. We may assume that In is one of the terms. Conjugate by Cj to
get another relation which must be identical to the original (otherwise their
difference is a shorter relation). Then each nonzero term must commute with
every Cj.)

EXERCISE 3. Inverses, but not a division algebra.

Let A = R
3 with basis {1, i, j}. Fix an element ω ∈ A and define a bilinear

multiplication on A by requiring 1 to be an identity element, i2 = j2 = −1
and ij = −ji = ω. If α = a+ bi+ cj define α = a− bi− cj.

(a) Show that αα = αα = a2 + b2 + c2.

(b) If ω 6= 0 show that αβ = βα = 0 implies α = 0 or β = 0.

(c) Deduce that every nonzero element of A has a (2-sided) inverse, and that
this inverse is unique. However A is not a division algebra.

EXERCISE 4. The operation r ◦ s

(a) Express n = 2mn0 where n0 is odd. Then: r ◦ n = n ⇐⇒ r ≤ 2m.
In particular, n ◦ n = n ⇐⇒ n is a power of 2.

(b) r ◦ (s+ s′) ≤ r ◦ s + r ◦ s′, and similarly for # and ∗.

(c) If r ≤ max{ρ(s), ρ(s− 1), . . . , ρ(s− 9)} then r ◦ s = r # s = r ∗ s.
For example, 10 ∗ s = 10 ◦ s for any s ≡ 0, 1, . . . , 9 (mod 32).

(Hints. (a) (x+ y)n = (x2m + y2m)n0 in F2[x, y].

(c) Use Lemma 9. Given r ∗ (s − k) = s − k where 0 ≤ k ≤ 9. Then
r ∗ s ≤ s− k + r ∗ k = s− k + r ◦ k = r ◦ s.)
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EXERCISE 5. Nonsingular maps.

(a) If there is a nonsingular bilinear [r, s, n] then r # s ≤ n. Moreover if
r # s = n that map must be surjective.

(b) Let Pn = {real polynomials of degree < n}. Then dimPn = n and
multiplication provides a nonsingular bilinear map cr,s : Pr × Ps → Pr+s−1.
Hence r ◦ s ≤ r # s ≤ r + s− 1.

(c) For which r, s does r ◦ s = r + s − 1? In those cases we know that
r ◦ s = r # s.

(d) For which r, s is that map cr,s surjective?

(Hints. (a) If the given map f is not surjective, choose a line L ⊆ Rn with
L ∩ image(f) = 0 and consider f : Rr × Rs → R

n/L.

(c) It depends on the dyadic (base 2) expansions of r − 1 and s− 1.)
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