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Abstract. In response to a recent article by K. R. S. Sastry, we exhibit infinitely
many odd nonunitary abundant numbers.

In a recent article in Mathematics and Computer Education, K. R. S. Sastry
[4] discussed a variety of results and problems involving nonunitary numbers. (A
number of articles dealing with unitary and nonunitary numbers have appeared in
the last several years. See, for example, [1], [2], and [3].) In particular, Sastry asked
for an example of an odd nonunitary abundant number. The goal of this short note
is to exhibit an infinite family of such integers.

A brief review of some key terms is in order. An integer N is said to be nonuni-
tary abundant if the sum of its nonunitary divisors is bigger than N . A nonuni-
tary divisor d of N is a divisor which satisfies (d, N/d) > 1, while a divisor d of N
is called a unitary divisor of N if (d, N/d) = 1. Using Sastry’s notation, we will
denote the sum of the divisors of N by σ(N), while the sum of the unitary divisors
of N will be denoted by σ∗(N).

Sastry [4] notes that if n = pa1
1 pa2

2 . . . par
r , then

σ(n) =
r∏

i=1

pai+1
i − 1
pi − 1

and

σ∗(n) =
r∏

i=1

(pai
i + 1).

We will use these facts below.
Thanks to a brief Maple search, the following was discovered.

Theorem 1. The number N = 33 · 52 · 72 = 33075 is an odd nonunitary abundant
number.

Indeed, it is the case that 33075 is the smallest odd nonunitary abundant number.
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Proof. The proof involves a simple set of calculations.

σ(N)− σ∗(N) =
34 − 1

2
· 53 − 1

4
· 73 − 1

6
− (33 + 1)(52 + 1)(72 + 1)

= 70680− 36400
= 34280
> 33075
= N �

Hence, we have found one odd nonunitary abundant number. It is the case that
a fairly large infinite family of such numbers can be exhibited.

Theorem 2. Let N = 3m · 5l · 7k with m ≥ 3, l ≥ 2, and k ≥ 2. Then N is an odd
nonunitary abundant number.

Proof. We begin by noting that for any prime q,

qs+1 − 1
q − 1

≥ qs−a(qa+1 − 1)
q − 1

(1)

and
qs + 1 ≤ qs−a(qa + 1) (2)

provided that s and a are natural numbers and s− a ≥ 0. Thus,

σ(3m5l7k)− σ∗(3m5l7k)

=
3m+1 − 1

2
· 5l+1 − 1

4
· 7k+1 − 1

6
− (3m + 1)(5l + 1)(7k + 1)

≥ 3m−3(34 − 1)
2

· 5l−2(53 − 1)
4

· 7k−2(73 − 1)
6

− 3m−3(33 + 1) · 5l−2(52 + 1) · 7k−2(72 + 1)

using (1) and (2) repeatedly

= 3m−35l−27k−2

[
34 − 1

2
· 53 − 1

4
· 73 − 1

6
− (33 + 1)(52 + 1)(72 + 1)

]
= 3m−35l−27k−2

[
σ(335272)− σ∗(335272)

]
> 3m−35l−27k−2

[
335272

]
via Theorem 1

= 3m5l7k. � (*)

One final generalization is worth noting.

Theorem 3. Let N = 3m · 5l · 7k · pa1
1 · pa2

2 . . . par
r where the pi’s are distinct, odd

primes greater than 7, m ≥ 3, l ≥ 2, k ≥ 2, and ai ≥ 1 for i = 1, 2, . . . , r with
r ∈ N. Then N is an odd nonunitary abundant number.

Proof. We need to show σ(N)− σ∗(N) > N .
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We see that

σ(N) =
3m+1 − 1

2
· 5l+1 − 1

4
· 7k+1 − 1

6
·

r∏
i=1

pai+1
i − 1
pi − 1

and

σ∗(N) = (3m + 1)(5l + 1)(7k + 1)
r∏

i=1

(pai
i + 1).

Next we have
r∏

i=1

pai+1
i − 1
pi − 1

=
r∏

i=1

(pai
i + pai−1

i + pai−2
i + · · ·+ pi + 1)

≥
r∏

i=1

(pai
i + 1) for each prime pi.

Hence,

σ(N)− σ∗(N) ≥

[
r∏

i=1

(pai
i + 1)

] [
σ(3m5l7k)− σ∗(3m5l7k)

]
>

[
r∏

i=1

pai
i

] [
σ(3m5l7k)− σ∗(3m5l7k)

]
. (**)

Therefore,

σ(N)− σ∗(N) >

[
r∏

i=1

pai
i

] [
σ(3m5l7k)− σ∗(3m5l7k)

]
by (**)

>

[
r∏

i=1

pai
i

] [
3m5l7k

]
by (*)

= N.

This completes the proof of Theorem 3. �

These three theorems clearly satisfy the request of Sastry concerning the exis-
tence of odd nonunitary abundant numbers. Certainly, a classification of all odd
nonunitary abundant numbers is desirable. Theorem 3 may be a beginning to such
a task.
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