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Abstract

While in the univariate case solutions of linear recurrences with constant coe�cients

have rational generating functions� we show that the multivariate case is much richer�

even though initial conditions have rational generating functions� the corresponding

solutions can have generating functions which are algebraic but not rational� D�nite

but not algebraic� and even non D�nite	

� Introduction

The aim of this paper is to study the nature of multivariate generating functions

F �x�� � � � � xd� �
X

n������nd��

an������ndx
n�
� � � �xndd �

X
n��

anx
n

whose coe�cients satisfy a linear recurrence relation with constant coe�cients

an � ch�an�h� � ch�an�h� � � � �� chkan�hk for n � s �

with adequate initial conditions� The univariate case �d � �� is well�known to give rise to
rational generating functions� We shall show that the multivariate case is much richer�

We start by an existence and uniqueness theorem that actually applies to recurrences of
a more general form

an � ��an�h� � an�h� � � � � � an�hk� for n � s �

where the values of an for n �� s are given explicitly� In particular� we show that the lattice
points in the �rst orthant �i�e�� n � �� can be enumerated in such a way that for all n
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the points n � hi precede n in this enumeration� if and only if the convex hull of the set
H � fh��h�� � � � �hkg does not intersect the �rst orthant �Section 
�� This condition on H�
which ensures existence and uniqueness of the solution� is assumed to be satis�ed in the
sequel�

For linear recurrences with constant coe�cients� we show that when initial conditions
grow at most exponentially� the same is true of the solution� which is consequently analytic
in a neighbourhood of the origin �Section ���

Next� we study the algebraic nature of the generating function of the solution of such
recurrences �Section ��� We de�ne the apex of H as the componentwise maximum of the
points in H � f�g� When the initial conditions have rational generating functions and the
apex of H is �� the generating function of the solution is rational and given by an explicit
formula� When the initial conditions have algebraic generating functions and the apex of
H has at most one positive coordinate� the generating function of the solution is algebraic
and is given explicitly in terms of the solutions of an algebraic equation� We give various
applications to the enumeration of lattice paths that generalize Dyck paths�

When the apex has more than one positive coordinate� and the initial conditions have
rational generating functions� the generating function of the solution need not be algebraic�
which we demonstrate on the problem of Young tableaux of bounded height� However� the
solution here remains D��nite� We conclude the paper with a simple example showing that
non�D��nite solutions �and even� hypertranscendental solutions� might also occur�

The main tool that we use is the so�called kernel method which permits to solve certain
systems of linear functional equations that seem to contain too many unknowns�� It works
by restricting the equations to algebraic varieties on which some of the unknown terms
vanish� thus providing the missing� equations �see Section � for more detail��

Notations� We use N to denote the set of nonnegative integers� We write u �
�u�� u�� � � � � ud� for d�tuples of numbers or indeterminates� � � ��� �� � � � � ��� � � ��� �� � � � � ���
u � v when ui � vi for � � i � d� and u � v when ui � vi for � � i � d� The monomial
xu�� � � �xudd is denoted xu� For u� v � Zd� the scalar product u�v�� � � ��udvd is denoted u �v�
The convex hull of a set H � R d is denoted convH�

� An existence and uniqueness theorem

Let A be a nonempty set� We consider d�dimensional recurrence equations of the form

an � ��an�h� � an�h� � � � � � an�hk� for n � s� �	�

where a � N d � A is the unknown d�dimensional sequence of elements of A� � � Ak � A is
a given function� H � fh��h�� � � � �hkg � Zd is the set of shifts� and s � N d is the starting
point satisfying s�H � N d� A given function � speci�es the initial conditions�

an � ��n� for n � �� n �� s � �
�

We think of the hi as having mostly �but not necessarily only� negative coordinates� and of
the point n as depending on the points n�h��n� h�� � � � �n�hk as far as the value of an
is concerned�






The objective of this section is to characterize the sets H for which there is an ordering
of N d of order type � such that the points n � h��n � h�� � � � �n � hk precede n in this
ordering� Then there exists a unique solution of �	� � �
�� and for any n � N d it is possible
to compute the value of an directly from �	� � �
� in a �nite number of steps�

We �rst de�ne a dependency relation on the points of N d� induced by the set H�

De�nition � For H � Zd and p� q � N d� let

p 	H q if and only if p � q �H � N d �

The transitive closure 	�
H of 	H in N d is the dependency relation corresponding to H�

Lemma � Let p� q�u� v � N d� Then

p 	�
H q� u 	�

H v implies p� u 	�
H q � v �

Proof� Clearly 	H is translation�invariant� if p 	H q� then p � r 	H q � r� Therefore 	�
H

is translation�invariant as well� so p 	�
H q implies p � u 	�

H q � u and u 	�
H v implies

q � u 	�
H q � v� By transitivity� p� u 	�

H q � v�

Recall that a binary relation R � A 
 A is well�founded if it is transitive and has no
in�nite descending chains in A �there exists no sequence �an�n�� of elements of A such that
an�� R an for all n�� Note that a well�founded relation is irre�exive and asymmetric�

Theorem � Let H � Zd be a �nite set� and 	�
H the corresponding dependency relation�

Then the following are equivalent�

�i� 	�
H is well�founded in N d�

�ii� fx � R d	 x � �g � convH � ��
�iii� there exists v � N d� v � �� such that v � h � � for all h � H�

�iv� 	�
H can be extended to an ordering of N d of order type ��

First we establish a lemma about rational points in convex subsets of R d �a point is rational
if it belongs to Q d��

Lemma � Let X � R d be a �nite set of rational points� and p � convX� Then p is rational
if and only if it can be expressed as a rational convex combination of points from X�

Proof� If p is a rational convex combination of rational points then clearly p is rational�
Conversely� let p � convX be rational� Let S � X be a minimal subset with the property

that p � conv S� Let e be the a�ne dimension of S� By Carath�odory�s theorem �cf� �
	�
Thm� 	��	�� and by minimality of S� we have jSj � e � �� But e � � equals the maximum
number of a�nely independent points in S� by de�nition of e� So jSj � e�� and S is a�nely
independent� Therefore conv S is an e�simplex containing p�

Let S � fq�� q�� � � � � qeg and Si � S � fpg n fqig� for i � �� �� � � � � e� Then p �
Pe

i�� �i qi
where

�i �
e�vol�conv Si�
e�vol�conv S�

� for i � �� �� � � � � e

�



�see� e�g�� �		��� Since the volume of a simplex is a fraction of a determinant whose nonunit
entries are the coordinates of its vertices� any simplex with rational vertices has rational
volume� It follows that all the �i are rational�

Proof of Theorem �� If H is empty then 	�
H is the empty relation and all four assertions are

trivially true� Now assume that H is nonempty�
�i�  �ii� Let K � fx � R d	 x � �g � convH� Assume that K is nonempty� Then

K is a convex polytope with rational vertices� Let q � K � Q d� By Lemma �� q is a
rational convex combination of points from H� Let N be the least common denominator of
the coe�cients in this combination� and z � Nq� Then z � � and z �

P
h�H 	h h where

	h � N are not all zero� Let s � N d be such that s � H � N d� Then s � h 	H s for all
h � H� Let M �

P
h�H 	h� By repeated application of Lemma 
� 	h s � 	h h 	�

H 	h s for
all h � H� and Ms�z 	�

H Ms� Let zk � Ms�k z� Note that zk � N d for all k � N � Using
Lemma 
 it follows by induction on k that zk�� 	�

H zk for all k � N � Thus the zk form an
in�nite descending chain in N d� contradicting the well�foundedness of 	�

H � Hence K � ��
�ii�  �iii� As fx � R d	 x � �g and convH are disjoint convex polyhedra they can be

separated by a hyperplane which meets neither of them� Therefore there are u � R d n f�g
and b � R such that u � x � b for all x � convH and u � x � b for all x � �� In particular�
u � h � b � � for all h � H� If ui � � for some i then x � ��� � � � � �� b
ui� �� � � � � �� � � but
u � x � b �� b� It follows that u � ��

As H is �nite� and fw � Q d � w � �g is dense in fu � R d � u � �g� we can change
u slightly into a vector w � � with rational coordinates� still satisfying w � h � � for all
h � H� Multiplyingw by a suitable integer gives a vector v with positive integer coordinates
satisfying v � h � � for all h � H�

�iii� �iv� Let v � N d� v � �� be such that v �h � � for all h � H� Let L be any linear
ordering of N d �e�g�� the lexicographic one�� De�ne a new linear ordering Lv of N

d by

pLv q � v � p � v � q or �v � p � v � q and pL q��

Note that the equation v � x � k has only �nitely many solutions x � N d for any k � N �
because it implies that � � xi � k
vi for all i� Therefore Lv is of order type �� and since
p 	�

H q implies v � p � v � q� the dependency relation 	�
H can be embedded into Lv�

�iv�  �i� Any ordering of type � is a well�ordering� therefore any transitive relation
embeddable into it is well�founded�

Additional assertions equivalent to those in Theorem � are given in �	�� Sec� ���� Cor� 
��

Now it is easy to state and prove an existence and uniqueness theorem for recurrences of
the form �	� � �
��

Theorem � Let H � Zd be a nonempty set which satis�es any of the equivalent conditions
of Theorem �� Then there exists a unique d�dimensional sequence a � N d � A which satis�es
�	� � �
��

Proof� Write H � fh��h�� � � � �hkg� Theorem � implies the existence of a well�ordering �H

of N d of order type � which extends the dependency relation 	�
H � Let p � N � N d be a

bijection satisfying
i � j � pi �H pj� ���

�



The sequence �an� satis�es �	� and �
� if and only if the sequence f � N � A de�ned by
f�i� � api satis�es

f�i� �

�
��f � p���pi � h��� f � p���pi � h��� � � � � f � p���pi � hk�� if pi � s�
��pi� if pi �� s�

���

We are going to prove� by induction on i� that ��� de�nes a unique sequence f�i�� The unique
solution of �	� � �
� can then be recovered from f using an � f � p���n��

Step �� Let us show that Eqn� ��� completely de�nes f���� by proving ab absurdo that
p� �� s� If p� � s� then p� �H � N d �because s�H � N d by assumption�� In other words�
p� � hj 	H p� and hence p� � hj �H p� for � � j � k� As H is nonempty and � 
� H� this
contradicts Property ���� Thus p� �� s and Eqn� ��� determines f��� � ��p���

Step i	 i � �� Assume f���� � � � � f�i��� are determined uniquely by ���� If pi �� s� then ���
forces f�i� � ��pi�� Otherwise� for � � j � k� we have pi � hj 	H pi� hence pi � hj �H pi
and by ���� p���pi � hj� � i� This means that the values of f � p���pi � hj� have already
been computed� and f�i� is then uniquely determined by the �rst equation of ����

This theorem generalizes the result of �
�� where d � 
 and it is assumed that all h � H
satisfy h� � �� or h� � � and h� � ��

Example � 
 The knight�s walk
We study walks on the lattice N � that start anywhere on the lines x � �� x � �� y � �� or
y � �� take only two kinds of steps� ���� 
� and �
����� and remain in the region x � 
�
y � 
 once they have left their starting point� For m�n � �� let am�n denote the number of
such walks ending at �m�n�� We have

am�n �

�
am���n�� � am���n�� if m�n � 
�
� otherwise�

���

This recurrence is of the form �	� � �
�� with H � f����
�� ��
� ��g and s � �
� 
�� The
conditions of Theorem � are satis�ed� for example� if we take v � ��� �� we have v � h � �
for both h � H� Hence the recurrence has a unique solution whose terms can be computed
inductively� for instance diagonal by diagonal� The �rst few values are given in the following
array�

n
�
� � � � � � �
� �  � �� �� �
� �  � � �� �
� � 
 
 � � �
� � 
 
   �
� � � � � � �
� � � � � � � � m

�

�



Our restriction to sequences de�ned in the �rst orthant might seem a serious limitation of
applicability of our results� However� other wedge�like domains can be easily mapped onto
the �rst orthant by a linear transformation� after which our approach applies� For example�
if v�� � � � � vd � Zd are linearly independent vectors and C is the convex cone spanned by these
vectors then an appropriate transformation could be multiplication by the integer matrix

M � detV � V ��

where V � �v�� � � � � vd� is the matrix whose columns are the vi�s� This transforms a recurrence
equation in C� with the set of shifts fh�� � � � �hkg� into one in the �rst orthant� with the set
of shifts fMh�� � � � �Mhkg� A transformation of this type is used in Example � below� A
similar �but slightly di�erent� linear transformation is used in Example ��

� Linear recurrences with constant coe�cients

In the rest of the paper� we focus our attention on multivariate linear recurrences� Let A be a
�eld of characteristic zero� Let H be a �nite nonempty subset of Zd satisfying the condition

fx � R d�x � �g � convH � �� ���

We study the recurrence relation

an �

�����
����

X
h�H

chan�h for n � s �

��n� for n � � and n �� s

���

where �ch�h�H are given nonzero constants from A� The function � provides the initial
conditions� and we assume that

s � N d and s�H � N d� ���

It is natural to ask how restrictive Condition ��� is� The following discussion suggests
that the correct answer is� not at all�� Let G be a �nite nonempty subset of Zd� and let us
consider the linear relation X

g�G

bgan�g � ��

where the bg are given nonzero constants from A� This relation can be written in jGj di�erent
ways in a form reminiscent of ���� For each g � G�

an � � X
g��Gnfgg

bg�

bg
an�g��g �

X
h�Hg

ch an�h

with ch � �bg�
bg and Hg � fg� � g	 g� � G� g� �� gg� The following proposition implies
that at least one of these relations will allow us to compute inductively the numbers an�
starting from suitable initial conditions�

�



Proposition � Let G � Zd be a nonempty �nite set� There exists a point g � G such that
the set Hg � fg� � g	 g� � G� g� �� gg satis�es the equivalent conditions of Theorem ��

Proof� Let g be the largest point in G with respect to the lexicographic ordering of Zd�
That is� for all g� �� g� there exists i � f�� � � � � dg such that

g�� � g�� � � � � g
�
i�� � gi��� and g�i � gi� ���

Then Hg satis�es the equivalent conditions of Theorem �� Let us prove for instance the third
one� Let

M � max
��j�d

g��G

���g�j � gj
��� �

Let v be the vector ��� �M�d� � � � � �� �M��� �� �M��� Let g� �� g� and assume ��� holds�
Then

v � �g� � g� �
dX

j�i

vj�g
�
j � gj� � �vi �M

dX
j�i��

vj � ��� �M��

Observe that there can be several good� choices of g� Take for instance the linear equation

am�n � am�n�� � am���n

where H � f��� ��� ��� ��g and the conditions of Theorem � are not satis�ed� Both equivalent
relations

am�n � am�n�� � am���n�� and am�n � am���n � am���n��

do satisfy these conditions and hence allow an inductive evaluation of the sequence am�n�
Note however that by ���� we need s � ��� �� in the former case and s � ��� �� in the latter�
This means that di�erent sets of initial values are required by these two relations� �am���m��

by the former� and �a��n�n�� by the latter�

We now prove an analyticity result�

Theorem  Take A � C � Let �an� be the unique solution of ���� If there are constants
m � � and u � R d such that j��n�j � mu�n for all n �� s� then the generating function of
�an�

F �x� �
X
n��

anx
n

is analytic in a neighborhood of the origin�

Proof� By Theorem ��iii�� there exists v � N d such that v � �� and v �h � � for all h � H�
Since H is �nite there exists an � � � such that v � h � �� for all h � H� Let

M � max

���
����

�
	X
h�H

jchj


A

�
�

� max
��i�d

m
ui
vi

���
� �

�



We are going to prove that janj � Mv�n for all n � N d� using induction on the well�founded
set �N d�	�

H��
If n �� s then

janj � j��n�j � mu�n � mu�n�mu�n� � � �mudnd

�
�
m

u�
v�

�v�n� �
m

u�
v�

�v�n�
� � �
�
m

ud
vd

�vdnd �Mv�n �

Otherwise we assume inductively that jan�hj �Mv��n�h� for all h � H� Then������
X
h�H

chan�h

������ � X
h�H

jchjMv��n�h� � X
h�H

jchjMv�n��

� Mv�n��
X
h�H

jchj � Mv�n �

proving the claim� It follows that F �x�� x�� � � � � xd� converges when jxij � �
Mvi �

� The nature of the solution

Let a be the unique solution of the recursion ���� In this section we investigate the nature
of the generating function

Fs�x� �
X
n�s

anx
n�s�

Let us �rst recall a few de�nitions�

De�nition � Let A be a �eld of characteristic zero� Let F �x� �
P
n�� anx

n be a formal
power series in the variables x�� x�� � � � � xd with coe�cients in A� The series F is said to be

� rational if there exist polynomials P and Q in A�x�� � � � � xd� such that

F �x� �
P �x�

Q�x�
	

� algebraic if there exists a nontrivial polynomial P in d � � variables� with coe�cients
in A� such that

P �x�� � � � � xd� F �x�� � ��

� D��nite if the partial derivatives ��F
�x� of F � for � � N d� span a �nite�dimensional
vector space over the �eld A�x�� � � � � xd�� or� equivalently� if for � � i � d� a nontrivial
linear di	erential equation of the form

Pk�x�
�kF

�xki
� � � �� P��x�

�F

�xi
� P��x�F � �

holds� where the polynomials P� have their coe�cients in A�

The series F is transcendental if it is not algebraic� The coe�cients of a D��nite series are
said to be P�recursive�

For properties of D��nite series� see �

� for univariate series and �	�� for the multivariate
case� We shall clarify below the connection between our linearly recurrent sequences and
P�recursiveness�

�



��� From the recurrence relation to a functional equation

Let us now transform our recurrence relation into a functional equation satis�ed by the
generating function Fs�x�� Multiplying ��� by xn�s and summing over all n � s we obtain

Fs�x� �
X
h�H

ch
X
n�s

an�hx
n�s �

X
h�H

chx
�h

X
n�s�h

anx
n�s

�
X
h�H

chx
�h �Fs�x� � Ph�x��Mh�x�� �	��

where

Ph�x� �
X
n��s
n�s�h

anx
n�s �

X
n��s
n�s�h

��n�xn�s and Mh�x� �
X
n�s
n ��s�h

anx
n�s� �		�

Note the simple relationship between Fs�x� and the full generating function F �x��

F �x� �
X
n��

anx
n � xs

�
BB	X
n�s

anx
n�s �

X
n��s
n��

anx
n�s



CCA � xs�Fs�x� � P�s�x���

Now rewrite �	�� in the form
�
	�� X

h�H

chx
�h



AFs�x� � X

h�H

chx
�h �Ph�x��Mh�x�� � �	
�

To clear denominators on the left side of �	
� we introduce the notion of apex which� as we
will show shortly� is related to the nature of the generating function�

De�nition � Let H � Zd be a �nite set� The apex ofH is the point p � �p�� p�� � � � � pd� � N d

de�ned by
pi � maxfhi � h � H � f�gg �i � �� 
� � � � � d��

In dimension 
� the apex of H is the upper right corner of the smallest rectangle �with its
sides parallel to the axes� enclosing the set H � f�g�

Multiplying �	
� by xp where p is the apex of H we obtain

Q�x�Fs�x� � K�x�� U�x� �	��

where

Q�x� � xp � X
h�H

chx
p�h� �	��

K�x� �
X
h�H

chx
p�hPh�x�� �	��

U�x� �
X
h�H

chx
p�hMh�x�� �	��

�



the series Ph and Mh being given by �		��
From the de�nition of the apex it follows that Q�x� is a polynomial in x called the

characteristic polynomial or the kernel of the recursion� Note that the coe�cients of Q�x�
and K�x� are given directly by the coe�cients of the recurrence relation and by the initial
conditions� respectively� The coe�cients of U�x� can of course be computed from ��� but
are not given explicitly� Therefore we call K�x� the known initial function and U�x� the
unknown initial function�

The functional equation �	�� has a striking feature� on one hand� it is completely equiv�
alent to our recurrence relation� and thus de�nes uniquely the numbers an for n � s� and
hence Fs�x�� On the other hand� there seem to be not one� but two unknown functions in it�
Fs and U � We shall show below on examples how to work with such apparently ambiguous
functional equations� If U�x� can be found explicitly then the generating function of the
unique solution to ��� is given by

Fs�x� �
K�x�� U�x�

Q�x�
� �	��

Example � �continued�
 The knight�s walk
Let us go back to the recurrence ���� We have s � �
� 
�� H � f����
�� ��
� ��g and the
apex is p � ��� ��� Using �		� � �	�� we �nd

Fs�x� y� �
X

m�n��

am�nx
m��yn�� �

K�x� y�� U�x� y�

Q�x� y�

where
Q�x� y� � xy � x� � y��

the initial functions being

K�x� y� � y�
X
m��

�
am��x

m��y�� � am��x
m��y��

�
� x�

X
n��

�
a��nx

��yn�� � a��nx
��yn��

�

� xy

�
� � y

�� x
�

� � x

�� y

�
�

U�x� y� �
X
n��

a��ny
n�� �

X
m��

am��x
m���

�

The above example shows a strong connection between the nature of the series Fs and
the nature of the unknown initial function U � We are now going to discuss this connection
in full generality� We �rst need to de�ne the sections of a formal power series�

De�nition �� Let F �x�� � � � � xd� �
P
n�� an������ndx

n be a formal power series in d variables�
A section of F is any 
sub�series� of F obtained by �xing some of the indices ni� For instance�X

n������nd��

a�		
�n������ndx
n�
� � � �xndd �

	�



X
n��n������nd��

a���n����n������ndx
n�
� xn�� � � �xndd �

are sections of F � as well as F itself and a�����������d�

This terminology is due to Lipshitz� It is not di�cult to prove that all sections of a rational
�resp� algebraic� D��nite� series are also rational �resp� algebraic� D��nite�� We refer to �	��
for a proof in the D��nite case�

Proposition �� Let Fs�x� be the generating function of the unique solution of ���� Then
the series Fs�x� is rational �resp� algebraic� D��nite if and only if both its known and
unknown initial functions K�x� and U�x� are rational �resp� algebraic� D��nite�

Proof� If K and U are rational �resp� algebraic� D��nite�� then �	�� shows that Fs is also
rational �resp� algebraic� D��nite�� the three families of power series under consideration are
closed under the sum and the product� and contain rational functions�

Conversely� observe that� for h � H� the series Mh� de�ned by �		�� and consequently
the series U � are �nite linear combinations of sections of Fs� Hence if Fs is rational �resp�
algebraic� D��nite�� then so is U�x�� Eqn� �	�� implies that the same holds for K�x��

Note� The series K�x� is a linear combination of sections of the full generating function
F �x� �

P
n�� anx

n� but not of sections of Fs�

The above proposition tells us that determining the nature of Fs boils down to determin�
ing the nature of U �the nature ofK is perfectly controlled because K is explicitly given�� We
give below examples of recurrence relations leading to rational� algebraic irrational� D��nite
transcendental� and �nally non�D��nite generating functions�

��� Rational solutions

Theorem �� Assume the apex p of H is �� Then the generating function Fs�x� of the
unique solution of ��� is rational if and only if the known initial function K�x� itself is
rational�

Proof� For each h � H we have h � �� hence s�h � s andMh�x� � �� Therefore U�x� � �
and by �	���

Fs�x� �
K�x�

Q�x�
� �	��

As Q�x� is a polynomial in x� it follows that Fs�x� is a rational function of x if and only if
K�x� is�

Observe that when d � �� we always have rational initial conditions and p � ��

Note that any recurrence with constant coe�cients � no matter what the apex � yields
a rational generating function under special initial conditions� Assume A is algebraically
closed� and take any u � Ad such that

P
h�H chu

h � �� Such a u always exists because H
contains a nonzero point� Then an � un satis�es an �

P
h�H chan�h and the generating

function F �x� �
P
n��u

nxn �
Qd

i����� uixi�
�� is rational� as well as Fs�

		



��� Algebraic solutions

Theorem �� Take A � C and assume that the apex p of H has at most one positive
coordinate� Then the generating function Fs�x� of the unique solution of ��� is algebraic if
and only if the known initial function K�x� itself is algebraic�

Before we prove this theorem� let us �rst study a particular recurrence� which will illus�
trate the main ideas of the proof�

Example � 
 Dyck paths
For m�n � �� let am�n denote the number of paths on N

� that start from the origin ��� ���
take only two kinds of steps� ��� �� and ������� and never touch the horizontal axis once
they have left the origin� We are especially interested in paths that end on the line y � ��
we call them Dyck paths� We have

am�n �

�
am���n�� � am���n�� if m�n � ��
�m�n������� if m � � or n � ��

This is a linear recurrence with constant coe�cients� with H � f�������� ���� ��g and
s � ��� ��� The apex is p � ��� ��� The �rst values of am�n are given below�

n
�
� � � � � � � � � �
� � � � � � � � � 
�
� � � � � � � � �� �
� � � � �  � � � 
�
� � � � 
 � � � �� �
� � � � � 
 � � � ��
� � � � � � � � � � � m

Using �		� � �	�� we obtain�

Fs�x� y� �
X

m�n��

am�nx
m��yn�� �

K�x� y�� U�x� y�

Q�x� y�
�

with
Q�x� y� � y � x� xy��

the initial functions being

K�x� y� � y and U�x� y� �
X
m��

am��x
m � U�x��

In other words� �
y � x� xy�

�
Fs�x� y� � y � U�x�� �	��

Observe that U�x� is the length generating function for Dyck paths� We are now going to
use an idea that occurs in various places �e�g�� �	
� Ex� 
�
�	�� and 
�
�	�		�� ���� �	��� ����

	




�
�� and is sometimes called the kernel method �	�� let ��x� be the formal power series in x
de�ned by

Q�x� ��x�� � ��x�� x� x��x�� � ��

Replacing y by ��x� in �	�� shows that

U�x� � ��x� �
��p

�� �x�


x
�

from which we can express Fs�x� y�� which is also an algebraic function� �

We are now going to generalize the kernel method into a proof of Theorem 	��

Proof of Theorem 	�� According to Proposition 		� if Fs is algebraic� then so is K� Let us
prove that the converse is also true�

If p � �� then the proof is similar to that of the previous theorem� Assume now that
exactly one coordinate of p is positive� Without loss of generality� assume that p� � � � � �
pd�� � � and pd � �� Then

U�x� �
X
h�H

chx
p�h

X
n�s
n��s�h

anx
n�s

�
X
h�H
hd��

chx
p�h

sd�hd��X
nd�sd

X
�n������nd����

�s������sd���

anx
n�s�

This shows that U�x� is a polynomial in xd of degree at most pd��� Our functional equation
�	�� reads

U�x� � K�x��Q�x�Fs�x�� �
��

where
Q�x� � xpdd � X

h�H

chx
p�h

is a polynomial whose degree in xd is at least pd� We shall prove that Q�x� regarded as a
polynomial in xd admits �at least� pd roots �i�x�� � � � � xd���� counted with multiplicities� such
that

�i��� � � � � �� � �� �
	�

Assuming for the moment that this is true� replacing xd by �i�x�� � � � � xd��� in �
�� tells us
that�� if �i is a root of Q of multiplicity m� then

U��i� � K��i�� U ���i� � K ���i�� � � � � U �m�����i� � K�m�����i��

the derivatives being taken with respect to xd� The pd roots of Q thus provide a total of pd
equations for the polynomial U � of degree at most pd � �� We can then reconstruct U by
means of the Hermite interpolation formula �see� e�g�� �	�� Sec� ��	� Problem 	���� or� when

�Condition ��� is required to make the substitution of �i for xd legitimate because as an equation between
convergent power series� ��� is valid only in some neighbourhood of the origin�

	�



Q has no double roots� by means of the well�known Lagrange interpolation formula� Because
the �i�s are algebraic functions of x�� � � � � xd��� this shows that U�x� is algebraic provided
K�x� is� The same holds for Fs�x��

To prove the existence of the roots �i� let us observe that

Q��� � � � � �� xd� � xpdd � X
h�H

h������hd����

chx
pd�hd
d �

Because fx � R d	 x � �g � H � �� we have hd � � for all h � H such that h� � � � � �
hd�� � �� Therefore pd � hd � pd for all such h� which implies that xd � � is a root of
Q��� � � � � �� xd� of multiplicity pd� It follows that at least pd of the roots of Q satisfy �
	��

Remarks

	� The proof of Theorem 	� not only shows that under the stated conditions the generating
functions of the solution are algebraic� but also provides an algorithm to compute them�
They are given as rational expressions in the roots of the algebraic equation Q�x� � � and
hence belong to an algebraic extension of C �x�� If the algebraic equations satis�ed by the
generating functions themselves are desired� they can be obtained by some routine resultant
computations� However� in general the degree of these equations will be higher than the
degree of Q in xd�


� It happens quite often� in recurrence relations coming from enumerative combinatorics�
that the known initial function K�x� itself is a polynomial in xd� In this case� the polynomial
K � U has at least pd roots �namely� ��� � � � � �pd�� The polynomial U having degree at most
pd � � �in xd�� this implies that K has degree at least pd� If K has exactly degree pd� then

K�x�� U�x� � lc �K�
pdY
i��

�xd � �i�

where lc �K� denotes the leading coe�cient of K with respect to xd� and Eqn� �
�� implies
that

Fs�x� �
lc �K�

Q�x�

pdY
i��

�xd � �i�� �

�

The degree of Q in xd is pd � r� where r � maxf�hd�h � H � f�gg� Assume Q factors as

Q�x� � lc �Q�
pdY
i��

�xd � �i�
rY

i��

�xd � 	i��

Then we can rewrite the series Fs as

Fs�x� �
lc �K�

lc �Q�

rY
i��

�

xd � 	i
� �
��

Eqns� �

� and �
�� show that the two cases pd � � and r � �� corresponding respectively
to max hd � � and minhd � ��� are especially favourable� In both cases� the series Fs�x�
is� up to an explicit rational�function factor� equal to �xd � ����� where � is a solution
of Q�x�� � � � � xd��� �� � �� In this case� we can write immediately the algebraic equation
satis�ed by Fs�x�� Examples will be given below�

	�



Example � 
 Generalized Dyck paths
In the problem of generalized Dyck paths �	�� 	�� ��� we are given a �nite set of steps

S � f�r�� s��� � � � � �rk� sk�g where ri� si � Z and ri � �� Let bm�n denote the number of paths
going from ��� �� to �m�n�� using only steps from S and staying within the �rst quadrant�
We are mainly interested in the numbers bm�� � bm� Obviously� the numbers bm�n satisfy

bm�n �

���
��

X
i �ri�si���m�n�

bm�ri�n�si if m�n � � and �m�n� �� ��� ���

� if m � n � ��

This does not �t ���� but can be easily brought into the desired form� Let r � max��i�k ri
and s � max��i�k si� Attach r columns of zeros to the left of the array b� and s rows of zeros
below� Call the resulting array a and number its rows and columns starting with �� Then

bm�n � am�r�n�s for m�n � ��

Let ��� �� be any step in S which is maximal with respect to the partial order � �e�g�� the
lexicographically largest step�� If ar���s�� is reset to � then a satis�es

am�n �

�
am�r��n�s� � � � �� am�rk�n�sk if m � r and n � s�
�m�n���r���s��� if m � r or n � s�

This clearly �ts ��� with H � f��r���s��� � � � � ��rk��sk�g� s � �r� s�� and ch � � for all
h � H� From the fact that ri � �� it follows that fx � R d	 x � �g � convH � ��
Hence the conditions of Theorem � are satis�ed� The apex of H is p � ���maxf�� tg� with
t � �minfs�� � � � � skg� We distinguish two cases�

� If si � � for all i� then the apex is ��� ��� We can use formula �	�� with Q�x� y� �
��xr�ys��� � ��xrkysk and K�x� y� � �� We obtain the rational �and expected�� generating
function

G�x� y� �
X

m�n��

bm�nx
myn �

X
m�r
n�s

am�nx
m�ryn�s � Fs�x� y� �

�

�� xr�ys� � � � � � xrkysk
�

The generating function for paths ending on the horizontal axis is

g�x� �
X
m��

bmx
m � G�x� �� �

�

�� X
��i�k
si��

xri
�

� If there exists i such that si � �� then the apex of H is ��� t� with t � �� and the
corresponding generating functions are algebraic� Using �		� � �	�� we �nd

Q�x� y� � yt � xr�ys��t � � � � � xrkysk�t� K�x� y� � yt�

We are now in the framework described in the second remark that follows the proof of
Theorem 	�� The polynomial Q has degree t� s in y� with leading coe�cient �Pi si�s x

ri �

	�



�We assume s � � to avoid trivial cases�� Let ���x�� � � � � �t�x� be t solutions of Q�x� ��x�� � �
satisfying ���� � �� Let 	��x�� � � � � 	s�x� be the s remaining solutions� We �nd explicit
expressions for the desired series�

G�x� y� �
X

m�n��

bm�nx
myn � Fs�x� y� �

�

Q�x� y�

tY
i��

�y � �i�x�� � � �X
isi�s

xri

sY
i��

�

y � 	i�x�

�
��
and

g�x� �
X
m��

bmx
m � G�x� �� �

����t

Q�x� ��

tY
i��

�i�x� �
����s��X
isi�s

xri

sY
i��

�

	i�x�
� �
��

An alternative solution to this problem is given in ��� in terms of a system of algebraic
equations de�ning g�x��

As indicated in the remark above� two particular cases happen to be especially simple
�and combinatorially equivalent� as far as g�x� is concerned�� If t � �� i�e�� min si � ��� we
�nd g�x� � ����x�
Q�x� ��� so that the algebraic equation satis�ed by g is

Q
�
x� g�x�

P
i si��� x

ri
�
� ��

In other words� denoting � g�x�
P

i si��� x
ri�

�g �
kX

i��

xri�gsi�� � �� �
��

If s � �� i�e�� max si � �� we �nd g�x� � �	��x�
P

i si�� x
ri���� so that a similar algebraic

equation holds�

Q

�
x�

�

g�x�
P

i si�� xri

�
� ��

In other words� denoting �g�x� � g�x�
P

i si�� x
ri � and after a multiplication by �gt���

�g �
kX

i��

xri�g��si � �� �
��

The transformation �ri� si� �� �ri��si�� which boils down to reading the paths from right
to left� shows the combinatorial equivalence between the two problems� re�ected by Eqns�
�
�� � �
���

As special cases� this example includes some well�known lattice�path enumeration prob�
lems� For instance� these paths are called�

� Dyck paths� if S � f������� ��� ��g� In this case� Q�x� y� � y� xy�� x� and from �
���

g�x� �
��p�� �x�


x�
�

	�



� Motzkin paths� if S � f������� ��� ��� ��� ��g� In this case� Q�x� y� � y � xy� � x� xy�
and from �
���

g�x� �
�� x�p

�� 
x� x�


x�
�

� Schr�der paths� if S � f������� ��� ��� �
� ��g� In this case� Q�x� y� � y�xy��x�x�y�
and from �
���

g�x� �
�� x� �p�� �x� � x�


x�
�

In the same way we could count generalized Dyck paths with coloured steps � then the
corresponding coe�cient ch would equal the number of colours available for step h� This
approach generalizes without signi�cant change to higher�dimensional paths if the steps
have positive coordinates in all but perhaps one ��xed� dimension� In all these cases� the
generating functions are algebraic� �

The next example is actually an application of the previous one�

Example � 
 Directed paths above a line of rational slope
Let p and q be positive integers� Consider the problem of counting lattice paths with

steps ��� �� and ��� �� which start at the origin and stay on or above the line qy � px� Using
the linear transformation L � �i� j� �� �i � j� qj � pi� we obtain the equivalent problem of
counting lattice paths with steps ����p� and ��� q� which start at the origin and stay within
the �rst quadrant� This is because L maps the forbidden� region below the line qy � px into
the region below the line y � �� We are thus back to Example �� with S � f����p�� ��� q�g�
The apex is p � ��� p� and we are in the algebraic case� with t � p and s � q� We have
Q�x� y� � yp�xyp�q�x and the relevant generating functions can be derived from �
�� and
�
���

G�x� y� �
�

yp � xyp�q � x

pY
i��

�y � �i�x�� � ��

x

qY
i��

�

y � 	i�x�
�

g�x� �
����p��

x

pY
i��

�i�x� �
����q��

x

qY
i��

�

	i�x�
�

The series G and g can be understood in terms of the original paths �with unit steps� as
follows� G�x� y� counts these paths according to their length �variable x� and an additional
statistics that describes some kind of distance� between the endpoint of the path and the
line px � qy� The series g�x� is the length generating function for paths ending on that line�

The cases p � � and q � � are especially simple� moreover� they are equivalent� as far as
the evaluation of g�x� is concerned� If� for instance� p � �� then g�x� � ��x�
x where ��x� is
the unique power�series solution of

� � x
�
� � �q��

�
�

The Lagrange inversion formula gives then

g�x� �
X
n��

bnx
n �

X
m��

xm�q���

� �mq

�
m�q � ��

m

�
�

	�



Note that bm�q��� equals the number of paths from the origin to the point �mq�m� in our
original problem� We have thus recovered a classical result �e�g� ��� Thm� 
���

By changing the initial conditions� we could count the paths that start at the origin and
stay above the line px � qy �if q � �� then this question is equivalent to the initial one� for
the case p � �� see ��� Theorem ������ Instead of the steps ��� �� and ��� �� we could take any
set of steps with nonnegative components� and still obtain algebraic generating functions� �

��� D��nite transcendental solutions

According to the two previous subsections� the solution of ��� can only be transcendental if
the apex p has more than one positive coordinate �unless of course the known initial function
K�x� is already transcendental��

Example � 
 Ballot problems	 Young tableaux and involutions avoiding long in�
creasing subsequences

In an election� d candidates C�� � � � � Cd receive respectively m�� � � � � md votes� with m� �
� � � � md � �� The problem is to determine the number bm of ways one can count the votes
so that at any stage� Ci has at least as many votes as Ci��� for � � i � d�

Clearly� such counting processes can be encoded by paths on the lattice N d that start
from the origin �� end at m� take unit steps in the d positive directions� and have all their
vertices in the wedge x� � x� � � � � � xd � ��

These paths are known to encode Young tableaux of height at most d� a step of the
path going in the ith direction means that an entry is added to the ith row of the tableau
�Figure 	�� Equivalently� via the Robinson�Schensted correspondence� these paths encode
involutions of the symmetric group Sn that avoid the pattern �
 � � � �d � ��� i�e�� have no
increasing sub�sequence of length � d�

1 2
3
4

5
6 7

8 9

14 15
1110

12 13

112312211331144

Figure 	� A Young tableau of height � and the word � or path � that encodes it �a letter i
in the word indicates that the path takes a step in the ith direction��

The numbers bm� for m � Zd� satisfy�

bm �

����
���

dX
i��

bm�ei if m� � � � � � md � � and m �� ��

m�� otherwise

where ei denotes the unit vector ��� � � � � �� �� �� � � � � �� with the � in ith position� We can
transform this recurrence into a recurrence of type ��� by setting

an � bn��n������nd�d�����nd���nd���nd���

	�



except for the value a��������� which we �nd convenient to reset to �� Then for n � ��

an �

��
�
X
h�H

an�h if n � ��

n������������ otherwise

where

H � f���� �� � � � � ��� ������ �� � � � � ��� ��� ����� �� � � � � ��� � � � � ��� � � � � �� �����g�
The set H satis�es Theorem ��iii� with v � ��� 
� � � � � d�� and thus the recurrence de�nes a
unique sequence� The apex is ��� �� � � � � �� ���

Proposition �� The generating function F��x� �
P
n�� anx

n�� is D��nite for all d� It is
rational if d � �� algebraic of degree 
 �quadratic if d � 
� and transcendental if d � �

Proof� This ballot problem was solved by MacMahon �	�� Sec�III� Chap�V� 	����

bm �
Y

��i�j�d

�mi �mj � j � i�

�Pd
i��mi

�
�Qd

i�� �mi � d� i��
�

This gives� for n � ��

an �
Y

��i�j�d

�ni � � � �� nj���

�Pd
i�� ini �

�
d��
�

��
�Qd

i�� �ni � � � �� nd � ���
�

We prove that this d�dimensional sequence is P�recursive by combining the P�recursiveness
of some elementary sequences with the fact that the class of P�recursive sequences is closed
under the Hadamard product �see �	�� for details�� Hence F� is D��nite�

Now� if F��x� is algebraic� then so is its section

f�z� �
X
n��

a��������n z
n �

X
n��

bn�������n�� z
n�

corresponding to Young tableaux of rectangular shape� But

a��������n�� �
d��Y
i��

id�i
�dn��Qd��

i�� �n � i��
�

d��Y
i��

id�i
p
d

�
���d���	�
� ddn

n�d����	�

by Stirling�s formula� For f�z� to be algebraic� it is necessary �see ��� Thm� D�� that

d� � �




� f�� 
� � � � �g�

which rules out all odd values of d� except d � �� and that

d��Y
i��

id�i
p
d

�
���d���	�
� �
�
� d�




�

	�



be an algebraic number� If d is even� then �
�
��d�

�

�
is� up to a rational factor� equal to

���

� �
p
�� The above condition reads �d	��� is algebraic�� and forces d � 
� Thus F� is

transcendental when d � �

If d � �� then an� � � for n� � �� Hence F� � �
��� x�� is rational�

If d � 
� then the apex is ��� �� and the known initial function is rational� We apply the
technique of Section ��� to obtain

F��x�� x�� �
�





x� � � �
p
�� �x�

x� � x�� � x�
�

Note that this calculation is completely equivalent to that of Example 
� as ballot paths are
merely left factors of Dyck paths�

��� Non�D��nite 	hypertranscendental
 solutions

Our last example is a variation on the knight�s walk �Example 	�� It shows that the solution
of ��� need not be D��nite� even though the initial conditions are rational�

Example � Let �am�n�m�n�� be the sequence de�ned by�

am�n �

�
am���n�� � am���n�� � am���n�� if m�n � 
�
��m�n������� if m � � or n � ��

The �rst few values of am�n are given below�

n
�
� � � � � � �
� � �� � � � �
� � � � �� � �
� � � �� � � �
� � � � � �� �
� �� � � � � �
� � � � � � � � m

This is a problem of type ��� withH � f����
�� ��
� ��� �������g� s � �
� 
�� and p � ��� ���
We �nd� using �		� � �	��

Q�x� y� � �x� y���y � x��� K�x� y� � xy� and U�x� y� � G�x� �G�y�

with
G�x� �

X
m��

am��x
m���


�



We have used the symmetry of the problem in m and n� As usual� let Fs�x� y� �P
m�n�� am�nx

m��yn��� Then we have from �	��

h
x� y�

i h
y � x�

i
Fs�x� y� � xy �G�x��G�y�� �
��

Replacing y by x� in �
��� we obtain the following equation de�ning G�

x� �G�x��G
�
x�
�
� ��

Iterating this equation shows that� for n � ��

G�x� �
n��X
i��

����ix���
i

� ����nG
�
x�

n
�
�

By de�nition� G�x� � O�x��� and therefore

G�x� �
X
i��

����ix���
i

�

The series G is a lacunary series� in particular� its coe�cients cn do not satisfy any non�trivial
recurrence relation of the type

P��n�cn � P��n�cn�� � � � �� Pk�n�cn�k � ��

where the Pi�n� are polynomials in n� Such recurrence relations characterize D��nite series�
hence G�x� cannot be D��nite� Consequently� the series Fs�x� y� itself is not D��nite�

We can actually state a stronger result� according to �	�� Thm� ��� the series G is hy�
pertranscendental � meaning that it does not satisfy any algebraic di	erential equation of the
form

P �x�G�x�� G��x�� G���x�� � � � � G�k��x�� � �

where P is a polynomial with complex coe�cients of k � 
 variables�
The numbers am�n actually belong to f����� �g and we could write down an explicit

expression for them� But the following table� where the zero entries are replaced by dots and
the nonzero entries are replaced by their signs� shows the underlying lozenge pattern and
makes a long formula short�


	



n

�

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � m

�

Example � �continued�
 what about the knight�
Let us recall the functional equation we have obtained for this problem�

�xy � x� � y��Fs�x� y� � K�x� y��G�x��G�y� �
��

where

K�x� y� � xy

�
� � y

�� x
�

� � x

�� y

�
and G�x� �

X
m��

am��x
m���

We have used the symmetry of the problem inm and n� We are going to show that the kernel
method allows once again to solve completely this functional equation� Let ��x� � O�x�� be
the formal power series in x satisfying

x� � x� � �� � ��

The Lagrange inversion formula� applied to ��x�
x� provides an explicit expression�

��x� � x�
X
m��

x�m


m� �

�
m

m

�
� O�x���

Replacing y by ��x� in �
�� gives a functional equation that de�nes G�x��

K�x� ��x���G�x��G���x�� � ��







As G�x� � O�x��� we obtain� after iterating this equation in�nitely many times

G�x� �
X
i��

����iK
h
��i��x�� ��i����x�

i

where ��i� � � � � � � � � is the ith iterate of �� Replacing G�x� by the above explicit value in
�
�� gives an expression for Fs� It has been proved that G is irrational �
��� It is in fact not
D��nite ���� �

Final remarks
	� The approach of this paper can be generalized without any signi�cant alteration to

recurrence relations involving an inhomogeneous term�

an �
X
h�H

chan�h � bn�

where �bn�n�s is a given d�dimensional sequence in the �eld A� The inhomogeneous term
only a�ects the known initial function K�x�� which becomes

K�x� �
X
h�H

chx
p�hPh�x� �B�x�� with B�x� �

X
n�s

bnx
n�s�


� Some of the results and techniques presented in this paper do not require H to be a
�nite set� If H is in�nite� the initial conditions have to include an � � for n �� ��

�� We used the kernel method to prove Proposition 	� and solve Examples � and 	�
More examples suggest that the roots of the kernel will always provide enough information
on the unknown initial function U�x� to characterize it completely� thus yielding some kind
of solution of the recursion� this could� at least in the two�dimensional case� allow for a
complete classi�cation of the recursions according to the nature of the associated generating
function�
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