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Abstract. We give a short proof of Miki’s identity for Bernoulli numbers,

n−2∑
i=2

βiβn−i −
n−2∑
i=2

(n

i

)
βiβn−i = 2Hnβn,

for n ≥ 4 where, βi = Bi/i, Bi is the ith Bernoulli number, and Hn = 1 + 1/2 +

· · · + 1/n.

1. Introduction. The Bernoulli numbers Bn are defined by

∞∑
n=0

Bn
xn

n!
=

x

ex − 1
.

There are many identities involving binomial convolutions of Bernoulli numbers,
the best known being Euler’s identity

n−2∑
i=2

(
n

i

)
BiBn−i = −(n + 1)Bn

for n ≥ 4. Euler’s identity is an easy consequence of the formula

b(x)2 = (1 − x)b(x) − xb′(x),
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where b(x) = x/(ex − 1). Many similar identities for Bernoulli numbers can be
proved in the same way. (See, e.g., Dilcher [1] and Huang [4].)

A more mysterious identity was proved by Hiroo Miki in 1978: Let βn = Bn/n
and let Hn be the harmonic number 1 + 1/2 + · · · + 1/n. Then

n−2∑
i=2

βiβn−i −
n−2∑
i=2

(
n

i

)
βiβn−i = 2Hnβn. (1)

This identity is unusual because it involves both a binomial convolution and an
ordinary convolution.

Miki gave a complicated proof of his identity that was based on a formula for
the Fermat quotient (ap − a)/p modulo p2. He showed that both sides of (1) are
congruent modulo p for every sufficiently large prime p, which implies that they
are equal. Another proof of Miki’s identity, using p-adic analysis, was given by
Shiratani and Yokoyama [6].

We give here a simple proof of Miki’s identity, based on two different expres-
sions for Stirling numbers of the second kind S(n, k), which may be defined by the
ordinary generating function

∞∑
n=0

S(n, k)xn =
xk

(1 − x)(1 − 2x) · · · (1 − kx)
(2)

or by the exponential generating function

∞∑
n=0

S(n, k)
xn

n!
=

(ex − 1)k

k!
. (3)

The equivalence of (2) and (3) follows by comparing the partial fraction expan-
sion

xk

(1 − x)(1 − 2x) · · · (1 − kx)
=

1
k!

k∑
j=0

(
k

j

)
(−1)k−j

1 − jx

with the binomial theorem expansion

(ex − 1)k

k!
=

1
k!

k∑
j=0

(
k

j

)
(−1)k−jejx.

From each of (2) and (3) one can derive a formula that for fixed n expresses
S(m + n, m) as a polynomial in m. (For some combinatorial applications of these
polynomials, see [3].) Equating coefficients of m2 in these formulas gives Miki’s
identity. Similarly, equating coefficients of higher powers of m gives an infinite
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sequence of related, though more complicated, identities, of which the next one is
(for n ≥ 4)

∑
i+j+k=n

i,j,k≥2

(
n

i, j, k

)
βiβjβk + 3Hn

n−2∑
i=2

(
n

i

)
βiβn−i + 6Hn,2βn

=
∑

i+j+k=n
i,j,k≥2

βiβjβk +
n2 − 3n + 5

4
βn−2, (4)

where Hn,2 =
∑

1≤i<j≤n (ij)−1.

2. Lemmas. The Nörlund polynomials B
(z)
n are defined by

∞∑
n=0

B(z)
n

xn

n!
=

(
x

ex − 1

)z

.

(If z is a nonnegative integer, then B
(z)
n is called a Bernoulli number of order z.)

Note that B
(1)
n = Bn and that for fixed n, B

(z)
n is a polynomial in z of degree n. As

is well known, the Stirling numbers of the second kind can be expressed in terms
of these polynomials:

Lemma 1.

S(m + n, m) =
(

m + n

n

)
B(−m)

n .

Proof. From (3) we have

∞∑
n=0

B(−m)
n

xn

n!
=

(
ex − 1

x

)m

=
∞∑

n=0

S(m + n, m)
m!n!

(m + n)!
xn

n!
,

and the result follows. �
To find a formula for coefficients of powers of m in S(m + n, m) we need to

expand both
(
m+n

n

)
and B

(−m)
n in powers of m.

Let us define generalized harmonic numbers Hn,j by

Hn,j =
∑

1≤k1<k2<···<kj≤n

1
k1k2 · · · kj

,

with Hn,0 = 1. Then Hn = Hn,1. The numbers Hn,j are closely related to the
unsigned Stirling numbers of the first kind c(n, j) which may be defined by

x(x + 1) · · · (x + n − 1) =
n∑

j=0

c(n, j)xj ;

we have Hn,j = c(n + 1, j + 1)/n!.
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Lemma 2. (
m + n

n

)
=

n∑
j=0

Hn,jm
j .

Proof. This follows easily from

(
m + n

n

)
=

m + n

n
· m + n − 1

n − 1
· · · m + 1

1
=

(
1 +

m

1

) (
1 +

m

2

)
· · ·

(
1 +

m

n

)
. �

Now let us define βn to be (−1)nBn/n for n ≥ 1. (Note βn = Bn/n except for
β1 = −B1 = 1/2, since Bn = 0 when n is odd and greater than 1.) We define β

(j)
n

by

β(j)
n =

1
j!

∑
i1+i2+···+ij=n

(
n

i1, . . . , ij

)
βi1 · · ·βij , (5)

where the sum is over positive integers i1, . . . , ij .

Lemma 3. For n > 0,

B(−m)
n =

n∑
j=1

β(j)
n mj .

Proof. We have

∞∑
n=0

B(−m)
n

xn

n!
=

(
ex − 1

x

)m

= exp
(

m log
(ex − 1

x

))
=

∞∑
j=0

mj

j!

[
log

(ex − 1
x

)]j

.

Since
d

dx
log

(ex − 1
x

)
=

1
x

( −x

e−x − 1
− 1

)
=

∞∑
n=1

(−1)nBn
xn−1

n!
,

we have

log
(ex − 1

x

)
=

∞∑
n=1

(−1)n Bn

n

xn

n!
=

∞∑
n=1

βn
xn

n!
,

and thus
1
j!

[
log

(ex − 1
x

)]j

=
∞∑

n=0

β(j)
n

xn

n!
. �

Now we apply formula (2), which we rewrite as

1
(1 − x)(1 − 2x) · · · (1 − mx)

=
∞∑

n=0

S(m + n, n)xn. (6)
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Lemma 4.

∞∑
n=0

S(m + n, n)xn = exp
[ ∞∑

k=1

xk

k

k∑
j=0

(−1)k−j

(
k

j

)
mj+1

j + 1
Bk−j

]
.

Proof. The left side of (6) may be written as

exp
[ ∞∑

k=1

(1k + · · · + mk)
xk

k

]
.

There is a well-known formula for expressing the power sum 1k + · · · + mk in
terms of Bernoulli numbers which may be derived as follows:

∞∑
k=0

(1k + · · · + mk)
xk

k!
= ex + · · · + emx =

e(m+1)x − ex

ex − 1

=
emx − 1
1 − e−x

=
emx − 1

x

−x

e−x − 1
. (7)

Equating coefficients of xk in (7) gives

1k + · · · + mk =
k∑

j=0

(−1)k−j

(
k

j

)
mj+1

j + 1
Bk−j . �

3. The Proof. Combining Lemmas 1, 2, and 3, gives our first formula for ex-
pressing S(m + n, m) as a polynomial in m: For n > 0,

S(m + n, m) = βnm +
(
β(2)

n + Hnβn

)
m2 +

(
β(3)

n + Hnβ(2)
n + Hn,2βn

)
m3 + · · · (8)

On the other hand, expanding the right side of Lemma 4 gives the alternative
formula (for n ≥ 2)

S(m + n, n) = βnm +
(

1
2
(−1)n−1Bn−1 +

1
2

n−1∑
i=1

βiβn−i

)
m2 + Cm3 + · · · , (9)

where

C =
1
6

∑
i+j+k=n

βiβjβk +
1
2

n−1∑
i=1

(−1)n−i−1βiBn−i−1 +
1
6
(−1)n(n − 1)Bn−2.

Equating coefficients of m2 in (8) and (9) yields the identity

β(2)
n + Hnβn =

1
2
(−1)n−1Bn−1 +

1
2

n−1∑
i=1

βiβn−i,
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which for n even and greater than 2 is Miki’s identity. (For n odd, the coefficient
of m2 in both (8) and (9) is n

2 βn−1.)
Equating coefficient of m3 in (8) and (9) yields the identity

β(3)
n + Hnβ(2)

n + Hn,2βn =
1
6

∑
i+j+k=n

βiβjβk

+
1
2

n−1∑
i=1

(−1)n−i−1βiBn−i−1 +
1
6
(−1)n(n − 1)Bn−2. (10)

For n odd and greater than 3, (10) reduces to Miki’s identity. For n even, we
may simplify (10) by separating all occurrences of β1 or B1, and multiplying by 6,
obtaining (4) for n ≥ 4.

4. A generalization.
An identity related to Miki’s was found by Faber and Pandharipande, and proved

by Zagier [2]. Their identity may be written

n

2

n−2∑
i=2

Bi( 1
2 )

i

Bn−i( 1
2 )

n − i
−

n−2∑
i=0

(
n

i

)
Bi( 1

2 )βn−i = Hn−1Bn( 1
2 ). (11)

As before, βn = (−1)nBn/n, and Bn(λ) is the Bernoulli polynomial, defined by

∞∑
n=0

Bn(λ)
xn

n!
=

xeλx

ex − 1
.

Thus Bn(0) = Bn and it is well known that Bn( 1
2 ) = (21−n − 1)Bn.

By using the approach of this paper, one can prove a common generalization of
the Faber-Pandharipande-Zagier identity and Miki’s identity:

n

2

(
Bn−1(λ) +

n−1∑
i=1

Bi(λ)
i

Bn−i(λ)
n − i

)
−

n−1∑
i=0

(
n

i

)
Bi(λ)βn−i = Hn−1Bn(λ), (12)

for all n ≥ 1. To derive (11) from (12), we observe that Bi( 1
2 ) is 0 for i odd, so for

λ = 1
2 and n even, the terms in (12) that don’t appear in (11) are all 0 (and for n

odd all terms in (11) are 0).
We can derive Miki’s identity (1) from the case λ = 0 of (12). We first observe

that from
1

i(n − i)
=

1
n

(
1
i

+
1

n − i

)

we get
n−2∑
i=2

(
n

i

)
βiβn−i =

2
n

n−2∑
i=2

(
n

i

)
Biβn−i.
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Thus (1) multipled by n/2 is equivalent to

n

2

n−2∑
i=2

βiβn−i −
n−2∑
i=2

(
n

i

)
Biβn−i = HnBn.

For n even and greater than 2, this can be obtained from the case λ = 0 of (12) by
adding

(
n
0

)
B0βn = Bn/n to both sides and deleting some terms that are 0.
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