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Abstract

We present the numbers of isotopy classes and main classes of Latin squares,
and the numbers of isomorphism classes of quasigroups and loops, up to order 10.
The best previous published results were for Latin squares of order 8 (Kolesova,
Lam and Thiel, 1990), quasigroups of order 6 (Bower, 2000) and loops of order 7
(Brant and Mullen, 1985). The loops of order 8 have been independently found by
“QSCGZ” and Guérin (unpublished, 2001).

1 Introduction

A Latin square of order n is a n X n array L = ({;;) such that each row and each column
contains a permutation of I, = {1,2,...,n}. A quasigroup G is a set together with a
binary operation o such that the equations gox = h and yog = h have unique solutions for
each g, h € G. A quasigroup G is a loop if it contains an element e such that goe = eog = g
for all ¢ € G. This paper is concerned with the numbers of Latin squares, quasigroups

and loops for small n.

Some alternative representations of a Latin square can be useful. The orthogonal
array representation of L is the set of n? ordered triplets {(i,7,4;) | 1 < i,5 < n}. By
the definition of L, each ordered pair of numbers from I,, appears exactly once in the first
two positions of the triplets, exactly once in the second and third positions, and exactly
once in the first and third positions.

Another representation is obtained by interpreting L as the multiplication table of a
quasigroup G. The elements of G are {g1, 92, ..., gn} and the binary operation is defined
by g; © g; = ge,;- Clearly G is a loop if there is a number 4 such that row 7 and column ;

of L each contain the identity permutation.



Various equivalence relations are defined on the set of Latin squares. We will define
these in terms of the orthogonal array representation. Define I3 = I,, x I, x I,, and
S3 =G, xS, xS,, where S, is the symmetric group on I,,. The action of S on I? is given
by (3,7, k)™ = (i, j¢, k*) for (i,4,k) € I? and (r,c,s) € S3. We also define the group T
of order 3! that acts by consistently permuting the entries of the triplets. Recalling that
the three positions in a triplet correspond to the rows, columns and symbols of L, we will
write elements of 7' as permutations of the three tokens {R,C, S}. For example, (RC)
is the matrix transpose operation, while (RC'S) has the action (4, j, k)(#¢%) = (4, k, ) for
each triplet (4, j, k). The group (S2,T') has order 6(n!)3. Its elements can be specified by 4-
tuples (r,c, s, ), for r,c,s € S, and 7 € T, which act on I? as (i, j, k)7 = (i7", 5, k*)".
The images of L under 7' are called its conjugates.

Let L, be the set of all Latin squares of order n. In terms of the orthogonal array
representation, the group o € (S3 T) acts on £, as L° = {(3,5,k) | (4,5,k) € L}
for L € L,,0 € (S3,T). The orbits of this action are the main classes of L,, and
two squares in the same main class are said to be paratopic. The stabiliser MC(L) =
{c € (S3,T)} | L° = L} is called the autoparatopy group of L, and its elements are the
autoparatopisms of L.

If we restrict ourselves to the subgroup S2 < (52 T, its orbits are called isotopy
classes of L,, the stabiliser Is(L) = {0 € S3 | L = L} is the autotopy group of L, and
its elements are autotopisms of L. More generally, o € S3 is an isotopism from L to L’ if
L'=1°.

A notion of equivalence intermediate between isotopy and paratopy is also of some
interest. A type of Latin square is an equivalence class under the subgroup (S3 7") <
(S3,T), where T" = ((RC)). In other words, the isotopisms are augmented by the matrix
transpose operation. Types of Latin square correspond to isomorphism classes of 1-
factorizations of complete bipartite graphs, with the transpose operation corresponding
to interchange of the two colour classes.

The terminology (but not the notation) we have introduced above mostly follows the
practice of Sade, who developed much of the basic theory of Latin squares in a long series
of papers. Much alternative terminology appears in the literature as well. For example,
the autotopy group is sometimes called the isotopy group, and the autoparatopisms are
also called main class isotopisms. Isotopy classes have been called transformation sets.
The conjugates of a Latin square can be called its adjugates or its parastrophes. Main
classes are sometimes called paratopy classes or species. Our use of the word type follows

Schonhardt [32]; there does not seem to be a modern name for this concept.



The quasigroup view of a Latin square invites us to also consider isomorphisms and
automorphisms as usually defined for algebraic structures. These are the isotopisms and
autotopisms that lie in the diagonal subgroup A, = {(r,¢,s) € S2 | r = ¢ = s}. The
automorphism group of L is Aut(L) =Is(L) N A,.

It is obvious that MC(L?) = MC(L)", Is(L") = Is(L)” for any L € L,,0 € (S3,T),
and Aut(LY) = Aut(L)" for any L € L,,,0 € A,. Equally clear is that each main class is
a union of isotopy classes which, in turn, are unions of isomorphism classes.

A Latin square is called reduced (also sometimes called normalized or in standard
form) if the first row and the first column contain the identity permutation. Since the
total number of squares is n! (n—1)! times the number of reduced squares, it will suffice

to consider the latter.

History.

The counting of Latin squares has a long history, unfortunately beset by many pub-
lished errors. The number of reduced squares up to order 5 was known to Euler [11] and
Cayley [7]. McMahon [18] used a different method to find the same numbers, but ob-
tained the wrong value for order 5. The number of reduced squares of order 6 was found
by Frolov [14] and later by Tarry [33] (and later still, but incorrectly, by Jacob [16]).
Frolov [14] also gave an incorrect count of reduced squares of order 7. Tarry also found
that there were 17 types of squares of order 6, agreeing with an apparent enumeration by
Clausen nearly 60 years earlier (see [24]). Schonhardt [32] found the correct numbers of
main classes, isotopy classes and reduced squares up to order 6. Fisher and Yates [13],
apparently unaware of [32], confirmed Tarry’s values and also correctly gave the numbers
of isotopy classes of order up to 6. Norton [24] found 146 main classes and 562 isotopy
classes of order 7, but his method did not guarantee completeness as he acknowledged.
Indeed, Sade [27] and Saxena [30] each found more reduced squares than Norton did,
and Sade [28] traced this to one main class that Norton had missed. This addition gave
the correct number, 147, of main classes. Though Sade does not say so explicitly, he
gives enough information to imply that his new main class contains 2 isotopy classes.
This would correct Norton’s incorrect count of isotopy classes to 564, but Brown [6] an-
nounced the value 563 (though we don’t know if he inititated the error). Unfortunately
this incorrect value was widely accepted and is still sometimes quoted in error [8, 10].

Brown also gave the wrong number of isotopy classes of order 8, while Arlazarov et
al. [2] gave the wrong number of main classes. The correct number of reduced squares of

order 8 was found by Wells [34], and the numbers of isotopy and main classes by Kolesova,



Lam and Thiel [17].

The number of reduced squares was obtained for order 9 by Bammel and Rothstein [3],
for order 10 by McKay and Rogoyski [21], and for order 11 by McKay and Wanless [22].
In each case the same numbers have been computed independently at least twice, so they
are likely to be correct. No counts of isotopy or main classes for orders greater than 8
have appeared before the present paper. In view of the sorry history of the subject, we
attempted to do as much of our computations in duplicate as possible.

Several explicit formulas for general n are in the literature ([31], for example) but they
are not useful for computation.

The number of isomorphism classes of loops up to order 6 was found by Schénhardt [32]
in 1930, but this was not noticed by Albert [1] or Sade [29] who obtained weaker results
much later. Dénes and Keedwell [10] present counts of isomorphism types of “quasigroups”
up to order 6, but in fact their numbers count loops. (Their error was due to the false
belief that each quasigroup is isomorphic to a reduced square.) The loops up to order 7
were counted by Brant and Mullen [5]. Recently, “QSCGZ” (who declines to reveal his
or her real name) announced the number of loops of order 8 in an electronic forum [25]
and the same value was found independently by Guérin [15]. The quasigroups of order 6

were counted by Bower [4].

2 Enumeration techniques

As raw data for our computations for each n, we will use the total number R,, of reduced
Latin squares of order n, together with a file M,, containing one square from each main
class of square with non-trivial autoparatopy group.

The known values of R,, are given in Table 1. As noted before, the total number of
squares, reduced or not, is L, = n! (n—1)! R,,.

The generation of the squares with non-trivial autoparatopy groups will be described
in the next section. The advantage in using M, is that it contains considerably fewer
squares than the total number of main classes. This is especially true for n = 10, for which

the exhaustive listing of all main classes is out of the question with current technology.

We begin by noting a few elementary properties of the groups associated with a Latin

square. For p € S, let Fix(p) be the set of points fixed by p.

Theorem 1 Let L be a Latin square of order n and let (r,c,s) € Is(L) be a non-trivial

autotopism. Then one of the following is true.
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Table 1: Reduced Latin squares of order n

(i) 7, ¢, s have the same cycle structure with at least one and at most |n/2| fized points.
(ii) One of r,c,s has at least one fized point, and the other two have the same cycle
structure without fized points.

(iii) None of r,c, s has fized points.

Proof. Let (r,¢,s) € Is(L) be a non-trivial autotopism and let F' be the set of triplets
(i,7,k) € Fix(r) x Fix(c) x Fix(s) in the orthogonal array representation of L. Since no
two triplets overlap in more than one entry, the presence of two fixed points in a triplet

implies that the third is also fixed. Therefore we have that
|F| = |Fix(r)| |[Fix(c)| = |Fix(r)| |Fix(s)| = |Fix(c)| |Fix(s)|.

To satisfy these equations, either |Fix(r)| = |Fix(c)| = |Fix(s)| or at least two of these
values are 0. Subject to these constraints suppose that two of r, ¢, s, say r and ¢, have
the same number of fixed points. If » and ¢ don’t have the same cycle structure, let ¢
be the smallest number such that r has more cycles of length ¢ than ¢ has. Then r* has
more fixed points than ¢!, which is impossible as (rf, ¢, s*) = (r,c,s)! is an autotopism.
If |Fix(r)| = |Fix(c)| = |Fix(s)| > 0, these three sets induce a proper Latin subsquare

of L, which is well known to have order at most half the order of L. 0

For any Latin square L, define Ty(L) = 3,2,1,1 when |Is(L)|/|MC(L)| = 1,2,3,6,

respectively.

Theorem 2 Let L be a Latin square of order n. Then
(i) the number of isomorphism classes in the isotopy class of L is (n!)?|Aut(L)|/|Is(L)|;
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(ii) the number of types in the main class of L is Ty(L);
(iii) the number of isotopy classes in the main class of L is 6|Is(L)|/|MC(L)|.

Proof. These are standard properties of group actions. Note that Ty(L) is the number
of orbits of MC(L) on {R,C, S}. 0

Theorem 3

(i) The number of isotopy classes of Latin squares of order n is

6(11s(L)] — 1)
2 T

R,

nn!

LeM,

(i) The number of types of Latin square of order n is

+ >

LeMy

R,
2nn!

Ty(L) (MC(L)| - 1)
IMC(L)]

(iii) The number of main classes of Latin squares of order n is

R, 3 IMC(L)| — 1
6nn! o [MC(L)|

Proof. The number of squares in the same main class as a square L is 6(n!)®/|MC(L)|.
This means that the number of squares whose main class is not represented in M,, is
L, —6(n!)3Y1cam, 1/IMC(L)], and (because they all have trivial autoparatopy groups)
they are all in main classes of size 6(n!)®. This gives (iii). Claim (i) is just the same, on

application of Theorem 2(iii). Claim (ii) follows from (iii) and Theorem 2(ii). O
The results of these computations appear in Table 2.

Define the cycle structure of a permutation 7 to be the sequence (ny,ns,...), where
n; is the number of cycles of length i in 7. If 0 = (7,¢, s) is an autotopism of a Latin
square, define (o) as follows:
(i) If r, ¢ and s have the same cycle structure (nq,ns,...), then (o) = I; n;! ™ ;
(ii) otherwise, ¥ (o) = 0.

An element (r,c, s) € S3 will be called diagonal if r = ¢ = s.

Lemma 1 For any o € S, let D(o) denote the number of elements p € S3 such that
o’ is diagonal. Then D(c) = nly(o)?.



n main classes types isotopy classes

1 1 1 1

2 1 1 1

3 1 1 1

4 2 2 2

5 2 2 2

6 12 17 22

7 147 324 564

8 283657 842227 1676267

9 19270853541 57810418543 115618721533
10 | 34817397894749939 | 104452188344901572 | 208904371354363006

Table 2: Isotopy classes, types and main classes of Latin squares of order n

Proof. Say 0 = (r,¢, s) and p = (z,y, z). Clearly D(c) = 0 unless r, ¢, s have the same
cycle structure, say (nj,ns,...). We can choose z arbitrarily, in n! ways. Given z, we
must choose y such that ¢¥ = r*. This can be done in (o) ways: for each i the cycles of
¢ with length 7 can be mapped onto those of 7* in n;! orders, with the points mapping to
the least points of each cycle of * chosen in ™ ways. Similarly, z can be chosen in (o)

ways. This gives the lemma. O

Lemma 2 Let L be a Latin square. Define a map ¢ : S x Is(L) — L, x S3 by
#(p,0) = (LP,0*). Define an equivalence relation on S2 x Is(L) by (p,o) ~ (p', ') if and
only if ¢(p,0) = ¢(p',0"). Then all the equivalence classes have size |Is(L)|.

Proof. Consider fixed p € S? and ¢ € Is(L). For each v € Is(L), ¢(yp, 07 ) =
(L7, 07 ) = (LP,0?) = ¢(p,0). Moreover, each 7p is distinct. Therefore the equiva-
lence classes have size at least |Is(L)|.

Conversely, if ¢(p, ) = ¢(p', 0") define v = p'p~1. Since L? = L# = L'? we must have
L = L;i.e., v € Is(L). Furthermore, since o* = (¢')* = (0')?, we have o = (¢')? and so
o' = o7, This is the case of equivalence we already identified, so the equivalence classes

have size exactly |Is(L)]. O

Theorem 4 The number of isomorphism classes of Latin squares (that is, the number

of isomorphism classes of quasigroups) of order n is

(n—1)!R, + Y |MC( i Y (o

LeM, ocls'(L)

where Is'(L) is the autotopy group of L with the identity removed.
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Proof. Let H be the set of diagonal elements of S3. We need to determine the number of
orbits of the action of H on £,,. According to the Frobenius-Burnside Lemma [23], this is
equal to the average number of Latin squares L fixed by elements of H. That is, n! times
the number of isomorphism classes equals the number of distinct pairs (M, o) such that
M e L, and 0 € HNIs(M).

We will find the number of such pairs (M, o) with M in the isotopy class of some given
square L. Since Is(L?) = Is(L)?, each (M, o) is ¢(p, o) for some p € S2 and o € Is(L),
where ¢ is defined in Lemma 2. By Lemma 1, exactly D(o) values of p are such that o”
are diagonal, and by Lemma 2 each value of ¢(p, o) appears for exactly |Is(L)| values of

(p,0). Thus we have that the number of isomorphism classes is

Z|Is Z ¢

O'EI

where the outer sum is over one arbitrary representative of each isotopy class. Moreover,

> ocls(L) ¥(0)? is equal for all L in the same main class, so the theorem follows. O

We can identify the number of isomorphism classes of loops as the number of isomor-
phism classes of reduced Latin squares, since a loop has exactly one identity and we can
label it first.

Given a Latin square L = ({;;), there are n?(n — 1)! elements p € S3 such that LF is
reduced. These can be parameterised p(i,j,s), where i,j € I, and § € S, such that §
fixes 1. Set k = ¢;;. First, swap row ¢ with row 1, column j with column 1, and symbol &
with symbol 1. Then apply 0 to rename the symbols other than 1. Finally, permute the
rows and columns such that the first row and first column are in numerical order. To
identify p(i, j,9) explicitly, let r; € S, be the permutation appearing in row 7 (that is,
0y = t" for each t). Similarly, let ¢; be the permutation appearing in column j. Then
p(i,j,0) = (¢;j(1k)d, (1 k)d, (Lk)J).

If o = (r,c, s) is an autotopism of a Latin square, define A(o) as follows:

(i) If r, c and s have the same cycle structure (ny,ns, ... ), then A(o) = nq;
(ii) otherwise, A(c) = 0.

Lemma 3 Consider a Latin square L and o € Is(L). Define (n — 1)! N(L, o) to be the
number of p € S3 such that L” is reduced and o” is diagonal. Then N(L,0) = \(0)%.

Proof. By the preceding discussion, p = (¢;j(1k)d,r:(1k)d, (1k)d) for some 4, j € I, and

§ € S, such that ¢ fixes 1. Since any v € S? is diagonal if and only if ((1¥)(1k)3(1k)3)
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is diagonal, we have that N(L,o) is the number of pairs (i,j) for which (r%,c" s) is
diagonal; that is, for which r% = ¢ = s.

Consider the equation ¢ = s, or equivalently cr; = 7;s. Say L = ({;;). For any j,
j = lije and j7° = £;;. Consider the two triplets (7, j¢, fic) and (7, y° £5;) in the
orthogonal array representation of L—the first by definition and the second since (r, ¢, s) €
Is(L). Since triplets cannot have exactly two entries in common, we have that £;;c = /3
if and only if i" = i. That is, ¢" = s exactly when ¢ € Fix(r). Similarly, r% = s exactly

when j € Fix(c). By Theorem 1, N(L,0) = A(0)>. 0

Theorem 5 The number of isomorphism classes of reduced Latin squares (that is, the

number of isomorphism classes of loops) is

= +Z|Mc<>|ZA

LeMy, ocls’

where Is'(L) is the autotopy group of L with the identity removed.

Proof. Let H be the group of diagonal elements of S3 that fix (1,1,1), and consider H
acting on the set of reduced Latin squares. The orbits of this action are the isomorphism
classes of loops. By the Frobenius-Burnside Lemma, we have that |H| times the number
of orbits is equal to the number of distinct pairs (M, o’) such that L is a reduced square
and ¢’ is a diagonal autotopism of M. (Note that all autotopisms of a reduced square
must fix (1,1,1).)

We determine the number of such pairs (M, ¢’) for which M is isotopic to a given
reduced Latin square L. These all have the form (L, 0*) for some o € Is(L) and p € S3.
For given o there are (n — 1)! N(L, o) such values of p, but some of the pairs (L, o”)
are the same. In fact, (L?,0?) = (L”,0*") if and only if p' = vp for some v € Is(L), so
each value of (L?, 0*) occurs exactly |Is(L)| times. Therefore the number of isomorphism

classes of reduced squares is

where the outer sum is over one arbitrary representative of each isotopy class.
Since N(L7,07) = N(L,o) for any ¢ € Is(L) and 7 = (S3,T), by Lemma 3, the
contributions of each isotopy class in the same main class are the same.

The theorem now follows. 0

Application of Theorems 4 and 5 gives the results shown in Table 3.
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n loops quasigroups

1 1 1

2 1 1

3 1 5

4 2 35

5 6 1411

6 109 1130531

7 23746 12198455835

8 106228849 2697818331680661

9 9365022303540 15224734061438247321497
10 | 20890436195945769617 | 2750892211809150446995735533513

Table 3: Isomorphism classes of loops and quasigroups of order n

3 (Generating the Latin squares with symmetries

In this section we will describe the method by which we found all the Latin squares
of order up to 10 having non-trivial autoparatopy groups. To begin, we identify a set
of autoparatopisms such that each square with non-trivial autoparatopy group is in the

same main class as a square with at least one of these autoparatopisms.

Lemma 4 Suppose L is a Latin square with non-trivial autoparatopy group. Then some
Latin square L' in the same main class as L has an autoparatopism o with one of the
following structures.

(i) For some prime p, ¢ = (r,c,s) where v, ¢ and s have order p with the same number
m of fized points, where 1 < m < mn/2.

(i) For some prime p dividing n, o = (r,c,s) where r and ¢ have order p and no fized
points, and s has order 1 or p. However, in the case that p =2 and n = 2 (mod 4), s has
at least two fized points.

(iii) o = (1,1, s, (RC)), where s has order 1 or 2 and has at least one fized point.

(iv) o = (RCS).

Proof. In the case where Is(L) is non-trivial, Theorem 1 implies that there is an auto-
topism of type (i) or (ii) for any prime p dividing |Is(L)|. It remains to prove the last
claim of part (ii). Suppose r, ¢, s all have order 2 without fixed points. Take any partitions
I, = RiURy = C;UCy = 51 US; such that » swaps Ry and Ry, ¢ swaps C; and C,
and s swaps S; and S;. For R,C,S C I,, let m(R,C,S) be the number of times an
element of S appears in the submatrix of L induced by rows R and columns C. Since

each symbol appears exactly once in each row and once in each column, m(Ry,Cy,S1) =
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n?/2 — m(Ry, C,S1) = m(Ry,C5,S1). On the other hand, the action of o gives that
m(Ry,C1,S1) = m(Ry, Cs, S3). Therefore m(Ry, Ca,S1) = m(Ry, Cs, S2) = n*/4. This is
a problem for n = 2 (mod 4), since n?/4 is not then an integer.

We are left with the possibility that MC(L) is non-trivial but Is(L) is trivial. Since
|T'| = 6, MC(L) contains an element o of order 2 or 3. If o has order 2, some L’ in
the same main class as L has an autoparatopism of the form (1,1, s, (RC)), where s has
order 1 or 2. The reason that s must have a fixed point is that symbols on the diagonal
must be fixed by s. If o has order 3, L' can be chosen to have the autoparatopism (RC'S).
0

For n < 9, the number of main classes of Latin squares having one of the above
symmetries is small enough that we can keep them all on disk for processing at leisure.
For n = 10, the numbers are slightly too large, so we took a more complex approach.
For each of the symmetries o of order 2 defined in Lemma 4, let £(o) be the set of Latin
squares L of order 10 such that MC(L) = (o). It turns out that the great majority of
squares of order 10 either have trivial autoparatopy groups or lie in one of the sets L(o);
that is, they have [MC(L)| = 2. Our generation programs were designed so that the main
classes of each set L£(o) are generated a predictable number of times (such as once, or
once per isotopy class). This enabled our counting theorems to be applied to each L(o) as
the squares were generated. Only the much smaller number of Latin squares with larger

autoparatopism groups needed to be stored, for sorting according to main class.

To compute the various groups associated with a Latin square L, we used the program
nauty [19]. Since nauty deals only with vertex-coloured graphs, we needed to convert L
to a graph whose automorphisms correspond to the symmetries of L.

Consider the orthogonal array representation of L. Define vertex-coloured graphs
G1(L), G3(L) and G3(L) thus:

e The n? + 3n vertices of Gy = G»(L) are
V(Gz) = {7’7; | 1€ In}U {Ci | 1€ In}U{Si | 1€ In}U{eij | Z,j € In};

where there is a different colour for each of the four subsets. The 3n? edges of Gy
are
E(Gs) = {rivij, ¢jvij, spvij | (i,5,k) € L}.

e The graph G; = G1(L) is formed from G by appending three additional vertices
{R,C, S} and 3n additional edges {Rr;,Cc;,Ss; | i € I,,}. The vertex colours are
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different: one colour for {R, C, S}, one for {r;,c;,s; | i € I,}, and a third colour for
the rest.

e The graph G3 = G3(L) is formed from G5 by adding 3n additional edges {r;¢;, 7;s;, ¢;s;

i € I,}. The vertex colours are the same as for G,.

Theorem 6 Let Aut(G) denote the automorphism group of graph G. Then the following
hold for each Latin square L and for each pair Ly, Ly of Latin squares of the same order.
(i) Aut(G,) is isomorphic to MC(L). This isomorphism maps (r,c,s) € Is(L) onto the
automorphism of Gy which acts like r,c,s on {r; |i € I,}, {c; | i € I,}, and {s; | i € L.},
respectively. The image of T € T is the automorphism that acts as 7 on {(R,C,S)} U
{(rs,ci,8:) | i € I,}. Moreover, Ly is paratopic to Ly if and only if G1(L1) is isomorphic
to G1(Ls).

(i) Aut(Gz) is isomorphic to Is(L). Precisely, for each (r,c,s) € Is(L), there is an
automorphism v of Gy such that r,c,s are the actions of v on {r; |i € L,}, {c; | i € I},
and {s; | i € I,,}, respectively. Moreover, Ly is isotopic to Ly if and only if Go(Ly) is
isomorphic to Ga(Ls).

(1ii) Aut(Gs) is isomorphic to Aut(L). The correspondence is the same as in part (ii).

Moreover, Ly is isomorphic to Ly if and only if G3(Ly) is isomorphic to G3(Ls).

Proof. In each case it is easy to see that the combinatorial structure of the graph corre-
sponds precisely to that of the square. The colouring of G5 forces automorphisms of G,
to correspond to autotopisms of L. For Gj3, the extra edges force automorphisms of the

graph to correspond to automorphisms of the square. Details are left to the reader. O

All of the required generation tasks, corresponding to the symmetries listed in Lemma 4,
were performed using at least two independent programs. This provided a good check
against both coding errors and machine errors. In most cases, one generator used the
orderly approach of Read [26] and Faradzev [12], while the other used the canonical con-
struction path method of McKay [20]. We will present a representative example of each

approach.

Orderly generation.

To illustrate the orderly approach to generation, we consider generating squares with
an autoparatopism ¢ = (1,1,s,(RC)) as in Lemma 4(iii). Given such a square L, let
L[k] be the subsquare formed by the first & rows and first & columns. Clearly L[k] is also

invariant under o if we make the convention of ignoring the missing rows and columns.
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For each k, define P, to be the set of triples (', ¢/, s') where 7’ and ¢’ are the same per-
mutation of {0,1,...,k—1}, and s’ is a permutation of {0,1,...,n—1} such that s* = s.
It is clear that, if L[k]” = L[k] and p € P, then L[k]?” = L[k]?. Two subsquares L[k|
and L'[k] of the same size can be compared by comparing their upper triangles in the
order (0,0),(1,1),(0,1),(2,2),(1,2),(0,2),...,(k—1,k—1),(k—2,k—1),...,(0,k—1). We
will say that L[k] is minimal if L[k] < L[k]? under this ordering for all p € P.

The essential property used by orderly generation is that if L = L[n] is minimal then
each of the subsquares L[k] is also minimal. Therefore, we can find the minimal subsquares
L[k] by taking the minimal subsquares L[k—1], bordering them with an extra row and
column related by s, then rejecting the extended subsquares if they are not minimal.

One improvement is to reject certain subsquares which cannot possibly be extended

to complete squares.

Lemma 5 Suppose the permutation s fizes m symbols. For symbol x, let N(x) be its
number of appearances in L[k|, 1 < k <n. Then

(i) N(z) > 2k —n for all z;

(i) >, N(xz) > n — k + (2k — n)m, where the sum is over the symbols fized by s;

(i) N(z) = n (mod 2) for at least k +m — n of the symbols fixed by s.

Proof. Let @ be the order n—k subsquare of L[n] complementary to L[k]. If some symbol
appears z times in L[k|, then it appears n — 2k — x times in ). This proves (i). In the
case of symbols fixed by s, () must contain at least n — k of them since only such symbols
may appear on the diagonal. This gives (ii). The number of symbols fixed by s that
appear an odd number of times in () is at most n — k, since such symbols must appear
on the diagonal. The value of N(z) for such symbols has the opposite parity to n, which
gives (iii). 0

Cruse [9] proved that conditions (i) and (iii) are sufficient for L[k] to be extendible to
L[n] in the case m = n. (In that case, condition (ii) holds always.)

It is clear that the most onerous part of this method is the minimality test of the
extended subsquares, since Py can be quite large. In principle we can just compare L[k]?
to L[k| for all p € Py, but there are ways to do the test faster on average. For example,
since L[k—1] is known to be minimal, only a limited few p’s that fix the new row and
column are interesting and these few will have been found during the verification of the
minimality of L[k—1]. We can also employ some heuristics. For example, if some L[k] is
rejected because L[k]? < L[k|, then the same p is also likely to reject other candidates

L'[k] appearing in the near future.
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The resulting output of this method is the set of Latin squares L such that L7 = L
and L is minimal under P,. This is then a set of equivalence class representatives under
the action of P,.

For example, consider the case n = 10, s = (45)(67)(89). There are 1699361022
squares output altogether. That is too many squares to easily keep around, but fortunately
all but a relative handful, 1512278 to be precise, have the property that o is their only
non-trivial autoparatopism. If (o) is the full autoparatopy group, then equivalence classes
under P, are the same as equivalence classes under S2 (i.e., isotopy classes). Therefore,
the contributions of the great majority of the output squares to the counting lemmas of
the previous section are determined just by the number of such squares. The 1512278
squares with larger autoparatopy groups can be sorted into main classes using Theorem 6.

The generation speed for this example was about 1500 per second (1GHz Pentium III).

Generation by canonical construction path.

As an example of the canonical construction path approach, we consider Lemma 4(i)
with n = 10, p = 2 and m = 2. We can assume that 0 = (r,c,s), where r = ¢ = s =
(23)(45)(67)(89), so that 0 and 1 are the fixed points.

The square is constructed one (row) block at a time, where a row block consists of the
rows corresponding to a cycle of r. Thus, there are 2 blocks of 1 row each and 4 blocks of
2 rows each. If L is a Latin square with o € Is(L), let L(k) denote the rectangle consisting
of the first k blocks of L. For our example, L(6) = L.

We next define a limited type of isotopism. If L’ is another square with o € Is(L’),
then L is o-isotopic to L' if there is an isotopism p : L — L’ such that 0” = ¢. Similarly,
we can define the o-isotopism of L(k) and L'(k) for any k (just ignore the cycles of r
lying outside the first k& row blocks). Clearly, o-isotopism is an equivalence relation so we
can speak of o-isotopism classes. Naturally, we will call o-isotopisms from L(k) to itself
o-autotopisms.

The basic idea of the method is to generate one representative of each o-isotopism
class of k-block rectangles by extending the (k—1)-block rectangles by a single row block.
Clearly this is possible; the issue is of how to efficiently restrict the generation to o-
isotopism class representatives. The general technique given in [20] achieves this by ap-
plication of two “rules”. Consider a (k—1)-block rectangle U. The o-autotopisms p of
U define an action on the set of row blocks which legally extend U to k blocks. (The

extended array must still be a Latin rectangle with autotopism o.)
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The first rule is to only consider one block from each orbit of this action, which can be
implemented by computing all g-autotopisms of U. This computation can be performed
by applying nauty to a graph similar to G3(U), defined before Theorem 6, with extra
edges 7;7j, ¢;rj, 8;5; for each 2-cycle (i j) of r. The latter edges restrict autotopisms to
those normalizing o.

The second rule is slightly harder to explain. We require a function f such that f(L(k))
is a row block of L(k) for each rectangle L(k). The required properties are that f(L(k)) is
a block of 2 rows if there are any, otherwise a block of 1 row, and that f(L(k)?) = f(L(k))?
for any g € S2 such that 09 = 0. Such a function can be computed by applying nauty to
the same graph mentioned above, to put the row blocks of L(k) into a canonical order.
Then f(L(k)) can be defined as the first block of the required number of rows. Now we
can specify rule two: if L(k) is formed by adding row block B to a (k—1)-block rectangle,
then L(k) is rejected unless B is in the same orbit as f(L(k)) in the action of the o-
autotopisms of L(k) on the row blocks of L(k). The idea of this rule is that L(k) is only
accepted if its last-added row block is f(L(K)) or an equivalent row block.

According to the main theorem of [20], simultaneous application of the two rules
implies that exactly one square from each o-isotopism class is constructed without being
rejected.

In practice, use of nauty is minimized by computing o-isotopism invariants of the
rows, columns and symbols of the encountered rectangles. For example, we could associate
which row with the number of 2 x 2 Latin subsquares which involve that row. With a
suitably accurate invariant, we can often tell that a rectangle has no o-autotopisms other
than (o) (by far the most common situation), and often find that one row block is uniquely
identified by the invariant (in which case we can take f(L(k)) to be such a row block with
the least value of the invariant). Such devices reduce applications of nauty to only a
small fraction of cases and greatly improve the generation speed.

The great majority of the 4838805676 outputs (representatives of o-isotopism classes
of squares with autotopism o) have no nontrivial autoparatopisms at all other than o.
Clearly such squares are not paratopic to any other of the generated squares other than
their conjugates (which are also generated) so there is no need to store them. Rather, we
only need to note their number in order to determine their contributions to the counting
theorems of the previous section. The remaining output squares, those 3094060 with larger
autoparatopy groups, can be sorted into main classes using Theorem 6. The generation
speed was about 21,000 per second (1GHz Pentium III).
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In the Appendix, we list the numbers of Latin squares up to order 10 according to the
orders of their isotopy and autoparatopy groups.

As an additional check, we generated all of the isotopy classes of Latin squares of order
9 and their groups, using an entirely independent program that uses the orderly method.

The results were as expected.

We wish to thank Ian Wanless for valuable advice.
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Appendix: Counts by group size

In this appendix, we give counts of Latin squares according to the sizes of their autotopy
and autoparatopy groups. The count in each case is the number of main classes. To
obtain the number of isotopy classes corresponding to each entry, multiply the number of
main classes by 6|Is(L)|/|MC(L)].

IMC(L)| ‘ IIs(L)| ‘ main classes
4 | 4 | 1

Table 4: Main classes of order 2 counted by group size
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‘ IMC(L)| ‘ IIs(L)| ‘ main classes
| 108 | 18 | 1

Table 5: Main classes of order 3 counted by group size

IMC(L)| ‘ |Is(L)| ‘ main classes H IMC(L)| ‘ |Is(L)| ‘ main classes

192 | 32 | 1 | 576 | 96 | 1

Table 6: Main classes of order 4 counted by group size

IMC(L)| ‘ |Is(L)| ‘ main classes H IMC(L)| ‘ |Is(L)| ‘ main classes

72 | 12 | 1 | 600 [ 100 | 1

Table 7: Main classes of order 5 counted by group size

IMC(L)| | |Is(L)| | main classes | [IMC(L)| | |Is(L)| | main classes
8 4 1 144 24 1
16 8 1 240 120 1
24 4 2 432 72 1
24 12 1 648 108 1
48 8 1 1296 216 1
72 36 1

Table 8: Main classes of order 6 counted by group size

IMC(L)| | |Is(L)| | main classes | [MC(L)| | |Is(L)| | main classes
1 1 44 12 6 1
2 1 43 15 5 1
2 2 14 16 8 2
3 1 4 18 3 1
4 2 11 24 4 3
6 1 14 72 12 1
6 3 2 144 24 1
8 4 1 1008 168 1
10 5 1 1764 294 1
12 2 1

Table 9: Main classes of order 7 counted by group size
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IMC(L)| | |Is(L)| | main classes | [IMC(L)| | |Is(L)| | main classes
1 1 270611 24 4 19
2 1 6769 24 8 2
2 2 4350 24 12 6
3 1 176 24 24 1
3 3 37 32 16 34
4 2 879 36 6 2
4 4 210 48 8 3
5 5 1 48 24 )
6 1 109 64 32 11
6 2 8 72 12 1
6 3 26 84 42 1
6 6 15 96 16 4
8 4 191 96 48 2
8 8 36 126 42 1
9 3 1 128 64 4
10 5 2 192 32 3
10 10 1 192 96 2
12 2 14 256 128 4
12 4 1 288 48 1
12 6 14 384 64 2
12 12 6 384 192 2
16 8 58 276 96 2
16 16 11 1536 256 3
18 3 8 3072 512 2
18 6 1 9216 1536 1
20 10 2 64512 10752 1
21 7 1

Table 10: Main classes of order 8 counted by group size
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IMC(L)| | |Is(L)| | main classes || [MC(L)| | |Is(L)| | main classes
1 1 19268330382 18 18 6
2 1 2106550 20 10 3
2 2 391327 21 7 4
3 1 12513 24 4 15
3 3 3105 24 12 13
4 2 6538 30 ) 4
4 4 352 32 16 1
5 5 12 36 6 11
6 1 1158 36 18 12
6 2 87 48 8 1
6 3 824 04 9 2
6 6 168 60 10 1
7 7 5 72 12 2
8 4 150 72 36 4
8 8 1 96 16 1
9 3 6 96 48 1
9 9 4 108 18 2
10 5 20 108 o4 2
10 10 1 162 27 1
12 2 63 168 o6 1
12 6 125 216 36 1
12 12 8 216 108 1
14 7 1 324 54 1
16 8 10 432 72 1
18 3 27 972 486 1
18 6 6 2916 486 1
18 9 4 23328 3888 1

Table 11: Main classes of order 9 counted by group size
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IMC(L)| | [Is(L)| main classes IMC(L)| | |Is(L)| | main classes
1 1 34817389393907137 24 24 1
2 1 5333019714 28 14 2
2 2 3162869555 30 5 6
3 1 1937530 32 16 31
3 3 199502 36 6 27
4 2 2364376 36 18 4
4 4 389128 40 20 25
5 5 386 40 40 4
6 1 28790 42 14 1
6 2 1210 42 21 3
6 3 8021 48 8 36
6 6 3144 48 16 1
7 7 52 48 24 3
8 4 16438 o4 9 8
8 8 1510 60 10 1
9 3 126 63 21 3
9 9 6 72 12 13
10 5 86 80 40 8
10 10 68 96 16 8
12 2 616 96 48 2
12 4 200 100 50 4
12 6 816 100 100 1
12 12 148 108 18 1
14 7 5 108 o4 1
14 14 6 120 20 1
15 5 11 144 24 1
16 8 528 144 72 1
16 16 30 160 80 1
18 3 136 200 100 4
18 6 6 288 48 3
18 9 2 324 04 1
18 18 1 400 200 2
20 10 52 432 72 1
20 20 22 1200 400 1
21 7 4 2400 400 1
24 4 254 2592 432 1
24 8 7 3000 500 1
24 12 102 12000 2000 1

Table 12: Main classes of order 10 counted by group size
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