
An interesting result about subset sumsNitu KitchlooLior PachterNovember 27, 1993AbstractWe consider the problem of determining the number of subsets B � f1; 2; : : : ; ngsuch that Pb2B b � k mod n, where k is a residue class mod n (0 < k � n). If thenumber of such subsets is denoted Nkn thenNkn = 1n Xsjns odd 2ns '(s)'( s(k;s))�( s(k; s)):Here ' denotes the Euler phi function and � is the M�obius function. This elaborateson a result by Erd}os and Heilbronn. We also derive a similar result for �nite abeliangroups.1 IntroductionLet An = f1; 2; : : : ; ng. There have been a number of results in the past about how large asubset A � An has to be so that the sums of the elements of A possess a certain property,[1], [2], [3]. In particular, Erd}os and Heilbronn [2] proved the following result:Let n be a positive integer, a1; : : : ; ak distinct residue classes mod n, and N a residueclass mod n. Let F (N ;n; a1; : : : ; ak) denote the number of solutions of the congruencee1a1 + : : :+ ekak � N mod nwhere e1; : : : ; ek take the values of 0 or 1.Theorem 1 (Erd}os, Heilbronn) Let ai be nonzero for every i and let p be a prime. ThenF (N ; p; a1; : : : ; ak) = 2kp�1(1 + o(1))if k3p�2 !1 as p!1. 1



We consider the related problem of explicitly determining the number of subsets A � Anwith the property that the sum of the elements of A is congruent to k mod n. Note that thisis equivalent to determining F (k;n; a1; : : : ; an) when 0 < k � n. This follows if we acceptthe convention that the elements of the empty set sum up to 0 mod n. We will denoteF (k;n; a1; : : : ; an) by Nkn .Clearly Nkn � 1. This is because for any n; k, the subset fkg of An has the desiredproperty. Another subset of An with this property for n � 3; k = 0 is the subset B = fx 2An : gcd(x; n) = 1g. This is a well known result.2 Calculation of N knProposition 2 Consider the polynomial Pn(x) de�ned as follows:Pn(x) = nYj=1(1 + xj) = n(n+1)2Xr=0 an;rxr:Let !n = e 2�in be a primitive nth root of unity. ThenNkn = 1n nXj=1!�kjn Pn(!jn):Proof: Notice that each coe�cient of xr in Pn(x) is equal to the number of subsets ofAn that sum to r. Nkn is the sum over the coe�cients of xr where n divides r�k. Therefore,Nkn = X�:�n+k�0 an;�n+k: (1)We will prove the proposition using (1) and the following Lemma:Lemma 3 Let � be a positive integer. Then Pn�1j=0 !�jn = 0 when n 6 j� and n when nj�.Proof: Consider the equation xn � 1 = 0. We factor this as(x� 1)(1 + x+ x2 + : : :+ xn�2 + xn�1) = 0:Note that !�n is a root of xn � 1 for every �. Hence it is a root of the second factor if andonly if !�n � 1 6= 0. The result follows.Now consider Pn(!jn) = n(n+1)2Xk=0 an;k!jkn :2



Then nXj=1 !�kjn Pn(!jn) = nXj=1!�kjn n(n+1)2Xr=0 an;r!rjn= n(n+1)2Xr=0 an;r nXj=1!(r�k)jn= n X�:�n+k�0 an;�n+k= n(Nkn):Proposition 4 Pn(!jn) = 2(n;j) if n(j;n) is odd and 0 otherwise. Here (n; j) denotes the g.c.d.of n; j (1 � j � n).Proof: We shall �rst prove two technical lemmas and then combine them to obtain therequired result.Lemma 5 Pn(!jn) = [P n(n;j) (! n(n;j) )](n;j):Proof: Note that Pn(!jn) = nYr=1(1 + [!jn]r (n;j)(n;j) )= nYr=1(1 + [!(n;j)n ] jr(n;j) ):Now !(n;j)n = ! n(n;j) . Hence Pn(!jn) = nYr=1(1 + [! j(n;j)n(n;j) ]r):Furthermore, ( j(n;j) ; n(n;j)) = 1 so ! j(n;j)n(n;j) is a primitive n(n;j)th root of unity. Therefore as rranges from 1 to n, the factors repeat themselves (n; j) times, i.e.Pn(!jn) = [ n(n;j)Yr=1 (1 + [! j(n;j)n(n;j) ]r)](n;j)= [P n(n;j) (! j(n;j)n(n;j) )](n;j):Recalling that ( j(n;j) ; n(n;j)) = 1 we notice that P n(n;j) (! j(n;j)n(n;j) ) is just a permutation of the factorsin P n(n;j) (! n(n;j) ). Hence, P n(n;j) (! j(n;j)n(n;j) ) = P n(n;j) (! n(n;j) )3



which gives the result Pn(!jn) = [P n(n;j) (! n(n;j) )](n;j):Lemma 6 Pr(!r) = 1 � (�1)r:Proof: Consider the polynomial xr � 1. Then 1; !r; !2r ; : : : ; !r�1r are the distinct r rootsof this polynomial. Thusxr � 1 = (x� 1)(x� !r)(x� !2r ) � � � (x� !r�1r ):Substituting x = �1 we get((�1)r � 1) = (�1)r(1 + !r)(1 + !2r ) � � � (1 + !rr):i.e. 1� (�1)r = Pk(!r). Now Pn(!jn) = [P n(n;j) (! n(n;j) )](n;j)= [1� (�1) n(n;j) ](n;j):This is equal to 2(n;j) when n(n;j) is odd and 0 otherwise.Proposition 7 Suppose tjn, � = nt . ThenXx2Z�� !�ktxn = '(�)'( �(k;�)) Xx2Z� �(k;�) !x �(k;�) :Proof: First note that !txn = !x� . Also x and �x are both elements of Z�� . ThereforeXx2Z�� !�ktxn = Xx2Z�� !kx� :Now rewrite !kx� as ! k(�;k) x�(�;k) . Hence Xx2Z�� !kx� = Xx2Z�� ! k(�;k) x�(�;k)= '(�)'( �(k;�)) Xx2Z� �(k;�) ! k(�;k) x�(�;k) :This is because '(�)'( �(k;�) ) summands are identical 8x 2 Z�� . Finally, since ( k(�;k); �(�;k)) = 1 thisreduces to '(�)'( �(k;�)) Xx2Z� �(k;�) !x �(k;�)which completes the proof of the proposition.4



Proposition 8 Xt2Z�n !tn = �(n):Proof: Let �n(x) denote the nth cyclotomic polynomial. Then Pt2Z�n !tn is just thenegative of the coe�cient of x'(n)�1 in �n(x).Claim 9 �n(x) = �d(xm) where n = dm and d is the product of all the distinct primefactors of n.Proof: It is well known that �n(x) = Qrjn(xnr � 1)�(r). For a proof of this result see [4],page 353. Now �d(xm) = Qsjd(xns � 1)�(s). If sjn and s > d then s is divisible by the squareof some prime and so �(s) = 0. Hence the claim.Claim 10 �pn(x) = �n(xp)�n(x) if p is a prime that does not divide n.Proof: Once again we use the fact that �n(x) = Qrjn(xnr � 1)�(r). In our case we have�pn(x) = Yrjpn(xnpr � 1)�(r)= Yrjpn:p=jr(xnpr � 1)�(r) Yrjpn:pjr(xnpr � 1)�(r)= Ytjn(xnpt � 1)�(t)Ysjn(xns � 1)�(sp):However � is a multiplicative function hence �(sp) = ��(s) so�pn(x) = (�n(xp))(�n(x))�1:If p2jn for some prime p then by Claim 9 the coe�cient of x'(n)�1 in �n(x) is 0. Soassume that n = Qmi=1 pi, where the pi's are distinct. We now use induction on m and Claim10 to obtain that Pt2Z�n !tn = �(n).Theorem 11 Nkn = 1n Xsjns odd 2ns '(s)'( s(k;s))�( s(k; s)):Proof: Using Proposition 2 we obtain thatNkn = 1n nXj=1!�kjn Pn(!jn):5



Now we use Proposition 4 to obtainNkn = 1n Xj: n(j;n)odd !�kjn 2(j;n):Now let (j; n) = t. Then Nkn = 1n 0BB@ Xtjn:nt odd 2t Xx2Z�nt !�ktxn 1CCAsince as x ranges over Z�nt , tx ranges over the elements r such that (r; n) = t. ApplyingProposition 10 we obtainNkn = 1n 0BBBBB@ Xtjn:nt odd 2t '(nt )'( nt(k;nt )) Xx2Z� nt(k; nt ) !x nt(k; nt )1CCCCCA :Finally, we use Proposition 7 to conclude thatNkn = 1n Xtjn:nt odd 2t '(nt )'( nt(k;nt ))�( nt(k; nt )):Substituting s = nt this reduces toNkn = 1n Xsjns odd 2ns '(s)'( s(k;s))�( s(k; s)):For the case when k = n this formula can easily be simpli�ed to obtainNnn = 1n Xsjns odd 2ns'(s):3 A Theorem About Finite Abelian GroupsA natural generalization of the problem discussed in the previous section is a similar problemfor �nite abelian groups. That is, if G is a �nite abelian group of order n, we want to calculatethe number of subsets of G whose elements sum up to the identity element (0) of G.For the purposes of this section we will use the following notation: Let S denote a k-tupleof numbers, i.e. S = (s1; s2; : : : ; sk). Given two k-tuples J and N de�neX0 < J � N= j1=n1Xj1=1 j2=n2Xj2=1 � � � jk=nkXjk=1 :6



Will will denote the number of subsets of a �nite abelian group G whose elements sum upto 0 by NG.Theorem 12 Let G = Zn1 LZn2L : : :LZnk be a �nite abelian group of order n = n1n2 � � � nk.Given a k-tuple J de�ne TJ =g.c.d.( j1nn1 ; : : : ; jknnk ) and let N = (n1; n2; : : : ; nk). ThenNG = 1n X0 < J � N [1� (�1) n(n;TJ ) ](n;TJ):We shall prove this theorem using the same ideas as before.Proposition 13 Consider the polynomialF (x1; x2; : : : ; xk) = Y0 < S � N(1 + xs11 xs22 � � � xskk ) =X� a�x�11 x�22 � � �x�kk :Then NG = 1n X0 < J � N F (!j1n1 ; : : : ; !jknk ):Proof: The proof is identical to that of Proposition 2.Proposition 14 F (!j1n1 ; : : : ; !jknk ) = [1� (�1) n(n;TJ ) ](n;TJ):Proof: Note that !jisini = ! jisinnin . ThereforeF (!j1n1; : : : ; !jknk ) = Y0 < S � N(1 + !j1s1n1 !j2s2n2 � � �!jksknk )= Y0 < S � N(1 + !Pi jisinnin ):Consider the exponent in one factor of the above product for a �xed S, i.e.Xi si(jinni ) = TJ(Xi si( jinniTJ )):Claim 15 For every m (0 � m � n) there exists a k-tuple S such thatTJ(Xi si( jinniTJ )) � TJm mod n:7



Proof: Note that g.c.d.( j1nn1TJ ; : : : ; jknnkTJ ) = 1 and therefore for any integer m there existssi 2 Z such that m =Xi sijinniTJ :Equivalently, TJm = TJ(Xi sijinniTJ ):Now note that if any si is replaced by si+ni in the above equation then we still have equality(mod n). Thus every si can be chosen to be less than ni.Therefore by the above claim we obtainY0 < S � N (1 + !Pi jisinnin ) = n�1Ym=0(1 + !TJmn )= Pn(!TJn )= [1� (�1) n(n;TJ ) ](n;TJ)and so we have proved the proposition.Proof (main theorem): The theorem now follows immediately by combining Propositions13 and 14: NG = 1n X0 < J � N F (!j1n1; : : : ; !jknk )= 1n X0 < J � N [1� (�1) n(n;TJ ) ](n;TJ):4 Further ResultsAnother problem related to the calculation of Nkn is the calculation of Nnn;m where 0 <m < n(n+1)2 . Nnn;m is de�ned to be the number of subsets B � f1; 2; : : : ; ng such thatPb2B b � 0 mod m. We Remark that Nnn;m is easily obtained when mjn.Proposition 16 Let n;m be positive integers with mjn. ThenNnn;m = 1m Xsjmsodd 2ns '(s):Proof: Using Lemma 3 and the same proof as given in Proposition 2 we obtain that:Nnn;m = 1m mXj=1Pn(!jm):8



Now 1+(!jm)m+i = 1+(!jm)i so the factors in Pn(!jm) repeat themselves nm times. ThereforePn(!jm) = [Pm(!jm)] nm . Now we proceed as before to getNnn;m = 1m Xsjmsodd 2ns '(s):Snevily, [5] has proposed the following conjecture:Conjecture 17 The sequence fNnn;mgn(n+1)2m=1 is monotonically decreasing.We also mention an interesting connection between our problem and two other countingproblems in combinatorics. Let Cn denote the number of circular sequences of 0's and1's, where two sequences obtained by a rotation are considered the same. This problem isdiscussed in [6], page 75. The solution isCn = 1nXtjn '(t)2nt :This is indentical in form to our formula for Nnn except that in our case we sum over all tjnwhere t is odd. Another related problem is the calculation of the number of monic irreduciblepolynomials of degree n over a �eld of q elements where q is prime ([6], page 116). If thenumber of such polynomials is denoted M qn thenM qn = 1nXdjn �(d)q nd :For q = 2 this has the exact same form as our formula for Nkn where (k; n) = 1. Once again,the only di�erence is that our sum is over djn such that d is odd.References[1] N. Alon and G. Freiman, On sums of a subset of a set of integers, Combinatorica, 8(4)(1988), 297-306.[2] P. Erd}os and H. Heilbronn, On the addition of residue classes mod p, Acta Arithmetica,9 (1964), 149-159.[3] J. Olson, An additive theorem modulo p, J. Combinatorial Theory, 5 (1968), 45-52.[4] R. Dean, Classical Abstract Algebra, Harper and Row, Publishers, New York, 1990.[5] H. Snevily, personal communication.[6] J.H. van Lint and R.M. Wilson, A Course in Combinatorics, Cambridge University Press1992. 9
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