A NOTE ON INFINITELY MANY ODD NONUNITARY ABUNDANT NUMBERS

James A. Sellers

July 16, 1997

Abstract

In response to a recent article by K. R. S. Sastry, we exhibit infinitely many odd nonunitary abundant numbers.

In a recent article in Mathematics and Computer Education, K. R. S. Sastry [4] discussed a variety of results and problems involving nonunitary numbers. (A number of articles dealing with unitary and nonunitary numbers have appeared in the last several years. See, for example, [1], [2], and [3].) In particular, Sastry asked for an example of an odd nonunitary abundant number. The goal of this short note is to exhibit an infinite family of such integers.

A brief review of some key terms is in order. An integer N is said to be nonunitary abundant if the sum of its nonunitary divisors is bigger than N. A nonunitary divisor d of N is a divisor which satisfies $(d, N / d)>1$, while a divisor d of N is called a unitary divisor of N if $(d, N / d)=1$. Using Sastry's notation, we will denote the sum of the divisors of N by $\sigma(N)$, while the sum of the unitary divisors of N will be denoted by $\sigma^{*}(N)$.

Sastry [4] notes that if $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{r}^{a_{r}}$, then

$$
\begin{aligned}
\sigma(n) & =\prod_{i=1}^{r} \frac{p_{i}^{a_{i}+1}-1}{p_{i}-1} \text { and } \\
\sigma^{*}(n) & =\prod_{i=1}^{r}\left(p_{i}^{a_{i}}+1\right)
\end{aligned}
$$

We will use these facts below.
Thanks to a brief Maple search, the following was discovered.
Theorem 1. The number $N=3^{3} \cdot 5^{2} \cdot 7^{2}=33075$ is an odd nonunitary abundant number.

Indeed, it is the case that 33075 is the smallest odd nonunitary abundant number.

[^0]Proof. The proof involves a simple set of calculations.

$$
\begin{aligned}
\sigma(N)-\sigma^{*}(N) & =\frac{3^{4}-1}{2} \cdot \frac{5^{3}-1}{4} \cdot \frac{7^{3}-1}{6}-\left(3^{3}+1\right)\left(5^{2}+1\right)\left(7^{2}+1\right) \\
& =70680-36400 \\
& =34280 \\
& >33075 \\
& =N
\end{aligned}
$$

Hence, we have found one odd nonunitary abundant number. It is the case that a fairly large infinite family of such numbers can be exhibited.

Theorem 2. Let $N=3^{m} \cdot 5^{l} \cdot 7^{k}$ with $m \geq 3, l \geq 2$, and $k \geq 2$. Then N is an odd nonunitary abundant number.
Proof. We begin by noting that for any prime q,

$$
\begin{equation*}
\frac{q^{s+1}-1}{q-1} \geq \frac{q^{s-a}\left(q^{a+1}-1\right)}{q-1} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
q^{s}+1 \leq q^{s-a}\left(q^{a}+1\right) \tag{2}
\end{equation*}
$$

provided that s and a are natural numbers and $s-a \geq 0$. Thus,

$$
\begin{align*}
& \sigma\left(3^{m} 5^{l} 7^{k}\right)- \sigma^{*}\left(3^{m} 5^{l} 7^{k}\right) \\
&= \frac{3^{m+1}-1}{2} \cdot \frac{5^{l+1}-1}{4} \cdot \frac{7^{k+1}-1}{6}-\left(3^{m}+1\right)\left(5^{l}+1\right)\left(7^{k}+1\right) \\
& \geq \frac{3^{m-3}\left(3^{4}-1\right)}{2} \cdot \frac{5^{l-2}\left(5^{3}-1\right)}{4} \cdot \frac{7^{k-2}\left(7^{3}-1\right)}{6} \\
&-3^{m-3}\left(3^{3}+1\right) \cdot 5^{l-2}\left(5^{2}+1\right) \cdot 7^{k-2}\left(7^{2}+1\right) \\
& \quad \text { using }(1) \text { and (2) repeatedly } \\
&= 3^{m-3} 5^{l-2} 7^{k-2}\left[\frac{3^{4}-1}{2} \cdot \frac{5^{3}-1}{4} \cdot \frac{7^{3}-1}{6}-\left(3^{3}+1\right)\left(5^{2}+1\right)\left(7^{2}+1\right)\right] \\
&= 3^{m-3} 5^{l-2} 7^{k-2}\left[\sigma\left(3^{3} 5^{2} 7^{2}\right)-\sigma^{*}\left(3^{3} 5^{2} 7^{2}\right)\right] \\
&> 3^{m-3} 5^{l-2} 7^{k-2}\left[3^{3} 5^{2} 7^{2}\right] \quad \text { via Theorem } 1 \\
&= 3^{m} 5^{l} 7^{k} . \quad \square \quad \tag{*}
\end{align*}
$$

One final generalization is worth noting.
Theorem 3. Let $N=3^{m} \cdot 5^{l} \cdot 7^{k} \cdot p_{1}^{a_{1}} \cdot p_{2}^{a_{2}} \ldots p_{r}^{a_{r}}$ where the p_{i} 's are distinct, odd primes greater than 7, $m \geq 3, l \geq 2, k \geq 2$, and $a_{i} \geq 1$ for $i=1,2, \ldots, r$ with $r \in \mathbb{N}$. Then N is an odd nonunitary abundant number.
Proof. We need to show $\sigma(N)-\sigma^{*}(N)>N$.

We see that

$$
\sigma(N)=\frac{3^{m+1}-1}{2} \cdot \frac{5^{l+1}-1}{4} \cdot \frac{7^{k+1}-1}{6} \cdot \prod_{i=1}^{r} \frac{p_{i}^{a_{i}+1}-1}{p_{i}-1}
$$

and

$$
\sigma^{*}(N)=\left(3^{m}+1\right)\left(5^{l}+1\right)\left(7^{k}+1\right) \prod_{i=1}^{r}\left(p_{i}^{a_{i}}+1\right)
$$

Next we have

$$
\begin{aligned}
\prod_{i=1}^{r} \frac{p_{i}^{a_{i}+1}-1}{p_{i}-1} & =\prod_{i=1}^{r}\left(p_{i}^{a_{i}}+p_{i}^{a_{i}-1}+p_{i}^{a_{i}-2}+\cdots+p_{i}+1\right) \\
& \geq \prod_{i=1}^{r}\left(p_{i}^{a_{i}}+1\right) \text { for each prime } p_{i}
\end{aligned}
$$

Hence,

$$
\begin{align*}
\sigma(N)-\sigma^{*}(N) & \geq\left[\prod_{i=1}^{r}\left(p_{i}^{a_{i}}+1\right)\right]\left[\sigma\left(3^{m} 5^{l} 7^{k}\right)-\sigma^{*}\left(3^{m} 5^{l} 7^{k}\right)\right] \\
& >\left[\prod_{i=1}^{r} p_{i}^{a_{i}}\right]\left[\sigma\left(3^{m} 5^{l} 7^{k}\right)-\sigma^{*}\left(3^{m} 5^{l} 7^{k}\right)\right] \tag{**}
\end{align*}
$$

Therefore,

$$
\begin{aligned}
\sigma(N)-\sigma^{*}(N) & >\left[\prod_{i=1}^{r} p_{i}^{a_{i}}\right]\left[\sigma\left(3^{m} 5^{l} 7^{k}\right)-\sigma^{*}\left(3^{m} 5^{l} 7^{k}\right)\right] \quad \text { by }\left({ }^{* *}\right) \\
& >\left[\prod_{i=1}^{r} p_{i}^{a_{i}}\right]\left[3^{m} 5^{l} 7^{k}\right] \quad \text { by }\left({ }^{*}\right) \\
& =N .
\end{aligned}
$$

This completes the proof of Theorem 3.
These three theorems clearly satisfy the request of Sastry concerning the existence of odd nonunitary abundant numbers. Certainly, a classification of all odd nonunitary abundant numbers is desirable. Theorem 3 may be a beginning to such a task.

Acknowledgements

The author gratefully acknowledges one of the referees of this paper for noting references [1], [2], and [3].

References

1. Hagis, P., Odd Nonunitary Perfect Numbers, Fibonacci Quarterly 28 (1990), 11-15.
2. Hagis, P., Unitary Amicable Numbers, Mathematics of Computation 25 (1971), 915-918.
3. Hagis, P., Unitary Hyperperfect Numbers, Mathematics of Computation 36 (1981), 299-301.
4. Sastry, K. R. S., Nonunitary divisors, Mathematics and Computer Education 31 (1997), 70-82.

Department of Science and Mathematics
Cedarville College
P.O. Box 601

Cedarville, OH 45314
sellersj@cedarville.edu

[^0]: Key words and phrases. nonunitary divisors, abundant numbers.

