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Abstract

A permutation 7 € S,,, where S,, is the set of permutations of length n, is said
to have an occurrence of the pattern 132, if it contains a subword 7;7;7, with
1<i<j <k <n,suchthat m; < m, < 7;. If there is no such subword, 7 is said
to be 132-avoiding. In the same way we define pattern avoiding permutations
for every 7 € Sk.

In the first part of this paper we will first present some results in pattern
counting problems. When dealing with pattern avoidance one will often en-
counter the Catalan numbers, and therefore we give in the second chapter an
introduction to these. A useful technique when working with patterns is gen-
erating trees. We will show how one can use this concept in proving pattern
avoidance theorems. We conclude the first part by first giving a brief account
of generalised patterns, where the constraint, that two entries adjacent in the
pattern must also be adjacent in the permutation, is admitted. We then give
a new proof of a result given by Claesson and Mansour on the enumeration of
permutations with exactly one occurrence of the generalised pattern 2-13.

In the second part we consider the following problem. With n and & fixed,
we count for every permutations of length n the number of patterns of length &
that have occurrences; How will this distribution look like? Here we concentrate
on cases where k is just smaller than n and in particular where k¥ = n — 2.
Computations show that we get marked peaks in the distribution. We provide
an explanation for this and in doing so we introduce the concept of links. By a
link we mean a pair of consecutive numbers m and (m + 1) that are adjacent
in a permutation. We derive a pair of recurrence formulae which produce these
numbers, which we denote by A, ;. We will also study the diagonals, A 41,1,
with m fixed and n > 1. We will show that these diagonal elements are given by
polynomials, P, (n), of degree m. We give a recurrence relation for the leading
term of these polynomials. Finally we present conjectures on the values of P,,(0)
and P, (-1).
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Pattern Avoidance



Chapter 1

A Brief Survey on Patterns

1.1 Introduction

The pattern problems dealt with in this paper is a new but rapidly growing field
of combinatorics. The birth of pattern avoidance can be ascribed to D. Knuth’s
ground-breaking work [13] from 1969, where it originated from certain sorting
problems. After that this subject lay more or less dormant(with a few ex-
ceptions) until 1985 when R. Simion and F. Schmidt published their much
celebrated paper [20]. Since then this field has virtually exploded with a couple
of hundred papers being written in it. We give here some of the results obtained,
mainly without proofs.

1.2 Preliminaries

Let V = {vy,v9,...,v,} with v; < vy < -+ < v, be a finite subset of N. A
permutation w of V is a bijection from V onto itself. We shall usually regard =
as a word over V', that is if 7(v;) = a; we write

T =a1ay...0ay.

The set of all permutations of V is denoted by Sy. An often used set is
{1,2,...,n}, which we will denote by [n]. The set of all permutations on [n]
is called the symmetric group of order n and is denoted by S,,. We also put
S= Un>o0 S,.

Definition 1. By the reduction of a permutation 7 on the set V', we mean the
permutation 7’ obtained from 7 when replacing v; with ¢ for alli € {1,2,...,n}.
We shall write n' = red(r). o

Example 1. red(62814) = 42513 Q



Definition 2. An element of a permutation is called a left-to-right minimum
of the permutation, if all entries preceding it, are bigger than that element. ¢

In the same manner we define left-to-right maximum, right-to-left minimum and
right-to-left maximum.

Definition 3. For given 0 € S,, and 7 € S, where k < n, we say that a
subword
T =0404y...0%

n

of o such that red(w) = 7, is an occurrence of the pattern 7 in o. If there exists
no such subword we say that o is T-avoiding. &

Example 2. The permutation ¢ = 416235 has two occurrences of the pattern
231, namely 462 and 463, but no occurrences of 321. Thus ¢ is 321-avoiding. O

We denote by S,(7) the set {o € [n] : o avoids 7} and more generally, with
V C S, we have that S,(V) = N;eySp(7). For the cardinality we define

Definition 4. Two patterns, 7, and 75, are said to be Wilf equivalent or belong
to the same Wilf class if s,(m1) = sp(72) for all n. O

We now introduce some symmetry operations on permutations.

Definition 5. Let m be a permutation of [n]. We define the reverse of m,
denoted 7", by

w" (i) =w(n+1—1), i € [n].
¢

Definition 6. Let m be a permutation of [n]. We define the complement of x,
denoted 7€, by

@) =n+1—7(), i € [n].
¢

We also define 7¢ as the usual inverse operation on S,. We denote the group
generated by these three operations on S, by G,. It’s not hard to show that
Gp is isomorphic to the dihedral group Ds, i.e. the symmetric operations on
a square. The orbits under the action of G, are called symmetry classes. It’s
plain to see that if g € G,, then there are as many occurrences of 7 in 7 as
there are of g(7) in g(w). In particular, s, (71)=s,(72) whenever 7; and 7> are in
the same symmetry class. Thus all the members of a symmetry class are Wilf
equivalent. The converse is not true, however. Two Wilf eqivalent patterns do



not necessarily have to belong to the same symmetry class. As an illustration
of this we present the following theorem.

Theorem 1.1. For any n we have that the patterns
12---n—-1n and 12---nn—-1

are Wilf egivalent.

The most famous problem concerning pattern avoidance, namely the Stanley-
Wilf conjecture from around 1990, which states that

Conjecture 1.2. For any pattern T € S, the limit

i a7/

ezists, and is finite

was recently settled by A. Marcus and G. Tardos [15].

1.3 Patterns of Length Three

We have that S, is divided into two symmetry classes, namely
{123,321} and {132,213,231, 312}.

The first ever result in the field of pattern avoidance was Knuth’s enumeration
of §,,(213):

Theorem 1.3. For all n € N we have that

5n(213) = Cy = — (2”) (1.1)

S n+1\n
where C,, is the nth Catalan number.

We will provide a proof for this result in the next chapter, where we will
instead use 132 to represent this symmetry class. Hammersley [11] found the
enumeration of the other symmetry class:

Theorem 1.4. For all n € N we have that
5n(321) = Cy,. (1.2)

Thus for patterns of length 3 there is only one Wilf class. This is not surpris-
ing in view of Theorem 1.1. We will give another proof for this in the chapter
on generating trees.

When giving an account of pattern avoidance it’s impossible to get pass
the paper of Simion and Schmidt mentioned above. Here, among many things,
they give the first first bijection between S,(123) and S,(132) and they also
enumerate S, (V) for all V' C S3. Here we give their result for |[V| = 2. It’s easy
to check, by using the symmetry operations of G,, that in this case there are six
symmetry classes. It turns out that these six symmetry classes are divided into
three Wilf classes as Table 1.1 shows.



| v =]
{123,132}, {123,213}, {231, 321}, {312, 321}
{132,213}, {231,312}
{132,231}, {213,312} 2n—1
{132,312}, {213,231}
{132,321}, {123,231}, {123, 312}, {213, 321} 1+ (%)
{123,321} 0, whenn >5

Table 1.1: The cardinality of S,,(V'), where |V| = 2.

1.4 Patterns of Length Four

For S, there are 7 symmetry classes, but by using Theorem 1.1 and other rather
intricate tricks one can show that there are only 3 Wilf classes, which we repre-
sent by 1234, 1342 and 1324. Computations show that for n < 8 we get for the
numbers s, (7):

o 5,(1342): 1,2, 6, 23, 103, 512, 2740, 15485,
sn(1234): 1, 2, 6, 23, 103, 513, 2761, 15767,
e 5,(1324): 1, 2, 6, 23, 103, 513, 2762, 15793.
These numbers serve as an illustration for the following theorem.

Theorem 1.5. For all n > 7 the inequality
$n,(1342) < 5,(1234) < 5,(1324)
holds.

The first enumeration for a pattern of length 4 was given by Gessel in [10],
where he used the theory of symmetric functions to show that

Theorem 1.6. For all n > 0 we have
(20 (n\® 3K*+2k+1—n—2n
2(1234) = 2- (" . '
. §<l) (;) (k+1)2(k+2)(n -k +1)

Bona [2] followed by proving

Theorem 1.7. For alln > 0 we have

n? — 3n — 2 2i n—i+2
sn(1342):%- )= 1+322Z+1 212_2 ( ; )(—1)"—1.



As a consequence of these two theorems we get this rather surprising corol-
lary

Corollary 1.8.
. sp(1342)
lim

A 123y

Thus the series s,,(1342)52 , is not just smaller than s,,(1234)32, but also asymp-
totically smaller. The enumeration of S, (1324) is still open.

1.5 Counting Patterns

We conclude this survey by saying something about the other basic problem
concerning patterns, namely counting permutations with a prescribed number
of occurrences of a given pattern(there is also some work done on the hybrid of
those two problems, i.e. counting permutations which avoid one pattern and has
a prescribed number of occurrences of another, e.g. [18, 19]). We will denote by
8! (1) the permutations of length n that has exactly r occurrences of the pattern
t and, in analogy with the denotation for pattern avoiding permutations, we put
st(r) = IS5(0).

Most of the papers in this field consider only patterns of length three. It’s
obvious that we in this case get the same two symmetry classes, {123,321} and
{132,213,231, 312}, as we get with pattern avoidance problems. The first result
in this area was Noonan’s enumeration of SF,(123) [16]:

51123 = §( 2n ) (1.3)

n\n—3

A new approach to this problem was suggested by Noonan and Zeilberger [17].
They gave a new proof on Noonan’s result above and they also conjectured that

59n2 + 1170+ 100 [ 2n
2 —
w2 = S e T DI+ 5) <n - 4) (1.4)
and
2n —3
1(132) = ) 1.
sz = (1 77) (1.5)

Fulmek [9] proved the first conjecture, while Béna [3] proved the second. In [14]
Mansour and Vainshtein give an finite algorithm for computing the generating

function
oo

U,.(z) = Zs§(132)xj

=0

for every r > 0. In their paper they give explicit results for ¥,.(z) and the
corresponding numbers s?,(132) for r up to 5(they have also computed ¥g(z)

10



and s%(132) but they consider the expressions too long to be put in the paper).
We display their results for s7(132) for r = 2 and 3:

34+17n? —80n +8 (2n—6

2132) = - 1.
53(132) = (n%+51n° —407n* — 99n® + 77500 — 22416n + 20160)M.
! 6n!(n —5)!
(1.7)

It should be obvious to the reader why we restrict ourselves to show only these
two cases.

Here we finish our survey on pattern problems. For a more extensive read
see [12] or [4, chapter 14].

11



Chapter 2

The Catalan Numbers

2.1 Introduction

The Catalan numbers are omnipresent in the world of combinatorics. R. Stanley
has collected 150(!) different statistics that are enumerated by them. Three
examples are

I dividing convex (n + 2)-gons into n triangles with non-crossing diagonals.

o © o & D

IT ordering n pairs of parentheses.

ITT stacking coins with a base of n consecutive coins.

o &0 o & &

Here we will take a closer look at yet another example, the Dyck paths.
The reason for choosing this representation of the Catalan numbers is that it
is quite easy to establish a bijection between the Dyck paths and 132-avoiding
permutations. We will do this and we will also derive a recursion formula obeyed
by the Catalan numbers and their ordinary generating function. Finally we show

that the nth Catalan number is given by i ™).

12



2.2 Dyck Paths

Definition 1. A Dyck path of length 2n(or semi-length n) is a lattice path
from (0,0) to (2n,0), with up-steps (1,1) and down-steps (1, —1), which never
goes below the z-axis. O

We denote the set of all Dyck paths of length n with D, and we let D =
Un>0Dn. We also let C, = |Dy|, and as pointed out above C, is the nth
Catalan number. For convenience we represent the up-steps and down-steps by
u and d respectively. For example the Dyck path

is coded by uuduuuddudddudud.

Every nonempty Dyck path v can be uniquely written as v = uvy;dy,, where
~1 and v, are Dyck paths. This decomposition is called the first return decom-
position of . The following theorem shows that Dyck paths and 132-avoiding
permutations have the same enumeration.

Theorem 2.1. The Dyck paths of length 2n are in 1-to-1 correspondence with
132-avoiding permutations of length n.

Proof. We will prove this by constructing a bijection, ® : S,,(132) — D,,
recursively. First note that any 7 € S,(132) can be written as mynma, where
m1, T2 € Sp(132), and the entries in 7 are bigger than those in 7. First we set

d(e) =e,
where ¢ is the empty Dyck path/permutation, and next we set
v = &(7) = ud(m)d®(m2).

The function defined in this way clearly produces a well-defined Dyck path.
To produce the inverse, ®~1(v), we label the n down-steps of + as follows.
First we write  using the decomposition of first return, v = uy;dvys, where v,
and 7, are of lengths 2(7 — 1) and 2(n —4) respectively. The d in the decomposi-
tion above is the ith down-step and gets the label n. We proceed by recursively
labelling the (i — 1) down-steps of v; and the (n — %) down-steps of 2 in the

same manner, where 7, gets the labels {n —i+1,n—i+2,...,n — 1} and 7,
the labels {1,2,...,n — 1}. We now read the labels from left to right to get our
desired permutation. [

13



Example 1. We use our function & defined above, on the 132-avoiding permu-
tation 453612:

$(453612) = u®(453)d®(12) = uud(4)d®(3)dud(1)d = vuududduudd.

Thus $(453612) produces the Dyck path

SN,

Example 2. We illustrate the inverse, ®~!, by using the algorithm, described
in the proof, to label the down-steps of the Dyck path displayed earlier:

Thus &~ (vuduvuddudddudud) = 74536821. V)

Theorem 2.2. The Catalan numbers satisfy the recurrence formula

n—1

Cn=Y CiCni (2.1)

=0

Proof. Let C, ; denote the set of Dyck paths of length 2n with first return at
2 and let Cp,; = |Cp,;|- Any Dyck path ¢ € Cp,; can be written as 0 = uo1dos,
where o1 and o2 are Dyck paths of length 2(i — 1) and 2(n — %) respectively.
Thus Cy,; = C;_1Cy—;. Summing over 4 gives us

n n—1
Cn = Zl Ci—lcn—i = ZO Ci Cn—l—i-
[ )

Let G(z) be the ordinary generating function for the Catalan numbers. From
(2.1) we can derive the functional equation

G =1+ zG? (2.2)

14



with the solutions

1++1—-4x
O=—90

Since we know that G(0) = 1 we must choose the minus-sign above and thus we
get

(2.3)

Theorem 2.3. The ordinary generating function for the Catalan numbers is

1—+1-4x

G= 2x

(2.4)

It’s interesting to notice that G(z) has the simple continued fraction repre-
sentation

G=——— (2.5)
x
1—
x
1—
1-"-.
We conclude this chapter by giving the closed form for the Catalan numbers
Theorem 2.4. ) 5
n
Cp = . 2.6
" on+1 ( n ) (26)

Proof. An unrestricted path from (0,0) to (2n,0) has n up-steps and n down-
steps. Thus there are (*) such paths. We shall call a path that dips below the
z-axis, i.e. is not a Dyck-path, for a bad path. We denote the number of bad
paths of length 2n by B,,. Then we clearly have the relation

o= (7). o

Any given bad path, o, can be written as ¢ = 0103, where o; ends at the point
where o goes below the z-axis for the first time. Now we create a new path
o' = d109, where g7 is the path we get from o1 when we change u to d and
vice versa. Another way to put it, is to say that o1 is the image of o1 under
reflection in the line x = —1.

o
o1

We see that ¢’ is a path from (0, —2) to (2n,0). This process can be reversed.
Any path from (0, —2) to (2n,0) must touch the line z = —1 a first time. Inter-
changing the up-steps and down-steps of the path up to this point, produces a
bad path. Thus the number of bad paths of length 2n is the same as the number

15



of paths from (0,—2) to (2n,0). Such a path has (n + 1) up-steps and (n — 1)

down-steps, so we get that

an( 2n )
n+1

(2.8)

Now, using (2.7), it’s straightforward to calculate C,,

(2:) - (ﬁ 1)

Cn

(2n)!

(2n)!

nin!

(n+1)(n - 1)
(n+1)(2n)!

n(2n)!

(n+1)In!

(2n)!

(n+1)n!

(n+1)n!
1 (2n

1

2
n !
2

— +

16

)

n
n

)
n
il

!
!

)



Chapter 3

Generating Trees

3.1 Introduction

In this chapter we will give a brief presentation of generating trees, which is
a powerful tool when dealing with pattern avoidance problems. This tech-
nique was first used in this field by J. West in his papers [23, 24]. Among
his achievements are enumerations of permutations avoiding a pair of patterns,
e.g. the enumerations of S,,(3142,2413), S,(123,3241) and S,,(123,3241). He
also proves that S, (1234), S,,(1243) and S,,(2143) are Wilf equivalent. Most of
the results presented here are taken from his papers. Others who have made
use of generating trees are Z. Stankova [21, 22, joint with J. West] and M.
Bousquet-Mélou [5].
First we need to define what we mean by a generating tree.

Definition 1. A generating tree is a rooted, labelled tree with the property
that one can derive the children and their labels from the label of a node. ¢

This mean, what is required to specify a particular generating tree, is a recursive
definition consisting of

(1) the label of the root,

(2) a set of succession rules describing the number of children and their la-
belling. There is exactly one rule for every label.

We are in general interested in the total number of nodes at one label(the level
number) and sometimes the distribution of nodes at every level.

Example 1. The complete binary tree:

Root: (2)
Rule: (2) — (2)(2)
It’s trivial that the level numbers are 2. Q

17



Example 2. The Fibonacci tree:

Root: (1)
Rules: (1) — (2)
2) — (1)

We show that this set of rules really gives the nth Fibonacci number at the nth
level. We denote by f! and f? the numbers of nodes at level n with label 1
and label 2 respectively, and by f, the total number of nodes at level n. Then

for n > 2 we have f2 = fi_; + f2_1 = fo—1 and f} = f2_; = fn—> and thus
fo=fr+ f2=f. 1+ fn_o. With the initial values fo = f; = 1 this is exactly
the recurrence formula which defines the Fibonacci numbers. Q

3.2 Generating Trees and Pattern Avoidance
For a given permutation m € S,, and a given ¢ € [n + 1], let
= (71'1,71'2, ey i, + 1, T, .. ,7Tn).

We will call this inserting (n + 1) into site i. With respect to a given pattern
7, we will call a site ¢ of m € S,,(7) an active site if 7 € Spy1(7).

Proposition 3.1. The patterns 123 and 213 are Wilf equivalent.

Proof. We shall prove this by showing that 7(123) = T'(213). For a permu-
tation m; € S,(123) we set t to be the position of the first ascent in my, or, if
there are no ascents, we set t = n + 1. It’s clear that the ¢ first sites of m; are
all active, but none of the sites following this first ascent are. Inserting (n + 1)
into the first position give us a permutation with first ascent at (¢ + 1), while
inserting (n + 1) into site 1, 2 < 1 < m, produces a permutation with first ascent
at t. Thus the succession rule for 7(123) is

) — (2)B)---OE+1) (3.1)

Now, let s be the position of the first descent of a permutation m € S,,(213),
or, if 7o is the ascending permutation, let s = n + 1. Once again, the first s
sites are active, but none others are. Inserting (n + 1) into an active site i of my
creates a permutation 75 € S,11(213) which has its first descent at (i + 1), and
this gives us the succession rule

(s) = (2)3)---(s)(s +1) (3.2)

for T(213). Since the roots for T'(123) and T'(213) both are labelled (1) and
their succession rules are the same, it is immediate that 7'(123) = T'(213) and

18



this ensures that s,,(123) = s,,(213) for all n. [ )

As expected, things get more complicated when the pattern we want to avoid
is of length 4. For each node of the tree T'(1234) we now associate an ordered
pair (z,y) as follows. Let z represent the first ascent(or (n + 1) if there is none)
of the node 7 € §,(1234) and y the number of active sites in 7. In this case
y is the last element of the first increasing subsequence of length 3. With this
notation we get the following lemma

Lemma 3.2. In T(1234)
(z,y) — 2,y+1DBy+1)---(z+Ly+ 1)z, 2+ 1)(z,2+2)---(z,y). (3.3)

Proof. Let 7 be a node of T'(1234) having label (x,y). The active sites of 7
are obviously the y first sites. We create new nodes by inserting (n + 1) into
site ¢, where 1 < ¢ < y. It’s plain to see that the nodes thus produced will be
labelled
(z+1,y+1) ifi=1,
(,y+1) if2<i<uz,
(x,i) ifx+1<i<y,

and our lemma is thereby proved. 'Y

Next we consider the tree T'(2143). Also for this tree we label the nodes
(z,y), with = being the position of the first descent and y, as before, being the
number of active sites. In this case the y active sites are in general not the y
first sites.

Lemma 3.3. In T(2143)
(@,y) = 2Zy+DBy+1) - (z+Ly+D(z@+1)(z,+2)--(z,9). (34)

Proof. Let the y active sites be numbered from left-to-right as ai,as,...,ay.
Note that the first z sites are active, since there is no decreasing pair which
together with (n + 1) can form a 2143-pattern.

Inserting (n + 1) into site a; of 7 splits it into two sites, both potentially
active. If a site was active in 7, it’s easy to check that it will remain active in
7w, unless it’s to the right of  and to the left of a;. Now it’s straightforward
to show that for the pair (z,y) associated with a’ we get

(i+1ly+1) ifl<i<uz,
(z,e+y+1—9) fx+1<i<y.

A little bit of rearranging produces (3.4). [ )
From Lemma 3.2 and Lemma 3.3 we get the following theorem and its im-
mediate corollary

Theorem 3.4. T(1234) = T'(2143).

19



Proof. T(1234) and T'(2143) both have the root labelled (2,2), and since they
have the same succession rules they are isomorphic. A

Corollary 3.5. For all n > 0 we have that

s5n(1234) = 5,(2143).

20



Chapter 4

Generalised Patterns

4.1 Introduction and Some Results

There are several ways of extending the concept of pattern avoidance. In this
chapter we shall deal with one of these, introduced by Babson and Steingrims-
son in [1]. Here they considered generalised patterns, where the requirement
that adjacent letters in a pattern must also be adjacent in the permutations, is
admitted. We shall adopt the convention that a dash in a generalised pattern
means that the elements joined by the dash are not required to be adjacent in
the permutation. With this notation a classical pattern has dashes in all posi-
tions.

Example 1. The generalised pattern 1-23 is avoided by the permutation
342165 but there are two occurrences of the classical pattern 1-2-3, namely 346
and 345. Q

The enumeration of permutations avoiding generalised patterns with one dash
and of length three has been investigated in depth by A.Claesson [6] and by
Claesson together with T.Mansour [7]. We shall present some of their results,
mostly without proofs.

4.1.1 Avoiding One Pattern

We begin with a rather trivial observation, which can readily be proved by
looking at the symmetries of the permutations of length n.

Proposition 4.1. With respect to being equidistributed, the twelve patterns of
length three with one dash fall into three classes.

(i) 1-23, 12-3, 3-21, 32-1.
(i) 1-32, 3-12, 21-3, 23-1.
(iii) 2-13, 2-31, 13-2, 31-2.

21



We give the enumerations of these classes and start with this beautiful proof
from Claesson [6].

Proposition 4.2, We have that s,,(1-23) is the same as the number of partitions
of [n], which equals B,,, where B,, is the nth Bell number.

Proof. It is well-known that the number of ways of partitioning [n] is counted
by the Bell numbers. Now to prove the first part we introduce a standard
representation of a given partition 7 of [n] by demanding that:

(1) Each block is written with its smallest element first and the rest of the
elements in decreasing order.

(2) The blocks are ordered so that their least elements form a decreasing
sequence and we put a dash between the blocks.

We define 7 as the permutation we get from 7 by writing it in standard form and
removing the dashes. We claim that # = ajaz . .. a, is (1-23)-avoiding. Indeed,
if a; < a@;41 then they are the first two elements of a block. By our construction
a; is a left-to-right minimum, which means that there exist no 5 < ¢ such that
a; < a;.

It remains to show that we from any (1-23)-avoiding permutation, 7 , can
uniquely determine a partition in standard form. This is easily done by inserting
a dash before every left-to-right minimum of 7, except the first one. A

We have the same enumeration for S,,(1-32):
Proposition 4.3. 5,(1-32) = s,,(1-23) = B,.

The third class, however, is, like the classical patterns of length three,
counted by the Catalan numbers. We will make use of this result in the next
section.

Proposition 4.4. s,(2-13) = 5,(2-1-3) = C,,.

Proof. The second part we have already proved and hence we concentrate
on the first one. It’s obvious that S,(2-1-3) C S,,(2-13). Hence it’s enough to
show that every permutation m having a (2-1-3)-occurrence also has a (2-13)-
occurrence.

Let z be the leftmost entry of 7 such that there exist x and y so that zyz
form a (2-1-3)-pattern. Let y' be the entry just preceding z. Then we must have
y' < x, otherwise zyy' would form a (2-1-3)-pattern, which is a contradiction.
Now zy'z form a (2-13)-pattern and we’re done. [ )

Thus there are two Wilf-classes in the case of generalised patterns of length
three with one dash.

4.1.2 Counting Permutations With Pattern Occurrences

In [8] Claesson and Mansour study the enumeration of permutations with exactly
r occurrences of a generalised pattern of length 3 with one dash. We give some
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of their main results. We start with a couple of recurrence relations for the
numbers s.,(1-23) and s}(1-32).

Theorem 4.5. Let ui(n) = s:(1-23) and let B, be the nth Bell number. The
numbers ui(n) satisfy the recurrence

ui(n +2) = 2uy(n+ 1) + i (Z) [us(k + 1) + Brya],

when n > —1, with the initial condition u1(0) = 0.

Theorem 4.6. Let vy(n) = sl (1-32). The numbers vi(n) satisfy the recurrence

vi(n +1) = vi(n) +:§ [(Z)'Ul(k) + (Z:i)Bk] )

when n > 0, with the initial condition v, (0) = 0.

With the aid of a certain continued fraction they manage to give closed
formulae for s7,(2-13) when r = 1,2, 3.

Proposition 4.7. The number of permutations of length n with exactly one
occurrence of the pattern 2-13 is

sk (2-13) = (n2f 3).

In the next section we will provide a new combinatorial proof of this propo-
sition.

Proposition 4.8. The number of permutations of length n with exactly two
occurrences of the pattern 2-13 is

9 _n(n—=3)( 2n
s, (2-13) = 2ntd) (n B 3).

Proposition 4.9. The number of permutations of length n with exactly three
occurrences of the pattern 2-13 is

s3(2-13) = % (" ;“ 2) (ffs) .

4.2 Enumerating S!(2 — 13)

As mentioned above we will give a new proof of the following

Theorem 4.10. For the numbers of n-permutations with exactly one occurrence
of the generalised pattern 2-13 we have the simple formula

sk (2-13) = (anLs). (4.1)
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In proving this we will very much follow the same path as M.Béna [4, chapter
14:exer. 8-10] when he proved that s.(1-3-2) equals the number of ways of
partitioning a convex (n + 1)-gon into triangles and one quadrilateral which is
(®*~2). The difference is that here we will partition a convex (n + 4)-gon into
triangles and one heptagon. We start by enumerating our partitions.

Theorem 4.11. The number of ways of dividing a conver (n + 4)-gon into

triangles and one heptagon with non-crossing diagonals is (n2_n3).

Proof. We denote the number of partitions by d,, and label the vertices of our
(n+4)-gon1,2,...,(n+4).

First we compute the partitions where 1 is a vertex of the heptagon. We
denote these numbers by d%. Let {a,b,c,d, e, f} be the six other vertices of the
heptagon such that 1 < a < b < --- < f < (n+4). With these vertices fixed
the rest of the (n + 4)-gon is divided into 7 convex polygons all of which are
to be triangulated. The number of sides for these polygons are: a, (b —a + 1),
(c—b+1),..., (n+4— f)(here we allow for two-sided polygons). It’s well-known
that there are C,_» triangulations of a convex n-gon(See the first example on
page 12), and thus we are lead to the following formula for d2:

n n+l n+2 n4+3 nt4

=YY Y 2 S Y Cwhede ),

a=2 b=a+1 c=b+1 d=c+1 e=d+1 f=e+1
where
C(a; b; c, d; €, f) =Ca2-Cpq1-Cep—1-Cqg—¢—1-Ce_q1- Cffefl . c’n+47f-

This may look like a formidable sum to handle, but it’s actually not very hard
to evaluate it. We deal with one sum at a time using the recurrence relation
(2.1) on page 14.

n+4
Z Cf—e—l : Cn+4—f = Co- Cn+3—e + -+ Cn+3—e - Co
f=e+1
= Cn+4—e
n+3
Y Cecam1-Cnya—e = Co-Crys_a+-+Cnyaa-Ci
e=d+1

Cnya—q—Co - Crys—qg

= Chys—a—Chys—a

The rest of the sums are evaluated in the same way. We save the reader from
some tedious calculations and display the final result

dt = n+3 — 5Cn+2 + 60n+1 - C,. (42)

n
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We rewrite this using the closed form of the Catalan numbers, C,, = —— (2:)

n+1
Q= I (2n+6) 5 (2n+4 n 6 (2n+2) 1 [2n
" T pn+4\n+3 n+3\2n+ 2 n+2\n+1 n+1\n
(2n)! 3 2
= — -21 14
n!(n+4)!(7n n” + 14n)
7 2n
= — . 4.3
n+4<n—3> (43)

Since the vertices of the (n + 4)-gon are indistinguishable we would get the
same number of partitions if we fixed any other vertex than 1. Consider the
sum Z?:f di, = (n + 4)d},. Here every partition will be counted once for every
vertex of the heptagon, and hence we get that

n+4

d, = - d}
7 n

_ n+4 7 2n
T n—+4<n—3)
_ 2n

- (1)

and this completes our proof. '

We continue by deriving a recurrence relation satisfied by d,,.

Proposition 4.12.

dp =2 (Z di_lCn_,) + Cn+2 - 4Cn+1 + 3C,,. (44)

i=1

Proof. Let P be a convex (n + 4)-gon. When partitioning P into triangles
and one heptagon we regard two separate cases

I First we consider the case when there is no diagonal going into vertex 1.
Now there are two possibilities. If (n+4,2) is a diagonal then our problem
is reduced by one in size and we get d,,_1 partitions.

If (n + 4,2) is not a diagonal then {n + 4,1,2} are vertices of the
heptagon. Let {a,b,c,d} denote the four remaining vertices. Then a can
be positioned from 3 to n, b from (a+1) to (n+1), ¢ from (b+1) to (n+2)
and d from (¢ + 1) to (n + 3). The rest of P is divided by the heptagon
into five convex polygons. The number of sides for these polygons are
(@=1),(b—a+1),(c—b+1),(d—c+1) and (n+5—d). To complete
the partitioning all of these polygons must be triangulated and this can
be done in

Ca—l Cb—a+1 Cc—b—i—l C’d—c—{—l Cn+3—d
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II

different ways. Summing over a, b, ¢ and d gives us

n n+l nt+2 n43
Z Z Z Z Ca—lCb—a+lcc—b+lcd—c+lcn+3—d =
a=3 b=a+1 c=b+1 d=c+1
Cn_|_1 -3C,+Cr_1 (45)

partitions. Thus altogether in this first case we get
dnfl + C'n+1 - 3Cn + Cnfl (46)

different partitions.

Now we look at the case where there is a diagonal going into 1. Let ¢ be
the lowest labelled vertex such that (1,4) is a diagonal. Then the heptagon
is either in the part 12...7 or in the part i(s + 1)...(n + 4)1. We handle
the latter case first. Here the part with the heptagon is a polygon with
(n + 6 — i) sides, and hence it can be partitioned in d, ;2 _; ways. Next
we have to triangulate 12...7 so that no diagonal goes into 1. Now (2,1)
must be a diagonal, thus this is reduced to the problem of triangulating
23...4. This can be done in C;_3 ways. Summing over i yields(to get a
heptagon we must have i <n —1)

n—1
> dnya iCi s (4.7)
=3

In the first case we must first partition 12...4 into triangles and one
heptagon so that no diagonal goes to 1. But this is exactly what we
computed in case I and the number of ways of doing this is

di_5+Ci3—-3C;_4+Cis.

Secondly we need to triangulate (i + 1) ...(n 4+ 4)1. This can be done in
Cp+4—; different ways. Summing over ¢ we get

n+3

Z(difs +Ci_3—3Ci_4+Ci_5)Cpya_i =
=7
n+3
Cnt2 —5Cn41 +6Cn — Cpniy + Y di_5Crya_i. (4.8)
=7

Notice that the sums in (4.7) and (4.8) almost have the same summands.
We find that in this second case we get, after some rewriting, the total
number of partitions to be

Crtz — 5Cpq1 +6C, — Cp1 +2 (Z di3Cni) —dy, . (4.9)

i=3
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Finally, adding case I and II we get the recurrence formula

n
dy, = n+2 — 4Cn+1 + 3Cn+2 +2 Z di_1Cni.
=3

This is clearly equivalent to (4.4) since d,, = 0 when n < 3. [ )

We now turn our attention to permutations in order to fulfil the final step of
our proof of Theorem 4.10. In the next proposition we show that the numbers
s1(2-13) satisfy the same recurrence relation as the partition numbers d,,. For
convenience we denote s’ (2-13) by by,.

Proposition 4.13. The permutations with exactly one occurrence of the pattern
2-13 satisfy the recurrence

bn = 20D bi-1Cn—i) + Cnya — 4Cpy1 + 3Ch (4.10)

i=1

Proof. When determining b,, we consider three possibilities depending on the
placement of the (2-13)-occurrence relative to the entry 1.

I With our (2-13) subsequence on the left-hand side of 1 we must have all
elements on the left of 1 to be bigger than the entries on the right. For
if we had elements x and y, ¢ < y, to the left and right of 1 respectively,
zly would form a (2-1-3)-pattern and from Lemma 4.4 we know that we
would then get an extra (2-13)-occurrence. Thus, with 1 in position ¢, the
(¢ — 1) entries (n —i + 2, n — i+ 3,..., n) preceding 1 can be ordered in
b;—1 different ways and the (n — ¢) entries (1,2,...,n — i+ 1) succeeding
1 must be (2-13)-avoiding and this can be done in C,,_; ways. Summing
over 4 give a total from this first case of

> bi1Cri (4.11)
i=1

different permutations.

II If instead the occurrence of 2-13 is to the right of 1 we must still, by
the same argument as in I, have the left entries to be bigger than the
right entries. With 1 in position ¢ we now must order the (i — 1) entries
preceding 1 to be (2-13)-avoiding, which can be done in C;_; ways, and
the (n — i) entries succeeding 1 in b,,_; ways. Summing yields

D bniCiy (4.12)
i=1

permutations from this case. We notice that the summands in (4.11) and
(4.12) are the same, thus adding the contributions from I and IT give a
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I11

total of

QZbi—lcn—i (4.13)
=1

permutations.

Now we focus on the most intricate and interesting case, namely when
the entry 1 is placed between 2 and 3 in the (2-13)-occurrence. With
yzz being the (2-13)-subword we choose to handle this possibility in two
separate cases:

(i)

(i)

First we consider the case where z = 1. The entries ¢ {1,y, 2} are
divided into three intervals

(1). 2,3,..,y—1,

(2. y+Ly+2,..,2-1,

(3). z+1,z2+2,...,n.
These entries must be ordered so we don’t get any more occurrences
of the pattern 2-13. We see that the elements in (1) and (2) must
be placed after z. Otherwise, with w € (1) U (2), wlz would form a
(2-13)-pattern. Moreover we must have (2) preceding (1).

The entries in (3) have a larger degree of freedom. They can be
placed in three blocks: before y, between y and 1 and between z and
(2). We denote these blocks (3a), (3b) and (3c). Here we must have
the elements in (3a) bigger than those in (3b), which must be bigger
than those in (3c). Hence with the sizes of these blocks fixed the
elements belonging to each of them are determined. If (3a) contains
i elements, (3b) contains j elements, then there are (n — z — i — j)
elements left to be placed in (3c).

To summarise we get the following schematic structure of a per-
mutation from this case

(3a) y (3b) 12 (3¢) (2) (1)

Thus we get five blocks, all of which must be (2-13)-avoiding. Since
y ranges from 2 to (n — 1) and z from (y + 1) to n we get

n n—zn—z—1

n—1
Z Z Z Z Cy—2C:—y1CiCiCh_ i (4.14)

y=2 z=y+1 i=0 j=0

different permutations in this case.

When z # 1 things get a little bit more complicated. Now we get
four different intervals for the entries ¢ {z,y, z}:

1) 2,3,...0—1,
(2)z+1l,z+2,..y—1,
B)y+1l,y+2,..,2-1,
(4) z+1,z2+2,...,n.
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The intervals (2)-(4) correspond to (1)-(3) of case (i) and are handled
in the same way.

For the elements of (1) however, we need to make a deeper inves-
tigation. To avoid occurrences of 2-13 these elements can be placed
either between 1 and z or at the end of the permutation. Moreover,
the elements between 1 and x must be increasing. In addition the
(z —2) entries of (1) must of course be (2-13)-avoiding. Thus for any
permutation m € S;_», we can make a cut before the first descent of
7 and place the entries preceding the cut between 1 and z, and the
remaining entries at the back of our permutation.

Let t be the position of this first descent(or let ¢t = z — 1 if there
isn’t any). Then there are t ways of making the cut. Thus all in all,
with si(2-1-3,¢) denoting the number of permutations of length k
with first descent ¢, we can arrange the elements of (1) in

x—1
D tspo(2-1-3,1) (4.15)
t=1

different ways. Now, recall the generating tree for S, (2-1-3) on page
18. Here a node labelled (¢), where (t) denotes the first descent of the
corresponding permutation, has ¢ children. Thus summing the labels
at one level i yields the next level number, i.e. Cjy;. But this sum
is precisely (4.15) with ¢ = z — 2, and we therefore get that (4.15)
equals Cp_1.

From the discussion above we can conclude that a permutation
satisfying the conditions of this case has the following structure

(4a) y (4b) 1 (1a) zz (4c) (3) (2) (1b)

where z ranges from 2 to (n — 2), y from (x + 1) to (n — 1) and 2
from (y + 1) to n. Summing up we get

n—2 n—1 n n—zn—z—1i

Y Y DY CoiCysCay 1CiCiCrij (4.16)

=2 y=z+1 z=y+1 i=0 j=0
permutations from this case.

If we let x start from 1 in (4.16) we see that the extra term we get is
exactly (4.14) and thus the total contribution from this third case is

n—1 n—zn—z—i

Z Z Z Z C:c—lCy—ZCz—y—ICiCan—z—i—j:
y=z+1 z=y+

i=0 j=0

IIMI

Chis — 4Chi1 +3C,  (4.17)

Adding these three cases gives us (4.10) [ )
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Since we obviously have b,, = d,, = 0 when n < 3 and from Proposition 4.12
and Proposition 4.13 we know that these numbers satisfy the same recurrence
equation, we must have b, = d, for all n. Now Theorem 4.11 immediately give
us Theorem 4.10.
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Part 11

Pattern Count Distribution
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Chapter 5

A Distributional Surprise

5.1 Introduction and Preliminaries

The starting point of this second part is the following problem. For fixed n and
k we count, for each of the permutations of length n, the number of different
patterns of length k it contains. Now we ask, what will this distribution look
like? This question is not very interesting when n is much larger than k, since
in this case almost all permutations will contain all or almost all patterns of
length k. Thus we will concentrate on the situation where k is roughly of the
same size as n. In particular we will target the case when k = n — 2. For this
study we’ll need some machinery and hence the following definitions. We define

Ti(m) = |{7 € Sk : 7 contains 7},

that is, 7 (7) is the number of patterns of length & that occurs in 7. We say that
7 contains 7 (7) patterns(of length k) or has a pattern count of 71 (w). Usually
k is implied and we will simply write 7(7). Further we define the numbers

R = |{r € Sy : () = 4}.

When £ is slightly smaller than n it’s quite conceivable that only a few permuta-
tions contain few patterns and only a few permutations contain many patterns,
and one might assume that the distribution in between is, or is close to, uni-
modular. But this guess turns out to be far from the truth as seen in Table 5.1
and the corresponding diagrams in Figures 5.1-5.3.

The obvious question is: why do we get these peaks in our distributions? We
will answer this question in part, but we do not expect to get an exact formula
for Rg"’k), since this a much to complicated problem.

5.2 Factors that reduce the number of patterns

From now on in this chapter we assume, if nothing else is stated, that k = n— 2,
so we use ‘patterns’ as short for ‘patterns of length n — 2’. The number of
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R$8’6) R1(9,7) R§9,6)
1 21 2129 8936 | 1 229 10176 | 57 4636
2 8 | 2 8130 4580 | 2 8 130 13076 | 58 2470
3 46 || 3 52 | 31 11364 || 3 32 | 31 12396 | 59 1804
4 62 || 4 72 | 32 14984 || 4 56 | 32 9668 | 60 2546
5 212 || 5 266 | 33 9896 || 5 120 | 33 10068 | 61 2648
6 296 || 6 430 | 34 3932 || 6 160 | 34 13804 | 62 2078
7 580 || 7 780 | 35 984 || 7 208 | 35 12978 | 63 1268
8 970 || 8 1588 | 36 158 || 8 398 136 9570 | 64 998
9 1002 || 9 2168 9 690 | 37 8418 | 65 1048
10 1916 || 10 2796 10 732 | 38 8418 | 66 848
11 2512 || 11 5716 11 956 | 39 11764 | 67 484
12 2196 || 12 8098 12 1476 | 40 12468 | 68 272
13 2090 || 13 6396 13 2098 | 41 10232 | 69 252
14 3942 || 14 8324 14 1924 | 42 6898 | 70 104
15 4296 || 15 16672 15 3182 | 43 8548 | 71 118
16 2438 || 16 20900 16 3020 | 44 10780 | 72 50
17 1678 || 17 15432 17 3592 | 45 11106 | 73 24
18 3216 || 18 9832 18 5126 | 46 6772 | 74 2
19 4564 || 19 18824 19 5086 | 47 6220 | 75 4
20 2370 || 20 34500 20 5132 | 48 7536 | 76 4
21 696 || 21 32230 21 7286 | 49 6416
22 624 || 22 17230 22 7330 | 50 4592
23 1414 || 23 7108 23 7240 | 51 4452
24 1784 || 24 12972 24 8236 | 52 5356
25 1064 || 25 30388 25 9794 | 53 4296
26 304 || 26 35260 26 9124 | 54 2472
27 48 || 27 20000 27 10176 | 55 2907
28 20 || 28 6520 28 11192 | 56 4852

Table 5.1: Rz(”’k) for some values on n and k.
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subsequences of length (n — 2) for a permutation = € Sy is (,”,) = (3). The
number of patterns is of course (n — 2)!, and thus the theoretical maximum
number of patterns 7 can contain is min((}), (n—2)!). Here we will assume that
n > 6 so that this maximum number is (}) = @ A permutation contains
this maximum number of patterns if and only if no pattern is represented more
than once. If a permutation has k pattern doublets we say that the maz is

reduced by k.

5.2.1 The Main Factor

Definition 1.  Given a permutation 7 € S, and a set s C [n] we define
the function m, (s) to be the pattern we get when we from 7 exclude the ele-
ments in s. With s = {a1,a2, ...,a;} we will write 7, (a1, a2, ..., a;) instead of

7rx({a1,a2,...,a,~}). (}

Example 1. With 7 = 2561374 and s = {1,3,6} we have that =, (s) =
my(1,3,6) =red(2574) = 1342. Q

Assume that a permutation 7 can be written as m = (71,4,%4 — 1,7) and that
m ¢ {i,i — 1} is an element of . Then m, (i,m) = 7y (i — 1,m). The reason for
this is that ¢ will play the same role in 7, (i,m) as (i — 1) does in m, (i — 1,m).
Since m can be chosen in (n — 2) ways, the max is reduced by (n — 2). From
this we can conclude that a crucial factor for how many patterns a permutation
7 contains is the numbers of consecutive numbers that are adjacent in 7 and
hence the following definition.

Definition 2. If the numbers i and (i + 1) are adjacent in a permutation T,
we say that they form a link in 7. &

We will use the denotation (i) = (i + 1) (or (i +1) = (i)), for saying that 7 and
(i + 1) are linked. We define the function a(w) to be the number of links in 7
and we also define

Apk = |{m € Sn:a(r) =k}

We will take a closer look at the numbers A, j in the next chapter.

What if 7 has two links? Those links can be two pairs, {¢,7+1} and {j, j+1},
with 4+ 1 < 4, or one chain of consecutive numbers, {i,7+ 1,7+ 2}. In the first
case, the inclusion-exclusion principle tells us that we get 2(n —2)—1=2n-15
doublets of patterns. In the latter case my(m, i) = m(m,i + 1) = 7y (m, i + 2)
for any m ¢ {i,i+1,i+2} and m, (i,i+1) = 7, (i,i+2) = m, (i + 1,7+ 2). Since
m can be chosen in (n — 3) ways we get n — 3+ 1 = n — 2 triplets of patterns
and hence the max is reduced by (2n —4). We can reason in the same way if
we have more than two links.
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5.2.2 Other Factors

There are other factors apart from the number of links that reduce the number
of patterns in a permutation. Suppose the element ¢ is adjacent to (i + 2) in 7.
Than 7, (i,i+1) = 7y (¢ + 2,7+ 1). Now assume the elements j and (j + 1) are
separated by only one element, say k, in 7. In this case my (j, k) = 7y (j + 1, k).
We shall call these two types of subsequences, which reduce the max by one, for
bonds. For the first kind of bond we write (i) — (i + 2) and for the second kind
we write (i)~ (i + 1).

Example 2. The permutation 7 = 513462 has one link(3 = 4) and two bonds
(1 - 3,4 —6) and thus we may think that 7(7) = 15 — 4 — 2 = 9. Counting the
different number of patterns 7 contains shows that this is really the case. ©

Unfortunately things are not so easy that we, by just counting the links and
bonds of a permutation, can determine how many patterns a given permutation
contains, as the following examples show.

Example 3. The permutation 7 = 143652 has two links(4 = 3,6 = 5) and no
bonds, and from the discussion above we might expect that 7(7) =15—7 =8,
but the true number is 7. The reason for this ’disappearing’ pattern is that
7y (4,3) = 7, (6,5) = 1432, which is easily understood. Q

There are more subtle ways in which we get pattern doublets that can’t be
explained from bonds. For instance in the permutation 416235 we have that
7y (4,1) = 7, (6,5) = 4123, which maybe is a little bit unexpected.

Example 4. Now let 7 = 524361. Here we have that 7 has one link(4 = 3)
and three bonds(5 ™ 4,2 —4,2 " 3) and hence the expected value for 7(7) would
be 15 — 4 — 3 = 8. This time, however, the true value is 9 and thus bigger
than the expected. The cause for this lies in the segment 243, which contains
one link and two bonds. When checking which doublets we get, we see that one
pair (my(2,4) and 7, (2, 3)) is counted twice. This double counting explains why
7(m) is 9 and not 8. Q

Thus we see that there are tertiary factors that might adjust the expected
numbers of patterns up and down. It’s probable, but not a certainty, that with
n large these tertiary effects would diminish.

5.3 Explaining the Distributions

With n large we take an arbitrary permutation 7w € S,,. The probability for an
entry ¢ of m to be adjacent with (i + 1) is roughly 2/n, and thus we would get
an average of about n - 2/n = 2 links for 7. In any case, we would expect that
the bulk of the permutations has less than, say 5 links. We will see in the next
chapter that this is the case. Likewise we can argue that the average number
of bonds for 7 is about 4(2 + 2). Also, if a permutation has many links it’s less
likely it has many bonds and vice versa.
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With this in mind, we can see why our distributions for RI(S’G) and R§9’7)
look like they do. Going from right to left we simply explain the peaks, as the
mean of the number of patterns, for permutations with 0, 1,2 etc. number of
links. We take R§9’7) as an illustration. Here the maximum number of patterns
is 36. One link would reduce the patterns by 7 to 29. Thus the permutations
containing between 30 and 36 patterns are all void of links. We would guess
that the average number of bonds for these permutations is slightly more than
4, and this is the case as readily seen in Figure 5.2. The same reasoning applies
to the other peaks.

We end this chapter by saying something about the case where k = n — 3.
Now one link reduces the number of patterns by (";2) = W, and a bond
reduces the numbers by (n — 3). There are several tertiary effects that reduce
the numbers by one, e.g. segments like

{...,i,i—3,..} and  {...,i,m,i+2,...}.

Thus here we expect to get peaks for permutations with the same number of
links but different number of bonds and hence more, but less marked, peaks.

Figure 5.3 confirms this for REQ’G).
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Chapter 6

Getting Linked

6.1 Introduction

In this chapter we will take a look at the numbers A, ; defined in the previous
chapter. Computations give us the following table for A, ;.

K\n|1l 2 3 4 5 6 7 8 9 10
0 1 0 0 2 14 90 646 5242 47622 479306
1 2 4 10 40 239 1580 12434 110329 1090270
2 2 10 48 256 1670 12846 112820 1108612
3 2 16 120 888 7198 64968 650644
4 2 22 226 2198 22120 236968
5 2 28 366 4448 54304
6 2 34 540 7900
7 2 40 748
8 2 46
9 2

Table 6.1: A,

We will in the first section derive a system of recurrences which produces
Ap, k. By using these recurrences we get numerical evidence to conjecture that
Ap ky /An,k, has a rational limit as n tends to infinity.

6.2 Deriving our Recurrences

For our recurrences we will need the following auxiliary numbers

Definition 1. We define b, ;, as the numbers of permutations of length n with
k links where n is linked. &
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Obviously b, ,=0if £ <1 or k > n.

Theorem 6.1. The numbers A, i and b, i satisfy the following recurrence equa-
tion system

Anke = 2An_1k-1—bn1p-1+n—k—2)Ap_14+ 2bp_1% +
(k+1)An 1441 — bn 1,541 (6.1)
b = 2An—1,k-1 —bn—1,k—1 +bn_1,k, (6.2)

with the additional conditions

Apnr =0 whenk <0ork>n
bnr =0 whenk<lork>n (6.3)
Ao =1

Proof. The conditions (6.3) are pretty obvious. One could argue that Ag o
should be equal to 1, but for convenience we choose to define Ag ¢ to be 0.

We first concentrate on (6.1). Let 7' represent an arbitrary permutation in
Sp—1. By inserting n into 7’ we distinguish between three different cases.

I If #’ has (k — 1) links we can increase the number of links by one, by
linking n to (n — 1). If (n — 1) is not linked in #' there are two possible
positions for n while if (n — 1) is linked there is one. Thus here we get
245 1 k-1 — bp_1,k-1-

IT If a(n') = k we consider two cases. First, if (n — 1) isn’t linked we must
place n so that none of the k links is broken and we must also avoid
to place n adjacent to (n — 1). There are (n — k — 2) positions that
achieves this, so this case contributes with (n — k — 2)(Ap_1,5 — bp—1,x)
to A, k. Secondly, when (n — i) is linked it is possible to place n between
(n — 1) and (n — 2) since this breaks up a link while creating a new
one. This give us k — 1 + 1 = k forbidden positions for n so we get
the contribution (n — k)bp_1,x to A, . Adding these two cases we get
(n — k- 2)An—1,k + 2bn—1,k-

IIT When a(r') = k+ 1 we can reduce the links by one by breaking up one of
the links. There are k possible positions for n if n —1 is linked and (k +1)
positions if (n — 1) isn’t. Thus we get the contribution (k +1)Ap_1 k41 —
bn—1,k+1-

Adding these three cases give us (6.1). To get (6.2) we just need to count the
Apr in which n is linked. In the first case above n is always linked. In the
second case n is only linked when n is placed between (n—2) and (n—1), which
give us a contribution of b,_1 . And finally, in case III n is never linked. &

It would of course be desirable to have a recursion formula for A, ; without
involving by, 1, but this looks pretty difficult to accomplish, so we will have to
settle for this system of equations for now.
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6.3 Some Computations and a Conjecture

From Table 6.1 it seems likely that, with a fixed n > 5, A, 2 is the largest of
the numbers A, j, closely followed by A, 1. In fact it seems like the quotient
Ap2/Ap1 is approaching 1 when n is growing. If this really is the case, is it also
true that A, 2/An ; have nice limits for some other values on k? To investigate
this we use Theorem 6.1 to compute A, for k£ < 4 up to n = 500.

n\k 0 1 2 3 4 X

100 1.2680 2.5516 2.5518 1.6840 0.8248 | x101%7

200 1.0673 2.1454 2.1454 1.4231 0.7044 | x10%73

300 4.1419 8.3118 8.3119 5.5227 2.7428 | x10613

400 0.8666 1.7376 1.7376 1.1555 0.5748 | x10867

500 1.6513 3.3092 3.3092 2.2017 1.9064 | x10!133

Table 6.2: A, for k <4
From this table we get for the quotients A,, 2/A, j the following table

n\k| 0 1 3 4

100 | 2.0208 1.0001 15154 3.0941
200 | 2.0102 1.0000 1.5076 3.0460
300 | 2.0068 1.0000 1.5050 3.0304
400 | 2.0051 1.0000 1.5038 3.0227
500 | 2.0040 1.0000 1.5030 3.0182

Table 6.3: An,2/An,k

It seems very likely that the limits for these quotients, as n tends to infinity, are
2, 3, % and 3. If this is the case then it also seems probable that we would get
a rational limit for any quotient Ay, 2/An r as n tends to infinity. But, if so, the
following conjecture holds

Conjecture 6.2. For all k1,ks € N the limit
T(k,‘l,kz) = lim —An,k1

n— 00 n,k2

exists and is rational.
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Chapter 7

A Diagonal View

7.1 Introduction

In this chapter we will take a look at the diagonals of Table 6.1 with ¥ > 1. The
first diagonal is just the boring sequence 2,2, 2, .. ., which is easily explained from
the fact that there are only the two monotonic permutations of length n which
have (n — 1) links. The second diagonal is slightly more interesting. It starts
4,10,16,20, ..., and the obvious guess is that this sequence is given by (6k — 2).
We will give a combinatorial proof that this is the case. We then continue, by
using 6.1, to show that the third diagonal is given by 17k? — 13k + 6. From
this we might suspect that the mth diagonal is given by a polynomial of degree
(m — 1). We will prove that this suspicion actually holds and we will further
derive a recursion for the coefficient of the highest term of these polynomials.

7.2 The Proofs

For convenience we introduce the notations D' = Agym+1,% and ¢ = bpym41,k-
In words D} is the number of permutations of length m + k + 1 with k linked
pairs and m unlinked. Holding m constant we get the elements in the (m+ 1)th
diagonal.

Proposition 7.1. The numbers of the second diagonal, D},, are given by 6k—2.

Proof. D} counts the number of permutations of length (k + 2) where all
but one pair is linked. Let o; denote the sequence 12...4 and 7; the sequence
i+1...k+2. Then for every i € 2,3, ...,k the 6 permutations o;(7;)", (0;)" 7,
(o:)"(1:)", Ti0i, Ti(0;)", and (7;)"o; will all have k links. With 4 = 1 there are
only two permutations with k links, namely 1 k+2 k+1...2and23... k+21.
Likewise, there are two such permutations when ¢ = k+1: k+1k...1k+2 and
k+212...k+ 1. Thus all in all there are 6(k — 1) + 4 = 6k — 2 permutations
of length k + 2 with k links. »
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We notice that of the permutations which contribute to D}, (k+ 2) is linked
in all, except in the last two ones. This immediately give us the following
corollary

Corollary 7.2. c,lc =6k — 4.
Proposition 7.3. The third diagonal numbers are given by 17k* — 13k + 6.
Proof. Settingn =k + 3 in 6.1 and 6.2, and changing notation give us

Di = 2D} —ch_y+D}+2c;+ (k+1)D),; —chyy (7.1)
¢ = 2D} ,—ci | +ck (7.2)
Using 7.1 and 7.2 plus the fact that D} = ¢ = 2 we get
D? = 2D? | —b2_, + 20k — 10, (7.3)
g = 2D} | —0bi_, +6k—4. (7.4)

By replacing k with (k+ 1) in 7.3 and using that D2 — by, = 14k — 6 we get the
recurrence equation

Di,, = Di + 34k + 4. (7.5)
Combined with the starting value D? = 10 which we get from Table 6.1, this
equation is easy to solve and the solution is the claimed Df = 17k* — 13k + 6.
We also note en passant that

c; = 17k* — 27k + 12. (7.6)
[

The proof of the following lemma is not hard and not very interesting and
therefore we choose to omit it.

Lemma 7.4. For the sums of powers the formula
Z k" = Qui1(m) (7.7)

holds, where Q,(x) is a polynomial of degree n with leading coefficient n+1

Theorem 7.5. The numbers D' and ci*, with m fized, are given by polynomials
of degree m. The leading coefficient, g.,, of these polynomials are the same and
satisfy the recurrence relation mg, = 2m + 1)gm—_1 + 2gm_2-

Proof. We shall prove this by induction. From Proposition 7.1, Corollary 7.2
and Proposition 7.3 we know that our statement holds for m = 1 and m = 2.
Assuming that it’s true for (m — 1) and (m — 2), i.e

D™t = Ppnoy(k) (7.8)
D% = Pn_a(k) (7.9)
= Quo(k) (7.10)
& = Quoa(k), (7.11)



where P,(k) and Q,(k) are polynomials of degree p with leading term g,, we
need to show that it’s also true for m. Following the lines of the proof of
Proposition 7.3 with n = (k+ m + 1) in 6.1 we get

D = 2D7, =+ (m—2)DP 7t + 260 + (k+ 1)DRS -
(7.12)
= 2D, 4t (7.13)

Taking the difference of these equations and setting j = k — 1 gives us

D, — 'y = (m—=2)DP !+ + iD= (7.14)

this inserted into 7.12, with k replaced by j, yields

D —D7, = (m-— 1)D’.”—11 + cm—l +ij—2 — c;,ﬂ—2 +(m—1)D1
+2 7N+ (G + )Dﬁf -y (7.15)

Now using our assumptions 7.8-7.11 we get that
D — D7y = ((2m + 1)gm—1 + 2gm—2)™ " + TLD, (7.16)

where TLD is short for ‘terms of lower degree’. Finally, summing over j and
using Lemma 7.7 brings us home

k
D [2m + 1)gm—1 + 2gm—2)j™ " + TLD
k
=2

= ((2m + 1)gm—-1 + 29m—2)k™/m + TLD. (7.17)

A
We shall call P,,(k) diagonal polynomials.

7.3 Diagonal Polynomials Conjectures

With the aid of Mathematica it’s quite easy to compute the polynomials P, (k),
and we list the first 6 below.

Po(k) = 2
Pi(k) = -2+6k
Py(k) = 6—13k+ 17k
Py(k) = —22+2—17k 54k2 + 1§1k3
1811, 1 1099 427
Py(k) = 134— 86 k+ 8497k -5 k3+Tk4
25321, 28133 27907 6667 15139
P — _ _ 2 3_ 4 k5
5 (k) 630 + ok — 5 K+ 5k 2 T e
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Our first guess concerning these polynomial is

Conjecture 7.6. The coefficients of the diagonal polynomial have alternating
signs, 1i.e.

m
Pu(k) = (=)™ an K,
j=0
where @y, ; > 0, for allm and j.

These polynomials are obviously not valid for k& = 0, that is P, (k) =
Amirk+1,r if £ > 1 but not when k& = 0. We might still suspect that there

could be a connection between P,,,(0) and A,, 110 though. A listing of these
values together with their differences further nurtures our suspicions:

m Pm (0) Am+1,0 Pm (O) - Am+1,0
0 2 1 1
1 -2 0 -2
2 6 0 6
3| —22 2 —24
4 134 14 120
5| —630 90 —720

Thus we arrive at the following conjecture

Conjecture 7.7. For the values of P, (0) and A,,41,0 we have the relation
Pp(0) — Amy10 = (=1)"(m + 1)! (7.18)

There might(should?) exist a simple combinatorial explanation for this re-
lation but the author of this paper isn’t clever enough to see it.

It may also be interesting to look at the values of the diagonal polynomials
at k = —1, since if Conjecture 7.6 holds we have that

Computations give rise to our third and final conjecture concerning these poly-
nomials.

Po(—-1) = 2 = 2-1-1!
—P(-1) = 8 = 2-2-2
Py(-1) = 36 = 2-3.3
—Py(-1) = 192 = 2-4.4I
Py(-1) = 1200 = 2-5-5!
—Py(-1) = 8640 = 2-6-6!
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Conjecture 7.8. For the values of the diagonal polynomials taken at —1 we
have that
(-1)™P,(-1)=2-(m+1)-(m+ 1)L

Once again, there may be an combinatorial explanation for this simple ex-
pression, but the proof is left for the reader as an exercise.
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