An interesting result about subset sums

Nitu Kitchloo
Lior Pachter

November 27, 1993

Abstract

We consider the problem of determining the number of subsets $B \subseteq\{1,2, \ldots, n\}$ such that $\sum_{b \in B} b \equiv k \bmod n$, where k is a residue class $\bmod n(0<k \leq n)$. If the number of such subsets is denoted N_{n}^{k} then $$
N_{n}^{k}=\frac{1}{n} \sum_{\substack{s \mid n \\ s o d d}} 2^{\frac{n}{s}} \frac{\varphi(s)}{\varphi\left(\frac{s}{(k, s)}\right)} \mu\left(\frac{s}{(k, s)}\right) .
$$

Here φ denotes the Euler phi function and μ is the Möbius function. This elaborates on a result by Erdős and Heilbronn. We also derive a similar result for finite abelian groups.

1 Introduction

Let $A_{n}=\{1,2, \ldots, n\}$. There have been a number of results in the past about how large a subset $A \subseteq A_{n}$ has to be so that the sums of the elements of A possess a certain property, [1], [2], [3]. In particular, Erdős and Heilbronn [2] proved the following result:

Let n be a positive integer, a_{1}, \ldots, a_{k} distinct residue classes $\bmod n$, and N a residue class $\bmod n$. Let $F\left(N ; n ; a_{1}, \ldots, a_{k}\right)$ denote the number of solutions of the congruence

$$
\epsilon_{1} a_{1}+\ldots+\epsilon_{k} a_{k} \equiv N \bmod n
$$

where e_{1}, \ldots, e_{k} take the values of 0 or 1 .
Theorem 1 (Erdős, Heilbronn) Let a_{i} be nonzero for every i and let p be a prime. Then

$$
F\left(N ; p ; a_{1}, \ldots, a_{k}\right)=2^{k} p^{-1}(1+o(1))
$$

if $k^{3} p^{-2} \rightarrow \infty$ as $p \rightarrow \infty$.

We consider the related problem of explicitly determining the number of subsets $A \subseteq A_{n}$ with the property that the sum of the elements of A is congruent to $k \bmod n$. Note that this is equivalent to determining $F\left(k ; n ; a_{1}, \ldots, a_{n}\right)$ when $0<k \leq n$. This follows if we accept the convention that the elements of the empty set sum up to $0 \bmod n$. We will denote $F\left(k ; n ; a_{1}, \ldots, a_{n}\right)$ by N_{n}^{k}.

Clearly $N_{n}^{k} \geq 1$. This is because for any n, k, the subset $\{k\}$ of A_{n} has the desired property. Another subset of A_{n} with this property for $n \geq 3, k=0$ is the subset $B=\{x \in$ $\left.A_{n}: \operatorname{gcd}(x, n)=1\right\}$. This is a well known result.

2 Calculation of N_{n}^{k}

Proposition 2 Consider the polynomial $P_{n}(x)$ defined as follows:

$$
P_{n}(x)=\prod_{j=1}^{n}\left(1+x^{j}\right)=\sum_{r=0}^{\frac{n(n+1)}{2}} a_{n, r} x^{r}
$$

Let $\omega_{n}=e^{\frac{2 \pi i}{n}}$ be a primitive nth root of unity. Then

$$
N_{n}^{k}=\frac{1}{n} \sum_{j=1}^{n} \omega_{n}^{-k j} P_{n}\left(\omega_{n}^{j}\right) .
$$

Proof: Notice that each coefficient of x^{r} in $P_{n}(x)$ is equal to the number of subsets of A_{n} that sum to r. N_{n}^{k} is the sum over the coefficients of x^{r} where n divides $r-k$. Therefore,

$$
\begin{equation*}
N_{n}^{k}=\sum_{\lambda: \lambda n+k \geq 0} a_{n, \lambda n+k} . \tag{1}
\end{equation*}
$$

We will prove the proposition using (1) and the following Lemma:
Lemma 3 Let λ be a positive integer. Then $\sum_{j=0}^{n-1} \omega_{n}^{\lambda j}=0$ when $n \nmid \lambda$ and n when $n \mid \lambda$.
Proof: Consider the equation $x^{n}-1=0$. We factor this as

$$
(x-1)\left(1+x+x^{2}+\ldots+x^{n-2}+x^{n-1}\right)=0 .
$$

Note that ω_{n}^{λ} is a root of $x^{n}-1$ for every λ. Hence it is a root of the second factor if and only if $\omega_{n}^{\lambda}-1 \neq 0$. The result follows.

Now consider

$$
P_{n}\left(\omega_{n}^{j}\right)=\sum_{k=0}^{\frac{n(n+1)}{2}} a_{n, k} \omega_{n}^{j k}
$$

Then

$$
\begin{aligned}
\sum_{j=1}^{n} \omega_{n}^{-k j} P_{n}\left(\omega_{n}^{j}\right) & =\sum_{j=1}^{n} \omega_{n}^{-k j} \sum_{r=0}^{\frac{n(n+1)}{2}} a_{n, r} \omega_{n}^{r j} \\
& =\sum_{r=0}^{\frac{n(n+1)}{2}} a_{n, r} \sum_{j=1}^{n} \omega_{n}^{(r-k) j} \\
& =n \sum_{\lambda: \lambda n+k \geq 0} a_{n, \lambda n+k} \\
& =n\left(N_{n}^{k}\right) .
\end{aligned}
$$

Proposition $4 P_{n}\left(\omega_{n}^{j}\right)=2^{(n, j)}$ if $\frac{n}{(j, n)}$ is odd and 0 otherwise. Here (n, j) denotes the g.c.d. of $n, j(1 \leq j \leq n)$.

Proof: We shall first prove two technical lemmas and then combine them to obtain the required result.

Lemma 5

$$
P_{n}\left(\omega_{n}^{j}\right)=\left[P_{\frac{n}{(n, j)}}\left(\omega_{\frac{n}{(n, j)}}\right)\right]^{(n, j)} .
$$

Proof: Note that

$$
\begin{aligned}
P_{n}\left(\omega_{n}^{j}\right) & =\prod_{r=1}^{n}\left(1+\left[\omega_{n}^{j r}\right]^{r\left(\frac{(n, j)}{(n, j)}\right.}\right) \\
& =\prod_{r=1}^{n}\left(1+\left[\omega_{n}^{(n, j)}\right]^{\frac{-r}{(n, j)}}\right) .
\end{aligned}
$$

Now $\omega_{n}^{(n, j)}=\omega_{\frac{n}{(n, j)}}$. Hence

$$
P_{n}\left(\omega_{n}^{j}\right)=\prod_{r=1}^{n}\left(1+\left[\omega^{\frac{j}{\left(\frac{n}{n, j}\right)}}\left[\frac{r, n}{(n, j)}\right]^{r}\right) .\right.
$$

 ranges from 1 to n, the factors repeat themselves (n, j) times, i.e.

$$
\begin{aligned}
P_{n}\left(\omega_{n}^{j}\right) & =\left[\prod_{r=1}^{\frac{n}{(n, j)}}\left(1+\left[\omega^{\frac{j}{(n, j)}} \frac{(n, j)}{(n, j)}\right)\right]^{-(n, j)}\right. \\
& =\left[P_{\frac{n}{(n, j)}}\left(\omega_{\frac{1}{(n, j)}}^{\frac{(n, j)}{(n,)}}\right]^{(n, j)} .\right.
\end{aligned}
$$

Recalling that $\left(\frac{j}{(n, j)}, \frac{n}{(n, j)}\right)=1$ we notice that $P_{\frac{n}{(n, j)}}\left(\omega_{\frac{j}{(n, j)}}^{(n, j)}\right)$ is just a permutation of the factors in $P_{\frac{n}{(n, j)}}\left(\omega_{\frac{n}{(n, j)}}\right)$. Hence,

$$
P_{\frac{n}{(n, j)}}\left(\omega_{\frac{j}{(n, j)}}^{(n, j)}\right)=P_{\frac{n}{(n, j)}}\left(\omega_{\frac{n}{(n, j)}}\right)
$$

which gives the result

$$
P_{n}\left(\omega_{n}^{j}\right)=\left[P_{\frac{n}{(n, j)}}\left(\omega_{\frac{n}{(n, j)}}\right)\right]^{(n, j)} .
$$

Lemma $6 P_{r}\left(\omega_{r}\right)=1-(-1)^{r}$.
Proof: Consider the polynomial $x^{r}-1$. Then $1, \omega_{r}, \omega_{r}^{2}, \ldots, \omega_{r}^{r-1}$ are the distinct r roots of this polynomial. Thus

$$
x^{r}-1=(x-1)\left(x-\omega_{r}\right)\left(x-\omega_{r}^{2}\right) \cdots\left(x-\omega_{r}^{r-1}\right)
$$

Substituting $x=-1$ we get

$$
\left((-1)^{r}-1\right)=(-1)^{r}\left(1+\omega_{r}\right)\left(1+\omega_{r}^{2}\right) \cdots\left(1+\omega_{r}^{r}\right)
$$

i.e. $1-(-1)^{r}=P_{k}\left(\omega_{r}\right)$. Now

$$
\begin{aligned}
P_{n}\left(\omega_{n}^{j}\right) & =\left[P_{\frac{n}{(n, j)}}\left(\omega_{\frac{n}{(n, j)}}^{(n)}\right]^{(n, j)}\right. \\
& =\left[1-(-1)^{\frac{n}{(n, j)}}\right]^{(n, j)} .
\end{aligned}
$$

This is equal to $2^{(n, j)}$ when $\frac{n}{(n, j)}$ is odd and 0 otherwise.
Proposition 7 Suppose $t \mid n, \delta=\frac{n}{t}$. Then

$$
\sum_{x \in \mathbf{Z}_{\delta}^{\times}} \omega_{n}^{-k t x}=\frac{\varphi(\delta)}{\varphi\left(\frac{\delta}{(k, \delta)}\right)} \sum_{x \in \mathbf{Z}_{\frac{\delta}{\times}}} \omega_{\frac{\delta}{(k, \delta)}}^{x, \delta)} .
$$

Proof: First note that $\omega_{n}^{t x}=\omega_{\delta}^{x}$. Also x and $-x$ are both elements of $\mathbf{Z}_{\delta}^{\times}$. Therefore

$$
\sum_{x \in \mathbf{Z}_{\delta}^{\times}} \omega_{n}^{-k t x}=\sum_{x \in \mathbf{Z}_{\delta}^{\times}} \omega_{\delta}^{k x} .
$$

Now rewrite $\omega_{\delta}^{k x}$ as $\omega_{\frac{\frac{k}{(\delta, k)} x}{(\delta, k)}}^{\frac{(}{x}}$. Hence

$$
\begin{aligned}
& \sum_{x \in \mathbf{Z}_{\delta}^{\times}} \omega_{\delta}^{k x}=\sum_{x \in \mathbf{Z}_{\delta}^{\times}} \omega^{\frac{\frac{k}{(\delta, k)}}{(\delta, k)}} \\
= & \frac{\varphi(\delta)}{\varphi\left(\frac{\delta}{(k, \delta)}\right)} \sum_{x \in \mathbf{Z}_{\frac{\delta}{\times}}^{\frac{\delta}{(k, \delta)}}} \omega^{\frac{\frac{k}{(\delta, k)}}{(\delta, k)}} .
\end{aligned}
$$

This is because $\frac{\varphi(\delta)}{\varphi\left(\frac{\delta}{(k, \delta)}\right)}$ summands are identical $\forall x \in \mathbf{Z}_{\delta}^{\times}$. Finally, since $\left(\frac{k}{(\delta, k)}, \frac{\delta}{(\delta, k)}\right)=1$ this reduces to

$$
\frac{\varphi(\delta)}{\varphi\left(\frac{\delta}{(k, \delta)}\right)} \sum_{x \in \mathbf{Z}_{\frac{\delta}{(k, \delta)}}} \omega_{\frac{\delta}{(k, \delta)}}^{x}
$$

which completes the proof of the proposition.

Proposition 8

$$
\sum_{t \in \mathbf{Z}_{n}^{\times}} \omega_{n}^{t}=\mu(n)
$$

Proof: Let $\Phi_{n}(x)$ denote the nth cyclotomic polynomial. Then $\sum_{t \in \mathbf{Z}_{n}^{\times}} \omega_{n}^{t}$ is just the negative of the coefficient of $x^{\varphi(n)-1}$ in $\Phi_{n}(x)$.

Claim $9 \Phi_{n}(x)=\Phi_{d}\left(x^{m}\right)$ where $n=d m$ and d is the product of all the distinct prime factors of n.

Proof: It is well known that $\Phi_{n}(x)=\prod_{r \mid n}\left(x^{\frac{n}{r}}-1\right)^{\mu(r)}$. For a proof of this result see [4], page 353. Now $\Phi_{d}\left(x^{m}\right)=\prod_{s \mid d}\left(x^{\frac{n}{s}}-1\right)^{\mu(s)}$. If $s \mid n$ and $s>d$ then s is divisible by the square of some prime and so $\mu(s)=0$. Hence the claim.

Claim $10 \Phi_{p n}(x)=\frac{\Phi_{n}\left(x^{p}\right)}{\Phi_{n}(x)}$ if p is a prime that does not divide n.
Proof: Once again we use the fact that $\Phi_{n}(x)=\prod_{r \mid n}\left(x^{\frac{n}{r}}-1\right)^{\mu(r)}$. In our case we have

$$
\begin{aligned}
\Phi_{p n}(x) & =\prod_{r \mid p n}\left(x^{\frac{n p}{r}}-1\right)^{\mu(r)} \\
& =\prod_{r \mid p n: p \nmid r}\left(x^{\frac{n p}{r}}-1\right)^{\mu(r)} \prod_{r|p n: p| r}\left(x^{\frac{n p}{r}}-1\right)^{\mu(r)} \\
& =\prod_{t \mid n}\left(x^{\frac{n p}{t}}-1\right)^{\mu(t)} \prod_{s \mid n}\left(x^{\frac{n}{s}}-1\right)^{\mu(s p)} .
\end{aligned}
$$

However μ is a multiplicative function hence $\mu(s p)=-\mu(s)$ so

$$
\Phi_{p n}(x)=\left(\Phi_{n}\left(x^{p}\right)\right)\left(\Phi_{n}(x)\right)^{-1} .
$$

If $p^{2} \mid n$ for some prime p then by Claim 9 the coefficient of $x^{\varphi(n)-1}$ in $\Phi_{n}(x)$ is 0 . So assume that $n=\prod_{i=1}^{m} p_{i}$, where the p_{i} 's are distinct. We now use induction on m and Claim 10 to obtain that $\sum_{t \in \mathbf{Z}_{n}^{\times}} \omega_{n}^{t}=\mu(n)$.

Theorem 11

$$
N_{n}^{k}=\frac{1}{n} \sum_{\substack{s \mid n \\ s o d d}} 2^{\frac{n}{s}} \frac{\varphi(s)}{\varphi\left(\frac{s}{(k, s)}\right)} \mu\left(\frac{s}{(k, s)}\right) .
$$

Proof: Using Proposition 2 we obtain that

$$
N_{n}^{k}=\frac{1}{n} \sum_{j=1}^{n} \omega_{n}^{-k j} P_{n}\left(\omega_{n}^{j}\right)
$$

Now we use Proposition 4 to obtain

$$
N_{n}^{k}=\frac{1}{n} \sum_{j: \frac{n}{(j, n)} o d d} \omega_{n}^{-k j} 2^{(j, n)}
$$

Now let $(j, n)=t$. Then

$$
N_{n}^{k}=\frac{1}{n}\left(\sum_{t \mid n: \frac{n}{t} o d d} 2^{t} \sum_{x \in \mathbf{Z}_{\frac{n}{t}}^{\times}} \omega_{n}^{-k t x}\right)
$$

since as x ranges over $\mathbf{Z}_{\frac{n}{t}}^{\times}, t x$ ranges over the elements r such that $(r, n)=t$. Applying Proposition 10 we obtain

$$
N_{n}^{k}=\frac{1}{n}\left(\sum_{t \mid n: \frac{n}{t} o d d} 2^{t} \frac{\varphi\left(\frac{n}{t}\right)}{\varphi\left(\frac{\frac{n}{t}}{\left(k, \frac{n}{t}\right)}\right)} \sum_{x \in \mathbf{Z}^{\times} \frac{\frac{n}{t}}{\left(k, \frac{n}{t}\right)}} \omega_{\frac{n^{\frac{n}{n}}}{\left(k, \frac{n}{t}\right)}}\right) .
$$

Finally, we use Proposition 7 to conclude that

$$
N_{n}^{k}=\frac{1}{n} \sum_{t \mid n: \frac{n}{t} o d d} 2^{t} \frac{\varphi\left(\frac{n}{\frac{t}{n}}\right)}{\varphi\left(\frac{\frac{n}{n}}{\left(k, \frac{n}{t}\right)}\right)} \mu\left(\frac{\frac{n}{t}}{\left(k, \frac{n}{t}\right)}\right) .
$$

Substituting $s=\frac{n}{t}$ this reduces to

$$
N_{n}^{k}=\frac{1}{n} \sum_{\substack{s \mid n \\ s o d d}} 2^{\frac{n}{s}} \frac{\varphi(s)}{\varphi\left(\frac{s}{(k, s)}\right)} \mu\left(\frac{s}{(k, s)}\right) .
$$

For the case when $k=n$ this formula can easily be simplified to obtain

$$
N_{n}^{n}=\frac{1}{n} \sum_{\substack{s \mid n \\ s o d d}} 2^{\frac{n}{s}} \varphi(s) .
$$

3 A Theorem About Finite Abelian Groups

A natural generalization of the problem discussed in the previous section is a similar problem for finite abelian groups. That is, if G is a finite abelian group of order n, we want to calculate the number of subsets of G whose elements sum up to the identity element ($\overline{0}$) of G.

For the purposes of this section we will use the following notation: Let \underline{S} denote a k-tuple of numbers, i.e. $\underline{S}=\left(s_{1}, s_{2}, \ldots, s_{k}\right)$. Given two k-tuples \underline{J} and \underline{N} define

$$
\begin{aligned}
& \sum_{\underline{0}<\underline{J} \leq \underline{N}} \\
& =\sum_{j_{1}=1}^{j_{1}=n_{1}} \sum_{j_{2}=1}^{j_{2}=n_{2}} \cdots \sum_{j_{k}=1}^{j_{k}=n_{k}} .
\end{aligned}
$$

Will will denote the number of subsets of a finite abelian group G whose elements sum up to $\overline{0}$ by N_{G}.

Theorem 12 Let $G=\mathbf{Z}_{n_{1}} \oplus \mathbf{Z}_{n_{2}} \oplus \ldots \oplus \mathbf{Z}_{n_{k}}$ be a finite abelian group of order $n=n_{1} n_{2} \cdots n_{k}$. Given a k-tuple \underline{J} define $T_{J}=$ g.c.d. $\left(\frac{\dot{j}_{1} n}{n_{1}}, \ldots, \frac{j_{k} n}{n_{k}}\right)$ and let $\underline{N}=\left(n_{1}, n_{2}, \ldots, n_{k}\right)$. Then

$$
N_{G}=\frac{1}{n} \sum_{\underline{0}<\underline{J} \leq \underline{N}}\left[1-(-1)^{\frac{n}{\left(n, T_{J}\right)}}\right]^{\left(n, T_{J}\right)} .
$$

We shall prove this theorem using the same ideas as before.
Proposition 13 Consider the polynomial

$$
F\left(x_{1}, x_{2}, \ldots, x_{k}\right)=\prod_{\underline{0}<\underline{S} \leq \underline{N}}\left(1+x_{1}^{s_{1}} x_{2}^{s_{2}} \cdots x_{k}^{s_{k}}\right)=\sum_{\underline{\alpha}} a_{\underline{\alpha}} x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{k}^{\alpha_{k}} .
$$

Then

$$
N_{G}=\frac{1}{n} \sum_{\underline{0}<\underline{J} \leq \underline{N}} F\left(\omega_{n_{1}}^{j_{1}}, \ldots, \omega_{n_{k}}^{j_{k}}\right) .
$$

Proof: The proof is identical to that of Proposition 2.

Proposition 14

$$
F\left(\omega_{n_{1}}^{j_{1}}, \ldots, \omega_{n_{k}}^{j_{k}}\right)=\left[1-(-1)^{\frac{n}{\left(n, T_{J}\right)}}\right]^{\left(n, T_{J}\right)} .
$$

Proof: Note that $\omega_{n_{i}}^{j_{i} s_{i}}=\omega_{n}^{\frac{j_{j} s_{i}, n}{n_{i}}}$. Therefore

$$
\begin{aligned}
F\left(\omega_{n_{1}}^{j_{1}}, \ldots, \omega_{n_{k}}^{j_{k}}\right) & =\prod_{\underline{0}<\underline{S} \leq \underline{N}}\left(1+\omega_{n_{1}}^{j_{1} s_{1}} \omega_{n_{2}}^{j_{2} s_{2}} \cdots \omega_{n_{k}}^{j_{k} s_{k}}\right) \\
& =\prod_{\underline{0}<\underline{S} \leq \underline{N}}\left(1+\omega_{n}^{\sum_{i} \frac{j_{i}, s_{n}, n}{n_{i}}}\right) .
\end{aligned}
$$

Consider the exponent in one factor of the above product for a fixed \underline{S}, i.e.

$$
\sum_{i} s_{i}\left(\frac{j_{i} n}{n_{i}}\right)=T_{J}\left(\sum_{i} s_{i}\left(\frac{j_{i} n}{n_{i} T_{J}}\right)\right) .
$$

Claim 15 For every $m(0 \leq m \leq n)$ there exists a k-tuple \underline{S} such that

$$
T_{J}\left(\sum_{i} s_{i}\left(\frac{j_{i} n}{n_{i} T_{J}}\right)\right) \equiv T_{J} m \bmod n .
$$

Proof: Note that g.c.d. $\left(\frac{j_{1} n}{n_{1} T_{J}}, \ldots, \frac{j_{k} n}{n_{k} T_{J}}\right)=1$ and therefore for any integer m there exists $s_{i} \in \mathbf{Z}$ such that

$$
m=\sum_{i} \frac{s_{i} j_{i} n}{n_{i} T_{J}}
$$

Equivalently,

$$
T_{J} m=T_{J}\left(\sum_{i} \frac{s_{i} j_{i} n}{n_{i} T_{J}}\right) .
$$

Now note that if any s_{i} is replaced by $s_{i}+n_{i}$ in the above equation then we still have equality $(\bmod n)$. Thus every s_{i} can be chosen to be less than n_{i}.

Therefore by the above claim we obtain

$$
\begin{aligned}
& \prod_{\underline{0}}<\underline{S} \leq \underline{N} \\
&\left(1+\omega_{n}^{\sum_{i} \frac{j_{2} s_{i} n}{n_{i}}}\right)=\prod_{m=0}^{n-1}\left(1+\omega_{n}^{T_{J j}}\right) \\
&=P_{n}\left(\omega_{n}^{T_{J}}\right) \\
&=\left[1-(-1)^{\frac{n}{\left(n, T_{J}\right)}}\right]^{\left(n, T_{J}\right)}
\end{aligned}
$$

and so we have proved the proposition.
Proof (main theorem): The theorem now follows immediately by combining Propositions 13 and 14:

$$
\begin{aligned}
N_{G} & =\frac{1}{n} \sum_{\underline{0}<\underline{J} \leq \underline{N}} F\left(\omega_{n_{1}}^{j_{1}}, \ldots, \omega_{n_{k}}^{j_{k}}\right) \\
& =\frac{1}{n} \sum_{\underline{0}<\underline{J} \leq \underline{N}}\left[1-(-1)^{\frac{n}{\left(n, T_{J}\right)}}\right]^{\left(n, T_{J}\right)} .
\end{aligned}
$$

4 Further Results

Another problem related to the calculation of N_{n}^{k} is the calculation of $N_{n, m}^{n}$ where $0<$ $m<\frac{n(n+1)}{2}$. $N_{n, m}^{n}$ is defined to be the number of subsets $B \subseteq\{1,2, \ldots, n\}$ such that $\sum_{b \in B} b \equiv 0 \bmod m$. We Remark that $N_{n, m}^{n}$ is easily obtained when $m \mid n$.

Proposition 16 Let n, m be positive integers with $m \mid n$. Then

$$
N_{n, m}^{n}=\frac{1}{m} \sum_{\substack{s \mid m \\ s o d d}} 2^{\frac{n}{s}} \varphi(s) .
$$

Proof: Using Lemma 3 and the same proof as given in Proposition 2 we obtain that:

$$
N_{n, m}^{n}=\frac{1}{m} \sum_{j=1}^{m} P_{n}\left(\omega_{m}^{j}\right) .
$$

Now $1+\left(\omega_{m}^{j}\right)^{m+i}=1+\left(\omega_{m}^{j}\right)^{i}$ so the factors in $P_{n}\left(\omega_{m}^{j}\right)$ repeat themselves $\frac{n}{m}$ times. Therefore $P_{n}\left(\omega_{m}^{j}\right)=\left[P_{m}\left(\omega_{m}^{j}\right)\right]^{\frac{n}{m}}$. Now we proceed as before to get

$$
N_{n, m}^{n}=\frac{1}{m} \sum_{\substack{s \mid m \\ s o d d}} 2^{\frac{n}{s}} \varphi(s) .
$$

Snevily, [5] has proposed the following conjecture:
Conjecture 17 The sequence $\left\{N_{n, m}^{n}\right\}_{m=1}^{\frac{n(n+1)}{2}}$ is monotonically decreasing.
We also mention an interesting connection between our problem and two other counting problems in combinatorics. Let C_{n} denote the number of circular sequences of 0 's and 1's, where two sequences obtained by a rotation are considered the same. This problem is discussed in [6], page 75. The solution is

$$
C_{n}=\frac{1}{n} \sum_{t \mid n} \varphi(t) 2^{\frac{n}{t}}
$$

This is indentical in form to our formula for N_{n}^{n} except that in our case we sum over all $t \mid n$ where t is odd. Another related problem is the calculation of the number of monic irreducible polynomials of degree n over a field of q elements where q is prime ([6], page 116). If the number of such polynomials is denoted M_{n}^{q} then

$$
M_{n}^{q}=\frac{1}{n} \sum_{d \mid n} \mu(d) q^{\frac{n}{d}} .
$$

For $q=2$ this has the exact same form as our formula for N_{n}^{k} where $(k, n)=1$. Once again, the only difference is that our sum is over $d \mid n$ such that d is odd.

References

[1] N. Alon and G. Freiman, On sums of a subset of a set of integers, Combinatorica, 8(4) (1988), 297-306.
[2] P. Erdős and H. Heilbronn, On the addition of residue classes mod p, Acta Arithmetica, 9 (1964), 149-159.
[3] J. Olson, An additive theorem modulo p, J. Combinatorial Theory, 5 (1968), 45-52.
[4] R. Dean, Classical Abstract Algebra, Harper and Row, Publishers, New York, 1990.
[5] H. Snevily, personal communication.
[6] J.H. van Lint and R.M. Wilson, A Course in Combinatorics, Cambridge University Press 1992.

Nitu Kitchloo

Department of Mathematics
MIT
Cambridge, MA

Lior Pachter
Department of Mathematics
Caltech
Pasadena, CA

