ON MIKI'S IDENTITY FOR BERNOULLI NUMBERS

Ira M. Gessel ${ }^{1}$
Department of Mathematics
Brandeis University
Waltham, MA 02454-9110
gessel@brandeis.edu
www.cs.brandeis.edu/~ira

June 15, 2003
Dedicated to the memory of Arnold E. Ross

Abstract. We give a short proof of Miki's identity for Bernoulli numbers,

$$
\sum_{i=2}^{n-2} \beta_{i} \beta_{n-i}-\sum_{i=2}^{n-2}\binom{n}{i} \beta_{i} \beta_{n-i}=2 H_{n} \beta_{n}
$$

for $n \geq 4$ where, $\beta_{i}=B_{i} / i, B_{i}$ is the i th Bernoulli number, and $H_{n}=1+1 / 2+$ $\cdots+1 / n$.

1. Introduction. The Bernoulli numbers B_{n} are defined by

$$
\sum_{n=0}^{\infty} B_{n} \frac{x^{n}}{n!}=\frac{x}{e^{x}-1}
$$

There are many identities involving binomial convolutions of Bernoulli numbers, the best known being Euler's identity

$$
\sum_{i=2}^{n-2}\binom{n}{i} B_{i} B_{n-i}=-(n+1) B_{n}
$$

for $n \geq 4$. Euler's identity is an easy consequence of the formula

$$
b(x)^{2}=(1-x) b(x)-x b^{\prime}(x),
$$

[^0]where $b(x)=x /\left(e^{x}-1\right)$. Many similar identities for Bernoulli numbers can be proved in the same way. (See, e.g., Dilcher [1] and Huang [4].)

A more mysterious identity was proved by Hiroo Miki in 1978: Let $\beta_{n}=B_{n} / n$ and let H_{n} be the harmonic number $1+1 / 2+\cdots+1 / n$. Then

$$
\begin{equation*}
\sum_{i=2}^{n-2} \beta_{i} \beta_{n-i}-\sum_{i=2}^{n-2}\binom{n}{i} \beta_{i} \beta_{n-i}=2 H_{n} \beta_{n} \tag{1}
\end{equation*}
$$

This identity is unusual because it involves both a binomial convolution and an ordinary convolution.

Miki gave a complicated proof of his identity that was based on a formula for the Fermat quotient $\left(a^{p}-a\right) / p$ modulo p^{2}. He showed that both sides of (1) are congruent modulo p for every sufficiently large prime p, which implies that they are equal. Another proof of Miki's identity, using p-adic analysis, was given by Shiratani and Yokoyama [6].

We give here a simple proof of Miki's identity, based on two different expressions for Stirling numbers of the second kind $S(n, k)$, which may be defined by the ordinary generating function

$$
\begin{equation*}
\sum_{n=0}^{\infty} S(n, k) x^{n}=\frac{x^{k}}{(1-x)(1-2 x) \cdots(1-k x)} \tag{2}
\end{equation*}
$$

or by the exponential generating function

$$
\begin{equation*}
\sum_{n=0}^{\infty} S(n, k) \frac{x^{n}}{n!}=\frac{\left(e^{x}-1\right)^{k}}{k!} \tag{3}
\end{equation*}
$$

The equivalence of (2) and (3) follows by comparing the partial fraction expansion

$$
\frac{x^{k}}{(1-x)(1-2 x) \cdots(1-k x)}=\frac{1}{k!} \sum_{j=0}^{k}\binom{k}{j} \frac{(-1)^{k-j}}{1-j x}
$$

with the binomial theorem expansion

$$
\frac{\left(e^{x}-1\right)^{k}}{k!}=\frac{1}{k!} \sum_{j=0}^{k}\binom{k}{j}(-1)^{k-j} e^{j x}
$$

From each of (2) and (3) one can derive a formula that for fixed n expresses $S(m+n, m)$ as a polynomial in m. (For some combinatorial applications of these polynomials, see [3].) Equating coefficients of m^{2} in these formulas gives Miki's identity. Similarly, equating coefficients of higher powers of m gives an infinite
sequence of related, though more complicated, identities, of which the next one is (for $n \geq 4$)

$$
\begin{align*}
\sum_{\substack{i+j+k=n \\
i, j, k \geq 2}}\binom{n}{i, j, k} \beta_{i} \beta_{j} \beta_{k}+3 H_{n} & \sum_{i=2}^{n-2}\binom{n}{i} \beta_{i} \beta_{n-i}+6 H_{n, 2} \beta_{n} \\
& =\sum_{\substack{i+j+k=n \\
i, j, k \geq 2}} \beta_{i} \beta_{j} \beta_{k}+\frac{n^{2}-3 n+5}{4} \beta_{n-2} \tag{4}
\end{align*}
$$

where $H_{n, 2}=\sum_{1 \leq i<j \leq n}(i j)^{-1}$.
2. Lemmas. The Nörlund polynomials $B_{n}^{(z)}$ are defined by

$$
\sum_{n=0}^{\infty} B_{n}^{(z)} \frac{x^{n}}{n!}=\left(\frac{x}{e^{x}-1}\right)^{z}
$$

(If z is a nonnegative integer, then $B_{n}^{(z)}$ is called a Bernoulli number of order z.) Note that $B_{n}^{(1)}=B_{n}$ and that for fixed $n, B_{n}^{(z)}$ is a polynomial in z of degree n. As is well known, the Stirling numbers of the second kind can be expressed in terms of these polynomials:

Lemma 1.

$$
S(m+n, m)=\binom{m+n}{n} B_{n}^{(-m)}
$$

Proof. From (3) we have

$$
\sum_{n=0}^{\infty} B_{n}^{(-m)} \frac{x^{n}}{n!}=\left(\frac{e^{x}-1}{x}\right)^{m}=\sum_{n=0}^{\infty} S(m+n, m) \frac{m!n!}{(m+n)!} \frac{x^{n}}{n!}
$$

and the result follows.
To find a formula for coefficients of powers of m in $S(m+n, m)$ we need to expand both $\binom{m+n}{n}$ and $B_{n}^{(-m)}$ in powers of m.

Let us define generalized harmonic numbers $H_{n, j}$ by

$$
H_{n, j}=\sum_{1 \leq k_{1}<k_{2}<\cdots<k_{j} \leq n} \frac{1}{k_{1} k_{2} \cdots k_{j}}
$$

with $H_{n, 0}=1$. Then $H_{n}=H_{n, 1}$. The numbers $H_{n, j}$ are closely related to the unsigned Stirling numbers of the first kind $c(n, j)$ which may be defined by

$$
x(x+1) \cdots(x+n-1)=\sum_{j=0}^{n} c(n, j) x^{j}
$$

we have $H_{n, j}=c(n+1, j+1) / n!$.

Lemma 2.

$$
\binom{m+n}{n}=\sum_{j=0}^{n} H_{n, j} m^{j}
$$

Proof. This follows easily from

$$
\binom{m+n}{n}=\frac{m+n}{n} \cdot \frac{m+n-1}{n-1} \cdots \frac{m+1}{1}=\left(1+\frac{m}{1}\right)\left(1+\frac{m}{2}\right) \cdots\left(1+\frac{m}{n}\right) .
$$

Now let us define β_{n} to be $(-1)^{n} B_{n} / n$ for $n \geq 1$. (Note $\beta_{n}=B_{n} / n$ except for $\beta_{1}=-B_{1}=1 / 2$, since $B_{n}=0$ when n is odd and greater than 1.) We define $\beta_{n}^{(j)}$ by

$$
\begin{equation*}
\beta_{n}^{(j)}=\frac{1}{j!} \sum_{i_{1}+i_{2}+\cdots+i_{j}=n}\binom{n}{i_{1}, \ldots, i_{j}} \beta_{i_{1}} \cdots \beta_{i_{j}} \tag{5}
\end{equation*}
$$

where the sum is over positive integers i_{1}, \ldots, i_{j}.
Lemma 3. For $n>0$,

$$
B_{n}^{(-m)}=\sum_{j=1}^{n} \beta_{n}^{(j)} m^{j}
$$

Proof. We have

$$
\sum_{n=0}^{\infty} B_{n}^{(-m)} \frac{x^{n}}{n!}=\left(\frac{e^{x}-1}{x}\right)^{m}=\exp \left(m \log \left(\frac{e^{x}-1}{x}\right)\right)=\sum_{j=0}^{\infty} \frac{m^{j}}{j!}\left[\log \left(\frac{e^{x}-1}{x}\right)\right]^{j} .
$$

Since

$$
\frac{d}{d x} \log \left(\frac{e^{x}-1}{x}\right)=\frac{1}{x}\left(\frac{-x}{e^{-x}-1}-1\right)=\sum_{n=1}^{\infty}(-1)^{n} B_{n} \frac{x^{n-1}}{n!}
$$

we have

$$
\log \left(\frac{e^{x}-1}{x}\right)=\sum_{n=1}^{\infty}(-1)^{n} \frac{B_{n}}{n} \frac{x^{n}}{n!}=\sum_{n=1}^{\infty} \beta_{n} \frac{x^{n}}{n!},
$$

and thus

$$
\frac{1}{j!}\left[\log \left(\frac{e^{x}-1}{x}\right)\right]^{j}=\sum_{n=0}^{\infty} \beta_{n}^{(j)} \frac{x^{n}}{n!}
$$

Now we apply formula (2), which we rewrite as

$$
\begin{equation*}
\frac{1}{(1-x)(1-2 x) \cdots(1-m x)}=\sum_{n=0}^{\infty} S(m+n, n) x^{n} . \tag{6}
\end{equation*}
$$

Lemma 4.

$$
\sum_{n=0}^{\infty} S(m+n, n) x^{n}=\exp \left[\sum_{k=1}^{\infty} \frac{x^{k}}{k} \sum_{j=0}^{k}(-1)^{k-j}\binom{k}{j} \frac{m^{j+1}}{j+1} B_{k-j}\right]
$$

Proof. The left side of (6) may be written as

$$
\exp \left[\sum_{k=1}^{\infty}\left(1^{k}+\cdots+m^{k}\right) \frac{x^{k}}{k}\right]
$$

There is a well-known formula for expressing the power sum $1^{k}+\cdots+m^{k}$ in terms of Bernoulli numbers which may be derived as follows:

$$
\begin{align*}
\sum_{k=0}^{\infty}\left(1^{k}+\cdots+m^{k}\right) \frac{x^{k}}{k!} & =e^{x}+\cdots+e^{m x}=\frac{e^{(m+1) x}-e^{x}}{e^{x}-1} \\
& =\frac{e^{m x}-1}{1-e^{-x}}=\frac{e^{m x}-1}{x} \frac{-x}{e^{-x}-1} \tag{7}
\end{align*}
$$

Equating coefficients of x^{k} in (7) gives

$$
1^{k}+\cdots+m^{k}=\sum_{j=0}^{k}(-1)^{k-j}\binom{k}{j} \frac{m^{j+1}}{j+1} B_{k-j}
$$

3. The Proof. Combining Lemmas 1, 2, and 3, gives our first formula for expressing $S(m+n, m)$ as a polynomial in m : For $n>0$,

$$
\begin{equation*}
S(m+n, m)=\beta_{n} m+\left(\beta_{n}^{(2)}+H_{n} \beta_{n}\right) m^{2}+\left(\beta_{n}^{(3)}+H_{n} \beta_{n}^{(2)}+H_{n, 2} \beta_{n}\right) m^{3}+\cdots \tag{8}
\end{equation*}
$$

On the other hand, expanding the right side of Lemma 4 gives the alternative formula (for $n \geq 2$)

$$
\begin{equation*}
S(m+n, n)=\beta_{n} m+\left(\frac{1}{2}(-1)^{n-1} B_{n-1}+\frac{1}{2} \sum_{i=1}^{n-1} \beta_{i} \beta_{n-i}\right) m^{2}+C m^{3}+\cdots \tag{9}
\end{equation*}
$$

where

$$
C=\frac{1}{6} \sum_{i+j+k=n} \beta_{i} \beta_{j} \beta_{k}+\frac{1}{2} \sum_{i=1}^{n-1}(-1)^{n-i-1} \beta_{i} B_{n-i-1}+\frac{1}{6}(-1)^{n}(n-1) B_{n-2}
$$

Equating coefficients of m^{2} in (8) and (9) yields the identity

$$
\beta_{n}^{(2)}+H_{n} \beta_{n}=\frac{1}{2}(-1)^{n-1} B_{n-1}+\frac{1}{2} \sum_{i=1}^{n-1} \beta_{i} \beta_{n-i}
$$

which for n even and greater than 2 is Miki's identity. (For n odd, the coefficient of m^{2} in both (8) and (9) is $\frac{n}{2} \beta_{n-1}$.)

Equating coefficient of m^{3} in (8) and (9) yields the identity

$$
\begin{align*}
& \beta_{n}^{(3)}+H_{n} \beta_{n}^{(2)}+H_{n, 2} \beta_{n}=\frac{1}{6} \sum_{i+j+k=n} \beta_{i} \beta_{j} \beta_{k} \\
&+\frac{1}{2} \sum_{i=1}^{n-1}(-1)^{n-i-1} \beta_{i} B_{n-i-1}+\frac{1}{6}(-1)^{n}(n-1) B_{n-2} . \tag{10}
\end{align*}
$$

For n odd and greater than 3, (10) reduces to Miki's identity. For n even, we may simplify (10) by separating all occurrences of β_{1} or B_{1}, and multiplying by 6 , obtaining (4) for $n \geq 4$.

4. A generalization.

An identity related to Miki's was found by Faber and Pandharipande, and proved by Zagier [2]. Their identity may be written

$$
\begin{equation*}
\frac{n}{2} \sum_{i=2}^{n-2} \frac{B_{i}\left(\frac{1}{2}\right)}{i} \frac{B_{n-i}\left(\frac{1}{2}\right)}{n-i}-\sum_{i=0}^{n-2}\binom{n}{i} B_{i}\left(\frac{1}{2}\right) \beta_{n-i}=H_{n-1} B_{n}\left(\frac{1}{2}\right) . \tag{11}
\end{equation*}
$$

As before, $\beta_{n}=(-1)^{n} B_{n} / n$, and $B_{n}(\lambda)$ is the Bernoulli polynomial, defined by

$$
\sum_{n=0}^{\infty} B_{n}(\lambda) \frac{x^{n}}{n!}=\frac{x e^{\lambda x}}{e^{x}-1}
$$

Thus $B_{n}(0)=B_{n}$ and it is well known that $B_{n}\left(\frac{1}{2}\right)=\left(2^{1-n}-1\right) B_{n}$.
By using the approach of this paper, one can prove a common generalization of the Faber-Pandharipande-Zagier identity and Miki's identity:

$$
\begin{equation*}
\frac{n}{2}\left(B_{n-1}(\lambda)+\sum_{i=1}^{n-1} \frac{B_{i}(\lambda)}{i} \frac{B_{n-i}(\lambda)}{n-i}\right)-\sum_{i=0}^{n-1}\binom{n}{i} B_{i}(\lambda) \beta_{n-i}=H_{n-1} B_{n}(\lambda) \tag{12}
\end{equation*}
$$

for all $n \geq 1$. To derive (11) from (12), we observe that $B_{i}\left(\frac{1}{2}\right)$ is 0 for i odd, so for $\lambda=\frac{1}{2}$ and n even, the terms in (12) that don't appear in (11) are all 0 (and for n odd all terms in (11) are 0).

We can derive Miki's identity (1) from the case $\lambda=0$ of (12). We first observe that from

$$
\frac{1}{i(n-i)}=\frac{1}{n}\left(\frac{1}{i}+\frac{1}{n-i}\right)
$$

we get

$$
\sum_{i=2}^{n-2}\binom{n}{i} \beta_{i} \beta_{n-i}=\frac{2}{n} \sum_{i=2}^{n-2}\binom{n}{i} B_{i} \beta_{n-i}
$$

Thus (1) multipled by $n / 2$ is equivalent to

$$
\frac{n}{2} \sum_{i=2}^{n-2} \beta_{i} \beta_{n-i}-\sum_{i=2}^{n-2}\binom{n}{i} B_{i} \beta_{n-i}=H_{n} B_{n}
$$

For n even and greater than 2, this can be obtained from the case $\lambda=0$ of (12) by adding $\binom{n}{0} B_{0} \beta_{n}=B_{n} / n$ to both sides and deleting some terms that are 0 .

Acknowledgment. I would like to thank the editors for bringing reference [2] to my attention.

References

1. K. Dilcher, Sums of products of Bernoulli numbers, J. Number Theory 60 (1996), 23-41.
2. C. Faber and R. Pandharipande, Hodge integrals and Gromov-Witten theory, Invent. Math. 139 (2000), 173-199.
3. I. Gessel and R. P. Stanley, Stirling polynomials, J. Combin. Theory Ser. A 24 (1978), 24-33.
4. I-C. Huang and S.-Y. Huang, Bernoulli numbers and polynomials via residues, J. Number Theory 76 (1999), 178-193.
5. H. Miki, A relation between Bernoulli numbers, J. Number Theory 10 (1978), 297-302.
6. K. Shiratani and S. Yokoyama, An application of p-adic convolutions, Mem. Fac. Sci. Kyushu Univ. Ser. A 36 (1982), 73-83.

[^0]: Key words and phrases. Bernoulli numbers, Stirling numbers.
 ${ }^{1}$ Partially supported by NSF grants DMS-9972648 and DMS-0200596

