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The problem of distinguishing prime numbers from composite numbers is one of the

most fundamental and important in arithmetic� It has remained as a central question in

our subject from ancient times to this day�� and yet still fascinates and frustrates us all�

From the very de�nition of primality� that an integer

n is prime if it has no divisor between � and
p
n�

one can evolve a simple test for primality� Just check whether any integer d between � andp
n actually divides n� This is an easily implemented test for� say� n � ��	 or n � ���
��

but how about for n � ��
��
	�����
��
		� This requires over a billion test divides�

and if one were to try to verify that a given ��� digit integer n is prime in this way it

would take longer than the remaining lifespan of our universe� even on an impossibly fast

computer�

One thus needs a more sophisticated approach to handle large numbers� Perhaps a

di�erent de�nition of prime numbers will furnish us with a quicker method � One such

de�nition follows from Wilson�s Theorem ��		���

n is prime if and only if n divides �n� ��� � ��
So to �nd out whether n is prime we multiply together all integers less than n� add �� and

see whether the resulting number is divisible by n� However this requires multiplying n�

pairs of numbers together� as opposed to

p
n test divides earlier� so takes even longer than

our previous method�

The ancient Chinese made the startling discovery that

If n is prime then n divides �n � ��
which implies that

��� If n does not divide �n � � then n is composite �that is� not prime��
So we now have a new� and quite di�erent� criterion� which will tell us that certain numbers

n are composite� However� if a number fails this criterion �that is� if n does divide �n� ���
then it doesn�t� a priori� tell us that n is prime� but let�s check it out�

� divides �� � � � � � � �

 divides �� � � � 
 ��� divides ���� � �
� doesn�t divide �� � � � �� ��
 divides ���� � �
� divides �� � � � 
� ��� doesn�t divide ���� � �

 doesn�t divide �� � � � 
� ��	 divides ���� � �
	 divides �� � � � ��
 ��� divides ���	 � �
� doesn�t divide �
 � � � ��� ��� doesn�t divide ���� � �
� doesn�t divide �	 � � � ��� etc�

� from Article 
�� of Gauss�s Disquisitiones Arithmeticae ������

�



In all of these examples we observe that n is prime exactly when n divides �n � �� and
is composite otherwise� According to E� T� Bell� the ancient Chinese thought that this is

always true �� as did Leibniz many centuries later� However the �smallest such� example�

n � 
��� refutes this belief since 
�� � ��� 
� is composite� yet 
�� divides ���� � ��
Further computation shows that such composite n seem to be rare and so we de�ne

composite number n to be a base � pseudoprime if n divides �n � �� To exhibit quite
how rare these are� note that up to ���� there are around ��� million primes� but only

about �fteen thousand such base � pseudoprimes� while up to � � � � ���� there are over
a billion primes� and yet fewer than �� thousand base � pseudoprimes� So� if you were to

choose a random number n � � � �� ���� for which n divides �n � � then there would be
a less than one�in��fty�thousand chance that your number would be composite�

Testing whether �n�� � � mod n is easily implemented on a computer� as follows�
�i� Write n� � in base �� say n� � � �ak ��ak�� � � � ���a� where ak � ak�� � � � � � a�

�ii� Compute rj � ��j mod n for � � j � ak� by taking r� � � and rj�� � r�j mod n for

each j � �
�iii� Finally� since �n�� � ��

ak � ��ak��

� � � ��
a�
� we have �n�� � rakrak��

� � � ra� �mod n��

This algorithm requires no more than �� log� n operations so that� for a �� digit

number n� this �pseudoprime test� takes a few million operations �a few seconds on a PC�

whereas test division takes more than a billion billion operations �over a thousand years

on a PC�� It has been suggested that one might obtain a practical primality test by writing

down a list of all base � pseudoprimes� and then� if n divides �n � � but is not on the list�
one knows that n is a prime� Since there�s less than �� thousand base � pseudoprimes up

to � � � � ����� this method works well in this range� and will continue to work well as
long as the base � pseudoprimes remain so scarce� However� this won�t always be so since

Malo proved� in ���
� that there are in�nitely many odd composite base � pseudoprimes�

by showing that if n � ab �with a� b � �� is such a number� then so is n� � �n � � �� This

is proved by observing that� since a divides n which divides n� � �� thus xa � � divides
xn� �� which divides x�xn���� �� � xn

� �x� and so� in particular with x � �� we get that

�a � � divides �n � � � n� which divides �n
� � ��

Our hope of obtaining a complete list of base � pseudoprimes is thus doomed� but we

might still �nd all base � pseudoprimes up to some large number x� However� in �����

Pomerance showed that there are more than e�log x

c

base � pseudoprimes � x� for some

� However it is now believed that Bell had no evidence of this� but was embellishing a

good story� Just as standards of mathematical rigor have greatly improved over the last

hundred years� so too the standards of rigor of mathematical history�
� and then we get the sequence n� �n � �� ��n�� � �� ���

n
���� � �� � � � of base � pseu�

doprimes by iterating this observation�

�



constant c� � � c � �� once x is su�ciently large�� This is quite a fast growing function of

x and shows that our hoped for� easy and quick primality test won�t be practical for large

values of x� So what else can we do �

On October ��th� �
�� Fermat wrote� in a letter to his con�dante Frenicle� that the

fact that n divides �n�� whenever n is prime is not an isolated phenomenon� Indeed that�
if n is prime then

��� n divides an � a for all integers a�

which implies that

If n doesn�t divide an � a for some integer a then n is composite�

So instead of considering pseudoprimes to base �� we can consider pseudoprimes to any

base a� it turns out that such pseudoprimes are rare� though some do exist� However� since

base � pseudoprimes are rare� and base 
 pseudoprimes are also rare� one would guess that

numbers that are both base � and base 
 pseudoprimes must be extremely rare� perhaps

none exist at all � Unfortunately some do exist� such as �	��� which divides both �������
and 
�����
� yet �	�� � 
	�	
 is composite� Numbers that are pseudoprimes to bases ��

 and � simultaneously should be even rarer� but again do exist� for instance n � ����

��
and� indeed� there are examples for any �nite set of bases� So maybe we should ask whether

there are any composite numbers n which are pseudoprime for every base a � That is� for

which ��� holds� Such a number n would have to have certain extraordinary properties�

�i� n must be squarefree� else if p� divides n then p�jnjpn � p which is false�

�ii� If prime p divides n then p � � must divide n � �� for if a is a primitive root mod p
then a has order p� � mod p� but an�� � � �mod p� by ����
In ���� Korselt� observed that these two conditions imply that ��� holds �which the

reader may verify � hint� use the Chinese Remainder Theorem�� We thus state

Korselt�s criterion� n divides an � a for all integers a if and

only if n is squarefree and p� � divides n� � for all primes p dividing n�

So now� to determine whether ��� holds for n� we need only verify a few simple properties

of its prime factors� Korselt did not exhibit an example of such an integer n� and he

might have thought that no such n exist� However such n do exist� as was discovered by

Carmichael in ����� the smallest being �
� � 
� ��� �	� These numbers are now known
as Carmichael numbers� but surely would have been known as Korselt numbers had he

just done a few computations �

� for those readers not accustomed to such �estimates�� we note that� e�log x

c

is larger

than any given power of log x� and smaller than any given �positive� power of x� for

su�ciently large x�
� responding to a �Probl�eme Chinois� from L�Interm�ediaire des Math�ematiciens� a turn�

of�the�century French journal� similar to today�s The American Mathematical Monthly






The �rst few Carmichael numbers are

�
� � 
� ��� �	
���� � �� �
� �	
�	��� � 	� �
� ��
��
� � �� �	� ��
���� � 	� �
� 
�

Notice how they all have three prime factors� To obtain one with four prime factors we

must go out to

����� � 	� ��� �
� ��
and for �ve prime factors to

����
� � �� 	� �	� ��� 	
�

Carmichael computed �fteen such numbers in his ���� paper and stated that �this list

might be inde�nitely extended�� However it soon became apparent that it was going to be

di�cult to prove that his list could be so lengthened� and this statement has since been

considered an open problem��

Korselt�s criterion may be re�written as follows�

n � p�p� � � � pk is a Carmichael number if and only if the pi�s are distinct and

L � LCM�p� � �� p� � �� � � � � pk � �� divides n� ��
So� to verify that those numbers listed above are indeed Carmichael numbers� we only

need check that L � �� � LCM ��� ��� �
� divides �
�� that L � �� divides ����� that

L � 

 divides �	��� that L � ��� divides ��
�� that L � 
� divides ����� that L �

��� divides ������ and �nally that L � ��� divides ����
�� Notice that L is extremely

small compared to n � � in each example� which gives us a hint as to how to �nd more
Carmichael numbers� Let�s try to �nd a set of primes where these primes minus one have

� �	�� is best�known from the story of when Hardy visited Ramanujan in hospital�

and pronounced his taxicab number� �	��� to be a dull number� Ramanujan refuted this

by noting that it is the smallest number which is the sum of two cubes in two di�erent

ways� However Ramanujan didn�t say that �	�� is also interesting as being the third

smallest Carmichael number� Carl Pomerance further observes that the second smallest

Carmichael number� ����� is the sum of two squares in more ways than any preceeding

number� We leave it to the reader to come up with the analogous remark for �
�� the

smallest Carmichael number�
� see Alford�s forthcoming paper Chasing Carmichael numbers for a revealing discussion

of Carmichael�s paper�
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a surprisingly small common multiple� For example� since the prime divisors of �	�� are

p � 
 � �� q � �� � �� r � �� � � giving L � 

� we can generalize this to

�
� p � 
k � �� q � ��k � �� r � ��k � ��

for integer k � �� giving L � 

k� Since pqr� � � 

k�

k����k���� Korselt�s criterion
tells us that pqr is a Carmichael number provided each of p� q and r are prime� It is easy

to �nd many values of k for which the three numbers in �
� are simultaneously prime� but

can we prove that there are in�nitely many such k � This is considered an outstandingly

di�cult open problem in analytic number theory� and although experts are certain that

in�nitely many such k do exist� there have been no plausible ideas as to how to prove such

a result�

One can obtain other sequences in which one expects in�nitely many prime triplets or

quadruplets or quintuplets� which would give rise to in�nitely many Carmichael numbers�

for instance

���k � ���

k � �
����k � �	�� �
k � 	����k � �
����k � ����

���k � ������k � �	����
k � ���� �
�k � 	��
�k � �
�����k � 
���

����k � 	��
��k � ����

�k � �
������k � ����

but it seems unlikely that this approach will lead to a proof that there are in�nitely many

Carmichael numbers in the foreseeable future�

Let C�x� be the number of Carmichael numbers up to x� The following table gives

the number of Carmichael numbers up to various values of x�

x C�x� Year Discoverer�s�
��� � ���� Carmichael
��� 	 ���� Carmichael
��� �

��� �

��� ���
��
 ��� ��
� Poulet
��	 
�
 ��	� Swift
���� ���	
���� ���� ��

 ���� Pomerance� Selfridge� Wagsta�
���� 

��
���� ���� ���� Jaeschke
���� ���	�
���� ��	�

���� ������ ���� Pinch

This data suggests that there must indeed be in�nitely many Carmichael numbers� even

though they remain fairly scarce all the way up to ����� In ���� Paul Erd�os showed quite

�



how scarce Carmichael numbers are� by proving that the sum of their reciprocals converge
�� it has since been proved that

���y C�x� � x��f��o��
g log log log x� log log x

In ���
 Erd�os took a radically di�erent approach to constructing Carmichael numbers�

Earlier we noted that L � LCM�p� � �� � � � � pk � �� is much smaller than n � � for most
Carmichael numbers n � p� � � � pk� However� for a typical set of primes� fp�� � � � � pkg� there
is no particular reason to expect this to happen� indeed we�d expect L to be just a bit

smaller than n� �� So to construct Carmichael numbers we must �nd some way of forcing
L to be small� In our constructions above �like �
��� we selected our primes p to have

certain special forms� this guaranteed that the p� � had large common divisors� forcing L
to be small compared to n� �� Erd�os approached this problem from the other direction�
Instead of choosing primes in special ways so as to force L to be small� he chose L so

that there are many primes p for which p� � divides L� Once this is done� one need only
�nd a subset of these primes� say p�� p�� � � � � pk� for which n � p�p� � � � pk � � �mod L��

to obtain the Carmichael number n  one sees that n is a Carmichael number� by using

Korselt�s criterion� since n is squarefree� and each pi � � divides L� which divides n � ��
Let�s review

Erd�os�s construction of Carmichael numbers

�i� Select integer L�

�ii� Determine primes p for which p� � divides L� but p does not divide L�
�iii� Find a subset of the primes obtained in �ii� whose product is � � �mod L��

This product is a Carmichael number�

As an example� let�s try �i� L � ���� The primes p which do not divide ���� but for which

p � � does� are �ii� 	� ��� �
� 
�� ��� 
�� Checking through all subsets of these primes we
�nd that �iii� ����� � 	� ��� �
� �� � � mod ���� and �	���� � 	� �
� 
�� 
� � �
mod ���� and ������ � ��� 
�� ��� 
� � � mod ���� so that ������ �	���� and ������
are all Carmichael numbers�

With bigger� highly composite� values of L� we expect to �nd many more Carmichael

numbers� Indeed if we obtain r di�erent primes in step �ii� above� then there are �r � �
distinct products of non�trivial subsets of these primes� It seems plausible that roughly

��L of these products are � � �mod L�� and so we would have approximately �r�L
� unlike the primes� whose sum of reciprocals diverge�
yFor those not accustomed to such estimates� this is larger than x��� for any �xed

� � �� but smaller than any given positive constant times x� once x is su�ciently large�






Carmichael numbers so formed� It can be shown that if L is the product of all the primes

up to some su�ciently large point� then we can obtain more than � log�L primes in �ii��

and so we�d expect more than Llog� L such Carmichael numbers� Erd�os gave a similarly

reasoned argument to justify his conjecture that for any �xed � � �� there are more than

x��� Carmichael numbers up to x� once x is large enough 
�

However we see from our table above that the Carmichael numbers remain scarce all

the way up to ����� which is surprising if Erd�os�s conjecture is to be believed� Indeed Dan

Shanks� in his book Solved and Unsolved problems in number theory� challenged those

who believe Erd�os�s conjecture to produce a value of x for which there are more than x���

Carmichael numbers up to x� �Note that up to x � ����� there are only a few more than

x��� Carmichael numbers��

It is important to note that Erd�os�s construction is impractical� both theoretically

and computationally� if one doesn�t know how to �nd products� of the primes produced

in �ii�� which are � � �mod L�� as required for �iii�� At the beginning of this year�
there were fewer than ten thousand Carmichael numbers known� and it seemed to be a

very di�cult task to �nd many more� Then� suddenly on January ��st� �Red� Alford

announced that he had proven the existence of at least ���
 Carmichael numbers � Unlike

previous computations� which had sought all the Carmichael numbers up to some pre�

assigned limit� or had found many in certain sequences �such as in that given by �
���

Alford modi�ed Erd�os�s construction so as to make it computationally practical� As we�ve

already discussed� it is easy �computationally� to implement steps �i� and �ii� above� but

how can we �nd subsets of the primes in �ii� whose product is � � mod L � Here�s Alford�s
idea�

�iiia� Find a subset P of the primes in �ii�� such that for every a� � � a � L with gcd�a�L� �

�� there is a subset p�� � � � � pk of P for which p�p� � � � pk � a �mod L��

�iiib� Let Q be the primes found in �ii�� excluding those belonging to P � For any subset

q�� � � � � qr of these primes� let a be that integer� � � a � L� which is � �q�q� � � � qr���

�mod L�� From �iiia� we know that there is a subset p�� � � � � pk of P for which

p� � � � pk � a � �q� � � � qr��� �mod L�� and so p� � � � pkq� � � � qr � � �mod L�� There�
fore� by Erd�os�s construction� p� � � � pkq� � � � qr is a Carmichael number�

Thus� for each di�erent non�trivial subset of Q we�ve constructed a di�erent Carmichael

number� providing a total of at least �jQj � � Carmichael numbers� This method is very
practical� since we don�t need to explicitly write down the Carmichael numbers constructed

in �iiib� to be guaranteed of their existence� all we need know is that there is some product


 and� taking his argument to its limit� one expects C�x� to be approximately the size

of the function in ���

	



of the primes in P in the congruence class �q�q� � � � qr��� �mod L� corresponding to each

subset q�� � � � � qr of Q�

It remains to �nd a suitable set P in �iiia�� To do this� suppose that the primes found

in �ii� were p� � p� � � � � � pm� and de�ne Rj to be the set of products �mod L� of

the subsets of p�� p�� � � � � pj � We easily obtain Rj�� from Rj by observing that Rj�� �

Rj � frpj�� �mod L� � r 	 Rjg� Once we �nd j for which Rj is the set of all residue

classes a �mod L� with � � a � L and �a�L� � �� then we can take P � Rj and we�re

done�

Alford worked with the example �i� L � �� � 
� � �� � 	� � ��� and found that there are
�ii� ��� primes p � �
 such that p � � divides L� By computing R�� R�� � � � as above he

got �iiia� P � R��� that is that every residue class a �mod L� with �a�L� � � is given by

the product of some subset of the smallest �	 primes found in �ii�� Thus if Q is the set of

the largest ����� ���� �	� primes found in �ii� then� as described above� each subset of Q
corresponds to a Carmichael number� and we�ve proved the existence of at least ���
 � �
Carmichael numbers�

So� in an afternoon�s work� Alford increased the number of Carmichael numbers known

from fewer than ���� to more than ���
� Certain faculty members� here at the University of

Georgia� taunted the number theory group that there cannot be interesting �nite sets which

contain more than ���
 elements� and that surely Alford�s idea should provide su�cient

impetus to �nally prove that there are in�nitely many Carmichael numbers� And indeed

it did� The theorem that we eventually proved is

Theorem� �Alford� Granville� Pomerance 	 
���
� There are more than x��� Carmichael

numbers up to x� once x is su�ciently large�

To make Erd�os�s construction theoretically practical� one evidently needs a result

which guarantees that� given enough primes satisfying �ii�� there is some subset whose

product is � � �mod L�� A theorem of van Emde Boas and Kruyswijk implies that if
m � � is the largest order of an element of the multiplicative group modulo L� then such

a subset exists provided there are more than m logL primes satisfying �ii�� A theorem of

Prachar guarantees the existence of integers L for which there are more than Lc� log logL

primes p satisfying �ii�� however this quantity is usually a lot smaller thanm logL� To avoid

this di�culty one wishes to select L so that m is very small� but Prachar�s construction

doesn�t allow this� So instead we showed the existence of integers L of the form L�k with

�L�� k� � �� where the maximal order m� of an element modulo L� is extremely small� and

there are more than m� logL primes p satisfying �ii�� each with the additional property

that p � � �mod k�� The result of van Emde Boas and Kruyswijk then guarantees
the existence of a subset of these primes whose product is ��mod L�� and� since any

such product is � �mod k� �as each such prime is � �mod k��� thus this product is �

�mod L�� and so a Carmichael number� from Erd�os�s construction�

�



Filling in the details of this outline involves some deep tools from analytic number

theory� as well as combinatorial techniques involving groups and sets� This will all be

described in detail in a forthcoming journal article�

One ingredient needed for the proof is a lower bound for the number of primes in

certain arithmetic progressions� As is well known� there are asymptotically x� log x primes

up to x� and we expect these to be more�or�less equally distributed amongst the arithmetic

progressions a �mod d� with �a� d� � �� provided d is a little smaller than x� Currently it

is only known how to prove such a result if d is considerably smaller than x� in fact smaller

than a �xed power of log x� However� for our purposes� we proved

Fix � � �� If x is su�ciently large then for all� but a few	� integers d � x������ there

are more than x��d log x primes � x in the arithmetic progression � �mod d��

It is widely believed that such a result holds for any d � x���� If true this implies Erd�os�s

conjecture� for we also proved

Theorem� �Alford� Granville� Pomerance 	 
���
� Fix � � �� Assume that� for su�ciently

large x� the arithmetic progression � �mod d� contains more than x��d log x primes up

to x provided d � x���� Then there are more than x���� Carmichael numbers up to x�

once x is su�ciently large�

This Theorem seems to guarantee that Erd�os�s conjecture is correct� So� in answer to

Shanks�s challenge to �nd an x for which C�x� � x���� one can extrapolate our tabulated

values of logC�x�� log x to guess that one needs x to be around ����  it wouldn�t be

feasible to write down all the Carmichael numbers up to this point ��

So what does all this tell us about primality tests � Although there are various methods

known that will verify that a given number is prime in a �small� number of steps �thanks

to Miller� Goldwasser and Kilian� Adleman and Huang� and others�� they all consist of

checking a large number of conditions �polynomial in the number of digits of n�� It would

be more elegant if one only needed to check a �nite number of such conditions� but it now

seems unlikely that any such method proposed thus far will work�

In particular� there are various widely�used software packages that assert that a given

integer is prime if it is a �strong pseudoprime� for some given �nite set of bases� However

we can prove that� for any given �nite set of bases� there are in�nitely many Carmichael

numbers that are �strong pseudoprimes� to all the bases in that set� Such numbers would

be falsely identi�ed as prime by such a software packages� so reader� beware �

	 A precise description of �but a few� is� There exists an integer c �depending only on

�� such that there is a set B of no more than c integers� each � log x� such that we must

miss out all those d above that are divisible by an element of B�

�



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


