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ABSTRACT. We give a short proof of Miki’s identity for Bernoulli numbers,

gﬁzﬂn—i - nif (T;)ﬁiﬁn_i = 2H,0n,
=2 =2

for n > 4 where, 3; = B;/i, B; is the ith Bernoulli number, and H, = 1+ 1/2 +
-4+ 1/n.

1. Introduction. The Bernoulli numbers B,, are defined by
> b= oy
o nl et -

There are many identities involving binomial convolutions of Bernoulli numbers,
the best known being Euler’s identity

n—2
n
> ( .)BiBn_z- =—(n+1)B,
i—2 \!
for n > 4. Euler’s identity is an easy consequence of the formula

b(x)? = (1 — z)b(x) — xb'(z),
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where b(z) = z/(e® — 1). Many similar identities for Bernoulli numbers can be
proved in the same way. (See, e.g., Dilcher [1] and Huang [4].)

A more mysterious identity was proved by Hiroo Miki in 1978: Let 3, = B, /n
and let H,, be the harmonic number 1+ 1/2+ --- 4 1/n. Then

n—2 n—2
Z ﬁzﬁn—z - Z (ZL) ﬁzﬁn—z = 2Hnﬁn- (1)
1=2 1=2

This identity is unusual because it involves both a binomial convolution and an
ordinary convolution.

Miki gave a complicated proof of his identity that was based on a formula for
the Fermat quotient (a? — a)/p modulo p?. He showed that both sides of (1) are
congruent modulo p for every sufficiently large prime p, which implies that they
are equal. Another proof of Miki’s identity, using p-adic analysis, was given by
Shiratani and Yokoyama [6].

We give here a simple proof of Miki’s identity, based on two different expres-
sions for Stirling numbers of the second kind S(n, k), which may be defined by the
ordinary generating function

k

ank T 0—2)(1—22)--(1- ka) 2)

or by the exponential generating function
& n x k
x (e —1)
n=0

The equivalence of (2) and (3) follows by comparing the partial fraction expan-
sion
k k: J

(1_x)(1—;x).-.(1—kx k'z( ) 1 jz

with the binomial theorem expansion

(€ = DF 1~ (RN i
k! _k!jz_:o(j)( 1 ‘

From each of (2) and (3) one can derive a formula that for fixed n expresses
S(m + n,m) as a polynomial in m. (For some combinatorial applications of these
polynomials, see [3].) Equating coefficients of m? in these formulas gives Miki’s
identity. Similarly, equating coefficients of higher powers of m gives an infinite
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sequence of related, though more complicated, identities, of which the next one is
(for n > 4)

Z (@7], )51BJ k»'+3H Z( )ﬁzﬁn z+6Hn26n

it+j+k=n
i,j,k>2
3n~|—5
= Y BBt ——F—Bu2 ()
itjt+k=n
i,j,k>2

where Hn’z - Zl§i<j§n (Zj)il

2. Lemmas. The Norlund polynomials B,(f) are defined by

ZB(z)ﬁ: z \
" nl et —1

n=0

(If z is a nonnegative integer, then Bff) is called a Bernoulli number of order z.)

Note that B,(ll) = B,, and that for fixed n, B,(f) is a polynomial in z of degree n. As
is well known, the Stirling numbers of the second kind can be expressed in terms
of these polynomials:

Lemma 1.

Proof. From (3) we have

oo

Snemt= (Y

and the result follows. [

To find a formula for coefficients of powers of m in S(m + n,m) we need to

expand both (m+") and BS ™ in powers of m.
Let us define generalized harmonic numbers H, ; by

1
Hn | = P A

1<k <ko<--<k;<n

with H, o = 1. Then H, = H, ;. The numbers H, ; are closely related to the
unsigned Stirling numbers of the first kind ¢(n, j) which may be defined by

z(x+1)--(x4+n—-1)=Y c(n,j)z’
§=0

we have H,, j =c(n+1,j+1)/nl.
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Lemma 2.

<m + n) Z Ho i
Proof. This follows easily from

m+n m+n m+tn-—1 m—+1 m m m
_ . (D) (142 (14T T
n n n—1 1 1 2 n

Now let us define (3,, to be (—=1)"B,,/n for n > 1. (Note (3, = B,,/n except for
$1 = —By =1/2, since B, =0 when n is odd and greater than 1.) We define B(])

by
, 1 n
BY) = i Z (Z Z)ﬁ“ - Bijs (5)
Ciytigtetij=n Loy
where the sum is over positive integers i1,...,1%;.

Lemma 3. Forn > 0,
n

B?(L—m) _ Zﬂfr(zj)mj~

j=1
Proof. We have
ST = () o (S5 =3 (]
— j=0
Since i - -
3—361%(6 x—1> _ i (e:’i = 1> :;(_1)713“90”' |
we have - -
os(“ ) = L = Sy
and thus i o
%[log(ex 1)] :;ﬂﬁf)% 0

Now we apply formula (2), which we rewrite as

1
=20 —-20) (1—ma) ZSWM (6)
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Lemma 4.

ZSWH—nn —exp[ xkz ();n_l_lBk_j].

Proof. The left side of (6) may be written as
ok i 2"
ex 1"+ 4m”)—|.
)y )

There is a well-known formula for expressing the power sum 1% 4+ ... +mF in
terms of Bernoulli numbers which may be derived as follows:

0 k (m+l)x _ _z
k kT _x mac_e €
D1 o) = T e = S
et —1 et -1 —x
= = . 7
l—e% T e T —1 ()

Equating coefficients of z* in (7) gives

k 11
ko _ m’ _
I =3 (>]+1Bkj. -

Jj=

3. The Proof. Combining Lemmas 1, 2, and 3, gives our first formula for ex-
pressing S(m + n, m) as a polynomial in m: For n > 0,

S(m—+n,m) = Bym + (82 + HaBy)m? + (B2 + H, B2 + Hy 2B,)m® + -+ (8)

On the other hand, expanding the right side of Lemma 4 gives the alternative
formula (for n > 2)

n—1

S(m+n,n)=ﬁnm+<;( "= 'B,_1+4 = Zﬁzﬁn 1>m +O0m?+- 9)
where
: 1
Z BiBibrk + 5 Z )" T BB + 6(—1)”(7@ —1)B,_».
’L—|—j—|—k2 n

Equating coefficients of m? in (8) and (9) yields the identity

n—1

1
ﬁw(f) +Hnﬁn - 2( 1)n 1Bn 1+ 2 Zﬁzﬁn X
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which for n even and greater than 2 is Miki’s identity. (For n odd, the coefficient
of m? in both (8) and (9) is %8,—1.)
Equating coefficient of m? in (8) and (9) yields the identity

1
B + HnBP + Hunfn =< > BibiB
i+j+k=n

+ % Z( D" 8By + é(—l)"(n —1)B,_». (10)

For n odd and greater than 3, (10) reduces to Miki’s identity. For n even, we
may simplify (10) by separating all occurrences of 3; or By, and multiplying by 6,
obtaining (4) for n > 4.

4. A generalization.
An identity related to Miki’s was found by Faber and Pandharipande, and proved
by Zagier [2]. Their identity may be written

gz % n— i(%> _nf(Z_‘)Bi(%)ﬁn_i:Hn_an(%). (11)

n—1 .
i=2 1=0

As before, 3, = (—1)"B, /n, and B, (\) is the Bernoulli polynomial, defined by

o0 n Az

X Te
ZBnWm =

Thus B,(0) = B, and it is well known that B, (3) = (2'™" — 1)B,,.
By using the approach of this paper, one can prove a common generalization of
the Faber-Pandharipande-Zagier identity and Miki’s identity:

g(Bn—l()\) + né BZ-ZQ) BZ__Z-(?)) _ 2 (7;) Bi(A\)Bn_i = Ho_1B,(N), (12)

for all n > 1. To derive (11) from (12), we observe that B;(3) is 0 for i odd, so for

A = 1 and n even, the terms in (12) that don’t appear in (11) are all 0 (and for n
odd all terms in (11) are 0).
We can derive Miki’s identity (1) from the case A = 0 of (12). We first observe

that from
1 1(1 1 )
. ~=—|-+ .
iln—i) m\i mn-—i

n—2 n 9 n—2 n

we get
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Thus (1) multipled by n/2 is equivalent to

n—2 n—2
g Z ﬁiﬂn—i - Z (?) Biﬂn—i = Han‘
=2 =2

For n even and greater than 2, this can be obtained from the case A = 0 of (12) by
adding (g) By = Bp/n to both sides and deleting some terms that are 0.
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