A NOTE ON INFINITELY MANY ODD NONUNITARY ABUNDANT NUMBERS

James A. Sellers

July 16, 1997

ABSTRACT. In response to a recent article by K. R. S. Sastry, we exhibit infinitely many odd nonunitary abundant numbers.

In a recent article in *Mathematics and Computer Education*, K. R. S. Sastry [4] discussed a variety of results and problems involving nonunitary numbers. (A number of articles dealing with unitary and nonunitary numbers have appeared in the last several years. See, for example, [1], [2], and [3].) In particular, Sastry asked for an example of an odd nonunitary abundant number. The goal of this short note is to exhibit an infinite family of such integers.

A brief review of some key terms is in order. An integer N is said to be **nonunitary abundant** if the sum of its nonunitary divisors is bigger than N. A **nonunitary divisor** d of N is a divisor which satisfies (d, N/d) > 1, while a divisor d of N is called a **unitary divisor** of N if (d, N/d) = 1. Using Sastry's notation, we will denote the sum of the divisors of N by $\sigma(N)$, while the sum of the unitary divisors of N will be denoted by $\sigma^*(N)$.

Sastry [4] notes that if $n = p_1^{a_1} p_2^{a_2} \dots p_r^{a_r}$, then

$$\sigma(n) = \prod_{i=1}^r \frac{p_i^{a_i+1} - 1}{p_i - 1} \quad \text{and} \quad$$

$$\sigma^*(n) = \prod_{i=1}^r (p_i^{a_i} + 1).$$

We will use these facts below.

Thanks to a brief Maple search, the following was discovered.

Theorem 1. The number $N = 3^3 \cdot 5^2 \cdot 7^2 = 33075$ is an odd nonunitary abundant number.

Indeed, it is the case that 33075 is the smallest odd nonunitary abundant number.

Key words and phrases. nonunitary divisors, abundant numbers.

Proof. The proof involves a simple set of calculations.

$$\sigma(N) - \sigma^*(N) = \frac{3^4 - 1}{2} \cdot \frac{5^3 - 1}{4} \cdot \frac{7^3 - 1}{6} - (3^3 + 1)(5^2 + 1)(7^2 + 1)$$

$$= 70680 - 36400$$

$$= 34280$$

$$> 33075$$

$$= N \quad \blacksquare$$

Hence, we have found one odd nonunitary abundant number. It is the case that a fairly large infinite family of such numbers can be exhibited.

Theorem 2. Let $N = 3^m \cdot 5^l \cdot 7^k$ with $m \ge 3$, $l \ge 2$, and $k \ge 2$. Then N is an odd nonunitary abundant number.

Proof. We begin by noting that for any prime q,

$$\frac{q^{s+1}-1}{q-1} \ge \frac{q^{s-a}(q^{a+1}-1)}{q-1} \tag{1}$$

and

$$q^{s} + 1 \le q^{s-a}(q^{a} + 1) \tag{2}$$

provided that s and a are natural numbers and $s - a \ge 0$. Thus,

One final generalization is worth noting.

Theorem 3. Let $N = 3^m \cdot 5^l \cdot 7^k \cdot p_1^{a_1} \cdot p_2^{a_2} \dots p_r^{a_r}$ where the p_i 's are distinct, odd primes greater than 7, $m \geq 3$, $l \geq 2$, $k \geq 2$, and $a_i \geq 1$ for $i = 1, 2, \dots, r$ with $r \in \mathbb{N}$. Then N is an odd nonunitary abundant number.

Proof. We need to show $\sigma(N) - \sigma^*(N) > N$.

We see that

$$\sigma(N) = \frac{3^{m+1} - 1}{2} \cdot \frac{5^{l+1} - 1}{4} \cdot \frac{7^{k+1} - 1}{6} \cdot \prod_{i=1}^{r} \frac{p_i^{a_i + 1} - 1}{p_i - 1}$$

and

$$\sigma^*(N) = (3^m + 1)(5^l + 1)(7^k + 1) \prod_{i=1}^r (p_i^{a_i} + 1).$$

Next we have

$$\prod_{i=1}^{r} \frac{p_i^{a_i+1} - 1}{p_i - 1} = \prod_{i=1}^{r} (p_i^{a_i} + p_i^{a_i-1} + p_i^{a_i-2} + \dots + p_i + 1)$$

$$\geq \prod_{i=1}^{r} (p_i^{a_i} + 1) \text{ for each prime } p_i.$$

Hence,

$$\sigma(N) - \sigma^*(N) \ge \left[\prod_{i=1}^r (p_i^{a_i} + 1) \right] \left[\sigma(3^m 5^l 7^k) - \sigma^*(3^m 5^l 7^k) \right]$$

$$> \left[\prod_{i=1}^r p_i^{a_i} \right] \left[\sigma(3^m 5^l 7^k) - \sigma^*(3^m 5^l 7^k) \right].$$
(**)

Therefore,

$$\sigma(N) - \sigma^*(N) > \left[\prod_{i=1}^r p_i^{a_i} \right] \left[\sigma(3^m 5^l 7^k) - \sigma^*(3^m 5^l 7^k) \right] \quad \text{by (**)}$$
$$> \left[\prod_{i=1}^r p_i^{a_i} \right] \left[3^m 5^l 7^k \right] \quad \text{by (*)}$$
$$= N.$$

This completes the proof of Theorem 3.

These three theorems clearly satisfy the request of Sastry concerning the existence of odd nonunitary abundant numbers. Certainly, a classification of all odd nonunitary abundant numbers is desirable. Theorem 3 may be a beginning to such a task.

ACKNOWLEDGEMENTS

The author gratefully acknowledges one of the referees of this paper for noting references [1], [2], and [3].

References

- 1. Hagis, P., $Odd\ Nonunitary\ Perfect\ Numbers,$ Fibonacci Quarterly
 ${\bf 28}\ (1990),\ 11-15.$
- 2. Hagis, P., Unitary Amicable Numbers, Mathematics of Computation 25 (1971), 915–918.
- 3. Hagis, P., Unitary Hyperperfect Numbers, Mathematics of Computation 36 (1981), 299–301.
- Sastry, K. R. S., Nonunitary divisors, Mathematics and Computer Education 31 (1997), 70–82.

Department of Science and Mathematics Cedarville College P.O. Box 601 Cedarville, OH 45314

sellersj@cedarville.edu