FLEXAGONS
C. 0. OAKLEY a~xp R. J. WISNER, Haverford College

1. Introduction. In 1939, four graduate students at Princeton University
(R. Feynman, A. H. Stone, B. Tuckerman, and J. W. Tukey) discovered how
to fold a piece of paper into what are now known as flexagons—hexagonal gadg-
ets which “flex” under an operation we call pinching to exhibit several faces.
Three short notes [3], [4], [6] merely show how to construct two of these paper
models. So far as we know there is no other printed literature.

In order to motivate the definitions of Section 4, where abstract flexagons
are discussed, we first describe informally how to construct physical models of

the simplest abstract flexagons to be called regular flexagons of orders 3, 6, and 9.

2. Regular flexagons of orders 3 and 6. To construct the regular flexagon
of order 3, RF;, take a rectangular strip of paper* about an inch and a half wide
and about a foot long, and from one end cut off a 30°, 60° triangle. Next, score
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the strip very carefully into ten equilateral triangles; discard any surplus material
and label on both sides of the paper as in Figure 1. The first triangle on the left
is a tab and is to be glued later to the last triangle on the right. With the strip
oriented as in the figure, hold the tab in the left hand and with the right hand
fold 211 over on top of 11, fold 21y over on top of 11y, and fold 2y; over on top of
1vi. Now glue tab 2y onto 2y; and the model is completed.

Hold the flexagon in the position of Figure 2 so that the Roman numerals
I to VI, indicating what we shall call pats, run clockwise. Each of pats I, III, V
contains a single triangle (piece of paper), each of pats II, IV, VI contains two
triangles, and the pats are arranged in the form of a hexagon. Mark the vertices
of the upper face of 25y with the letters a, b, ¢ clockwise as in Figure 2. Now with
pat IT to the north, pinch along the east radius (the east half of the east-west
diagonal) forcing pats I1I and IV down. While holding these together push the
west end of the west radius down. Actually this causes a folding east and along
alternate radii and the flexagon begins to open at the center (now at the top).
Releasing the pinching finger and thumb will permit the flexagon to “open” and
lie flat again but this time displaying a new face (set of six triangles which will
always appear together). The total operation is called a (physical) pinch. While

* Adding machine tape is satisfactory.

143
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211 is at the north, another pinch (east) is impossible since 1ry and 2ry are joined
along the east radius. Rotate the whole model —60° and label the vertices of
111, now north, with a, b, ¢ as before. Pinch east. Rotate —60° and label 1;
(north) with a, b, c. Another pinch brings the original face up again so that
three distinct faces have appeared. If the flexagon is turned over, three pinches
will exhibit three new (mathematical) faces since now the pat numbers run

NORTH

FiG. 2

counterclockwise. Moreover, the letter ¢ is now at the center of the model.

The degree of a pat is the number of triangular pieces of paper in that pat.
The order of a flexagon is the sum of the degrees of any two adjacent pats. Here
the order is three.

To make the regular flexagon of order 6, RF, prepare a strip of nineteen
triangles marked as in Figure 3. The construction is accomplished by “winding”
the strip up pat by pat. In the folding of the triangles into pats, the direction of
the winding motion of the right hand is that of a wheel rolling on the ground toward
you. In what follows we suppress the Roman subscripts, which are the pat indi-
cators, although they occur in the figure of the strip.

Fic. 3

To wind pat I:
(a) Hold strip as in Figure 3, tab in left hand;
(b) Fold triangle 2 back under triangle 1 by winding motion of right hand;
(c) Fold triangle 4 over on top of triangle 3 by winding motion;
(d) Fold the pair 4, 3 over on top of pair 1, 2 so that, from top down through
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the pat, the strip numbers now read 3, 4, 1, 2. This completes the pat; it is

of degree 4.

The order 3, 4, 1, 2 of this completed pat is unique; that is, there is no other
way to assemble the four triangles in a 4-pat. For the moment we write this
order 34,12 with a single comma placed where it tells us exactly what the final
folding was in the winding process.

Pat II is a 2-pat and is wound as in pat II of RF; above. From top down
through the pat the strip numbers are 2, 1 and there is no other way to assemble
the two triangles into a 2-pat.

Now wind in order pat III the same as pat I, pat IV the same as pat II,
pat V the same as pat I, and pat VI the same as pat II. The windings are there-
fore a triplication of pats I and II. Glue tab to 2yt and the flexagon is complete.
The pinching operation is the same for any flexagon. RF; and RFg are so special
that we omit further discussion, but experimentation with them before proceed-
ing would be helpful.

3. Regular flexagon of order 9. To make a model of the regular flexagon
of order 9, RFy, prepare a strip with a tab and 27 other triangles. Reserving the
leftmost triangle for the tab, mark the others, from left to right, 1, 2, 3, 4;
1,2,3,4,5; - -,in triplicate. Wind pat I as in RFs.

To wind pat II:

(a) Hold tab and pat I in left hand;

(b) Put 2 on top of 1;

(c) Put 4 under 3;

(d) Fold pair 3, 4 under pair 2, 1;

(e) Bring 5 over on top of 2 so that, from top down through the pat, the strip

numbers read 5,2143. This completes the pat; it is of degree 5.

The position of the comma after 5 tells us that everything to the left of it was
folded over 2143 in the last operation. The order 5,2143 is not unique for the
S-pat and this is explained in Section 5.

Triplicate these windings and glue tab. The strip numbers showing on the
upper face should be 3’s and 5’s.

In order to keep track of all of the following pinches, ignore the original strip
numbers and place a 1 in the middle of the top triangle of pat II; further, mark
this triangle with e, &, ¢ as in RF;. There is no need of marking the other tri-
angles since the same six pieces of paper will always appear together. This face
is now designated as face 1abc. Record this face on another piece of paper as
1a using only the letter at the center. With pat II north, pinch east; label north
2abc recording this new face as 2a, and note that it is impossible to pinch east
again. Rotate the flexagon —60°, pinch east, label new face (north) 3abc and
record as 3a. Pinch, label north 4abc, record 4a. Pinch, label north Sabc, record
Sa. Rotate, pinch; face 3bca appears but we record this as 30, using only the
letter at the center of the model.

Repeat the process: pinch east as many times as possible, then rotate and
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pinch east, recording new faces as they arise. The succession of faces, from the
beginning, is the following, the  indicating that a rotation is to be made before
another pinch: 1a, 2ar, 3a, 4a, Sar, 3br, 4a, 2¢, 6ar, 4cr, 2¢, 3a, 1a, 7a, 8ar, 1cr,
7a, 3¢, 9ar, Tcr, 3c; 1a.

Remark 1. At any time a pinch following a rotation of +120° will yield the
same face as the pinch without such a rotation. That is, pinching along any one
of three alternate radii will open the flexagon to the same face. If the flexagon
can also be pinched along one of the other set of alternate radii, a second face
is exhibited.

Remark 2. In the middle of the sequence of pinches above, the original face
la reappeared. But the next pinch led to the new face 7a, and not to 2a, because
the flexagon was so oriented that one of the other set of alternate radii lay east.
This situation is standard: in every complete sequence of pinches, a given face
from which two pinches are possible will appear twice and in the proper orienta-
tions to yield the two possible faces. In any flexagon, the faces with no more
than a single opening are those and only those where there is but a single paper
triangle in alternate pats.

The following definitions apply to all flexagons. A physical face is that col-
lection of the six uppermost triangles, one to a pat, regardless of their orienta~
tion. Each different orientation of these six triangles, with respect to each other,
determines what is called a mathematical face.

The above RF, has the following properties:

(a) It has 9 physical faces;

(b) It is a Mobius band of 21 half-twists;

(c) It requires 9 rotations and 21 pinches to run through a complete cycle on
one side;

(d) It has a total of 30 mathematical faces, 15 on either side. (The pat labels
run counterclockwise for each back side mathematical face.)

4. Definjtion of an abstract flexagon. Take a new flexagon strip, mark with
tab, 1, 2, 3, 4, 5 and wind a 5-pat as in RF,. Now turn the whole strip over
noting that the order 52143 has been reversed to read 34125, Mark the next two
triangles in the strip 6 and 7, and with these wind a 2-pat which will of course
read 76. If this 2-pat is now folded over onto the reversed 5-pat, the numbers 76
are reversed. The total process is that of winding a 7-pat reading, top to bottom,
67,34125. This helps to motivate the following definitions, which in this section
are concerned with abstract flexagons. But we do not continue to carry the
adjectives “abstract” and “physical” except where confusion might arise.

Let m be a positive integer. For m =1, the single permutation of the integer
1 is called a pat of degree 1. For m=r+s>1, the permutation 4,4,y - - -
AAibbe_y - - - boby, where A;=a;+s5, of the integers 1 to m is called a pat of
degree m if the permutation aia, - - - a, of the integers 1 to r and the permutation
bibs -+ - bs of the integers 1 to s are pats of degree r and s, respectively. We
define an abstract flexagon F to be an ordered pair of pats, F=(P, Q). If the pats
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are of degree p (a p-pat) and ¢ (a ¢g-pat), then N=p-¢ is called the order of the
flexagon Fy.

Two important operations on Fy which preserve the order IV are a pinch and
a rotation. If the degree of Q is at least two, a pinch is that transformation
which carries F into F’/, where F=(4,4,4 + - A1bsber + - - by, CiCoy -
Cdudyr » - dr); F'=(DyDysy -+ - Dibiby + - - bA1As -+ - A,y €162+ - - ¢1); As
=a;+s, Ci=c;+u, Di;=d;+r+s, and it is easily seen that F’ is a flexagon. A
rotation of a flexagon is the transposition of its pats.

Two flexagons are said to be equivalent if one is obtainable from the other by
a sequence of pinches or rotations, and this is an equivalence relation.

A flexagon can be represented physically as a triplication of a pair of pats,
the arrangement in the paper model being such that the three pairs form a flexi-
ble hexagon which, under a pinch, exhibits another face. It can be constructed
from a straight piece of paper by folding and gluing. For N=1+41, F; is the
ordinary hexagon.

There is a subclass of flexagons, closed under the operations of pinching and
rotating, which constitutes a universal class from which all flexagons arise. A
member of this class is called a regular flexagon RFy and is defined as above but
in terms of regular pats which require m 0, mod 3. Further, the degrees p
and ¢ of the ordered pair of regular pats must belong to different residue classes,
mod 3. Hence p, ¢ are of the form 3k+1, 3k+2 and N=p+4+¢=0, mod 3. A
model of a regular flexagon can be constructed from a straight piece of paper by
folding only.

The next two sections are devoted to regular flexagons.

5. Regular pats. We now consider the number of distinct ways to wind
some regular pats of degree m (0, mod 3). Pats of degree m=1 and m =2 can
be constructed in only one way.* A pat of degree m =4 is also unique, namely
34,12,

If m =3, there are two and only two distinct ways. To make a 5-pat, we add
one more triangle to the 4-pat. But clearly this can be done in two ways: first,
to the whole 4-pat, after it has been turned over, can be added triangle 5, which is
now on top. In turning the 4-pat over, we have reversed its sequential order so
that the whole 5-pat now reads, top to bottom, 5,2143. Second, a 4-pat could be
wound on triangles 2, 3, 4, 5 and its order (3412) would then be 4523. Now this
can be turned over, becoming 3254, and folded over triangle 1 making the 5-pat
read 3254,1. Note that the ordered binary partitions of 5=7-s, where neither
7 nor s is congruent to 0, mod 3, are 144 and 4-41. These must be considered
in winding the 5-pat which is necessarily made up of 144 triangles or 441 tri-
angles, There are no other ways to wind a regular 5-pat.

If m =7, there are four ways. The permissible ordered binary partitions are
7=245and 7=5-+2. We take oze of the 5-pats, say 52143 made from triangles

* We are not concerned here with m =0, mod 3. If you try to wind a 3-pat, for example, you
will see that the paper folds back over the tab and the winding cannot proceed. (But see Section 7.)
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1, 2, 3, 4, 5, and we take the only 2-pat now to be called 76 because it is made
from triangles 6 and 7 in the strip, and combine them. Physically each of these
must be turned over to be combined and therefore, sequentially, the 7-pat
reads 67,34125. Using, in the same way, the 32541, we get another 7-pat,
67,14523. Or, for the binary partition 7 =542, we write the 5 =14-4 sequence,
namely 52143, on the triangles 3, 4, 5, 6, 7, thus adding 2 to each member of the
sequence which now becomes 74365. Combining this with 21 (reversing each
since, physically, they have to be turned over) we arrive at the first sequence
corresponding to the partition 7 =5+42, namely, 36745,12. Similarly for the other
7=542, namely, 56347,12. There are no more ordered partitions of 7 and, con-
sequently, no more 7-pats.

We have been doing nothing more than forming regular pats from the defini-
tion. Following is a table of regular pats extending through m =8. The notatioa
of a pat describes how to wind it. Consider for example the last entry of Table I,
and remember the direction of winding. Put 5 and 4 together {5 under 4); 7
over 6; 7 (along with 6) over 4; 3 under 2; 8 over 5; 8 (and everything under it)
on 2; 6 (and everything under it) on 1.

TABLE I. REGULAR PATs OF DEGREE m

m Pat m Pat

1 1 8=1+47 8,5214376
2=141 2,1 8,2154763
4=242 34,12 8,2174365
5=1+44 5,2143 8,3254176
=441 3254,1 =444 6587,2143
7=2+5 67,34125 =741 3265874,1
67,14523 6325487,1

=542 36745,12 4365287,1
56347,12 3285476,1

The thumbhole in any pat is that unique place such that each number to the
right of it is less than each number to the left. Actually, the comma as it has
been used indicates the thumbhole. Since the thumbhole is unique, the comma
will now be omitted. The thumbhole separates a pat according to the partition-
ing used in the winding and is the one place in the physical pat where the thumb
can be inserted without encountering a pocket.

Under a pinch east of any flexagon, with pat II north:

(a) Those triangles in I are retained in I but are reversed;

(b) Those triangles above (to the right of) the thumbhole in II are retained in
II but are reversed;

(c) Those triangles below (to the left of) the thumbhole in II are slid out of II,
without reversal, onto the top of I (reversed).

In the notation of the definition of a flexagon, our example RF, becomes
(3412,52143). By (a), (b), and (c), the first pinch produces the ordered pair of



1957] FLEXAGONS 149

regular pats (65872143,1) where the structure of each pat is clearly exhibited.
(Of course, we mentally relabel the triangles in writing new pat structures.)
This “new pat I” is the one 8-pat derived from the partition 8 =4-+4 (See
Table I). This corresponds to face 2a. We rotate, pinch, efc. The total sequence
is as follows:

1o 3412,52143 2 367451221 1,85214376
2ar  65872143,1 6ar  82154763,1 ler  63254871,1

1,65872143 1,82154763 1,63254871
3¢ 32541,3412 der  32658741,1 7a  21,6734125
4 6714523,21 1,32658741 3¢ 5634712,21
Sar  83254176,1 2 21,3674512 9ar  82174365,1

1,83254176 3¢ 3412,32541 1,82174365
3br  43652871,1 la  52143,3412 Ter  32854761,1

1,43652871 7 6734125,21 1,32854761
4o 21,6714523 Sar  85214376,1 3¢ 21,5634712

Each pinch and rotation has produced another flexagon. As a matter of fact,
each pat in Table I has been used. This equivalence class of flexagons could
have been made originally according to any entry in the above sequence. For
example, look at 3a 3412,32541; this is an RF,; wound with the other regular
5-pat.

6. Number of regular flexagons. To find the number of regular flexagons
of a given order we must first determine the number #g; and the number
usrye of distinct regular pats of degree 3811 and 3&-}2. We have,

(1) uy = 1,
(2) Ushi1 = Ualgr—1 -+ Ushar—a + + + - 4+ Ugp—1%s,
3) Ushps = UiMsrs1 T Walkgp—2 + « - - + Ugry1tty,

where the subscripts describe the ordered partitions. We define the two generat-
ing functions f(x) = Y oo Usqrx* and g(x) = 2 oo Usrsax* and it follows from (1),
(2), and (3) that g(x) =f%(x), f(x) =14xg2(x), so that

4 flx) = 1+ xf4(=),

(8) 2(2) = [1 + «g?(x) ]2

To compute the coefficients #sx1 and #szy2 we apply Lagrange’s inversion
formula [8] directly to (4) and after the transformation %(¢) =#g(¢2) to (5). The
results® are

1 (4k + 1) 1 (4k + 2)
= /2 = .
M T E AN k) T T I\

* We are indebted to T. S. Motzkin and Hans Rademacher who, independently, transmitted
them to us in correspondence.
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The total number Uy of regular flexagons of order N, each being an ordered
pair of regular pats, is therefore given by

Unv = Un = 2(uistpn1 + wassr—g + - - + us_otts)
2§ 1 (47—1—1) 2 (40\—7—1)4—2)
4y +1\ 4 4N —v—1)+2 AN—y—1 ’

This can be summed by making use of a result of Gould [2], namely:
don o Ar(a, D) Anic, b) =A.(a+c, b), where

A'm(an B) = o —:ﬂm (a _I;.nﬁm> .

Therefore,

Al 6 4\ — 1
Up =25 A1, DA, 1(2,4) = .
8= 2 5 Ar(1, (2,4 4>\—1<)\—1)

But these are divided into equivalence classes, and so in that sense the
number of unique regular flexagons is considerably smaller than the number of
ways in which they may be constructed. We shall now compute the number of
equivalence classes.

Each (physical) triangle must—at some stage of pinching—constitute a pat
by itself. For if in any pat P of degree exceeding one, we fix on any particular
triangle T, then the flexagon can be held (turned over if necessary) so that T is
above the thumbhole in P (north) and a pinch (east) reduces the degree of P
which, of course, still contains 7. Repetition of this process will reduce the pat
P containing T to degree one. (Here, P is used as a generic notation for the new
pats containing T'; and the turning over of the flexagon causes no loss of gen-
erality.)

In each adjacent pair of pats there is a sum of N triangles and each time one
of them constitutes a pat by itself, a rotation is necessary to continue the nor-
mal course of pinching. Hence, there are at most N rotations in the course of
pinching through all the physical faces. Furthermore, for each pair of adjacent
pats, each pinch annexes triangles to one of the pats by a half-twist and at the
same time removes triangles from the other by means of removing a half-twist
from that pat. Since a flexagon of order N is a Mobius band of 3N —6 half-
twists, there will be at most 3N —6 pinches in running through a class of equiv-
alent flexagons. Therefore, a flexagon runs through at most 4N —6 stages by
means of rotations and pinches. For RFy it is easy to show that the number
of stages is either 4N —6, (full period), or (4N—-6)/3, (1/3 period). Period 1/3
occurs when and only when the flexagon is equivalent to (@10 * * * Gm) AnAm-

« o+ A1@m@my -+ + a1). For the argument see Section 7.
The number of equivalence classes is therefore Uy/(4N —6) in case the period
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is full. But in cases where the period is 1/3 this number must be increased by
2u,,/3. Where N =3\, we now take cases.

(a) A=3k. Since no regular pat has degree a multiple of three, no flexagon of
period 1/3 is possible in this case and the number of equivalence classes is

* 6 Mm—1 1 12k — 1
Ur = (12x—6)(4>\—1)(x—1)=(6k—1)(12k—1)<3k—1)'

(b) A=3k-+1. Here we must add 2#3.41/3.

- 6 <4>\—1 2 (4k
YT U= 6@ —1) )\—1)+3(3k+1) k)

~ 1 (12k + 3) . 2 <4k)
T34k 4+ 1)(6E+ D\ 3k 33+ D\ &/
(c) A=3k-+2. Similar to (b), we obtain

ot 1 (12k+7>+ 4 (4k—|—1)
YUk 02k \3k+1/ T 3Gk+ D\ & /)

7. General flexagons. We now wish to discuss non-regular pats and hence
remove the restriction that the order of a flexagon be a multiple of three. Con-
sider the regular pat 3412; if we identify the triangles numbered 3 and 4, we
then have a pat of degree three which we may write as 3412, or simply 312. This
topological identification of triangles may be executed physically by gluing tri-
angles 3 and 4 together. It is easily seen that such identification may be made on
any pair of consecutive integers which are adjacent numbers of the pat. Hence,
by identifying 1 and 2 in 3412, we obtain 3412, or simply 231. These are the
only possibilities for a general pat of degree three. To illustrate further, we ob-
tain the general pats derivable from the regular 5-pat 52143. These are 52143
=4132, 52143 =4213, and 52143=312. All the non-regular pats may be ob-
tained from the regular ones in this manner, and they may be combined without
restriction (physically: by gluing when necessary) to form new pats of any de-
gree and flexagons of any order. The definitions of a pat, a flexagon, a pinch,
and a rotation are given in Section 4.

Pats of degree m are dependent on the ordered binary partitions of m =7--s.
For example, two 7-pats are obtained from 4213 and 312 by first taking aia:as04
=4213, bibsbs =312 (yielding 6457213) and by next taking a10:03 =312, b1b:bsb4
=4213 (yielding 6573124). The pats of degrees 1 through 5 are given by:
1;21; 312, 231; 3241, 2431, 3412, 4213, 4132; 25341, 24531, 32541, 42351, 34251,
43512, 35412, 45213, 45132, 51423, 51342, 52143, 53124, 52314. The regular pats
are given in bold face type.

We now obtain the number of non-equivalent flexagons of order N. If v, is
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the number of pats of degree m, then v,,= > _r-i v, This recursive convolu-
tion may be solved by consideration of the generating function ¢ = 2 5., vpx*1,
which satisfies x¢2—¢+1=0 and for which we impose the condition v;=1 as
demanded by the definition of a 1-pat. Again, by use of Lagrange’s inversion

formula, we find
1 <2m - 1)
vm = 3
2m — 1 m

The number Vy of flexagons of order N is the sum of the number of ways in
which ordered pairs of pats may be taken, and hence

. 1 <2N— 1)
=1) —_— .
NEWTON I\ N

Notice that Vy={(4N—6)/N} Vy_1.

As before, each flexagon may be pinched or rotated into 4N —6 equivalent
flexagons except that the flexagon (ai@z - - « @my AmAm * * * A100Gm-1 -« - @y)
has 1/3 period and the flexagon (a:¢z - - * @m, G102 * * - @y,) has 1/2 period. We
must show that these are the only special cases to worry about in computing
V§, the number of non-equivalent flexagons of order N.

First, the two cases cited never coincide. That is, if N=6M, then no flexagon
of the form (aias - + + @am, AomrAosr—y - - A1@em@an—1 - - - a1) is equivalent to a
flexagon of the form (bids « - * bsar, bibs « + - bsar). For this to occur, the 2M-pat
@10z - - - asy would have to be a duplication of an M-pat P=cics - + * ¢ (t.e.,
a1as + + + Aoy =CyCay_y - + » Cicpycar—a - - - ¢1), and bby - - - bsyr would have to
be a triplication of the same pat P. Now if we identify the triangles of P as
being the same triangle, then the flexagon (a@ias + * - asnr, AemAom—r - - -
AlazMazM_l LR 01) becomes (21,3412) and (b1b2 LR bsM, b1b2 v bSM) becomes
either (312,312) or (231,231). But (21,3412) is a regular flexagon, and hence is
not equivalent to a non-regular one.

Second, let Fy be a flexagon of order N. We must establish that Fy is full
period, 1/2 period, or 1/3 period. We consider the case in which Fy is a 1-pat
and an (V'—1)-pat, and no generality is lost since every flexagon is equivalent to
one of this type. It is clear that if Fy is equivalent to fewer than 4V —6 flexagons,
it is necessarily equivalent to one which is composed of an m-pat P,, m>1,
and a k-plication of that same P,,. By identifying the triangles of P,, we arrive
at a derived flexagon which is a 1-pat and a k-pat. If k=1, then the derived
flexagon is F,, the hexagon, which has 1/2 period; Fy also has 1/2 period. If
k=2, the derived flexagon is RF;, of 1/3 period and Fy has 1/3 period. If £>2
and if the derived flexagon were full period, then Fy would also be full period.
Since this is contrary to the hypothesis, the derived flexagon is not full period,
and we repeat the process. Thus, we arrive at a flexagon which is either 1/2
period or 1/3 period, and Fy has the corresponding periodicity. Since RFy is
never of the form (P, P), a regular flexagon cannot be of 1/2 period.
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Therefore, in computing V, we must add to Vy the quantity Lox.V
whenever N=0, mod 2, and 3vy,3V# whenever N=0, mod 3. But since V5 and
Vi are both 1, we have

V= eV g e+ G )
YEun—6 VT 2 ™ 3 e

Vet { e+ {5 o)
= — o ———v PR
NNI 2N/2 37)N/3’

where the braces indicate inclusion of that term when and only when applicable.

We now give a table showing some values of the various numbers considered,
and it is interesting to note how small the class of regular flexagons is in com-
parison with the class of all flexagons.

Ii

TABLE 11
N uy Un Uy Va(=vw) Vi
2 1 0 0 1 1
3 0 2 1 2 1
4 1 0 0 5 1
5 2 0 0 14 1
6 0 6 1 42 4
7 4 0 0 132 6
8 9 0 0 429 19
9 0 30 1 1,430 49
10 22 0 0 4,862 150
11 52 0 0 16,796 442
12 0 182 5 58,786 1,424
13 140 0 0 208,012 4,522
14 340 0 0 742,900 14,924
15 0 1,224 24 2,674,440 49,536
16 969 0 0 9,694,845 167,367
17 2394 0 0 35,357,670 570,285
18 0 8,778 133 129,644,790 1,965,058

8. Remarks. A. There is an essential difference between the class of all
flexagons and the subclass of regular ones. The statement in Section 7 that
Vw=vx gives the hint: the general flexagon (aa; « + - @,, bibs * + + b,) could be
studied and considered as just the pat 4,4,_; - - -A1bsbs—1 * - - b1. The regular
flexagon, RFy, N=0, mod 3, could not be studied by means of studying regular
pats since no regular pats have degree =0, mod 3.

B. Notice that if P=aia; - - - a is a pat, so also is P’ =afad - - + a,, where
af +an-jsa=m-+1. Thus, pats occur in comjugate pairs or are self-conjugate
(e.g., 3412). To construct P’, one may label the triangles in the flexagon strip
from right to left instead of from left to right, and then carry out the instructions
for winding P. Suppose F=(P, Q) is a model of a flexagon. We have discussed
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pinching and rotating F, but another obvious operation is that of revolving F
180° about an axis through opposite vertices. This carries F into the conjugate
flexagon (Q/, P').

C. We have constructed a “one-sided” theory of flexagons, and this has led
to a simple analysis by convolutions. In the theory of pats, the conjugate pats
arose by considering ordered partitions. Hence, in computing Vy, we have
counted twice those models arising from ordered binary partitions with unequal
components. However, when the components of the partitions are equal, the
models have been counted only once. In order to compute the number Wy of
models of flexagons of order N =2M, we write Way =(Vai-+vy)/2. There is no
other corresponding change in Table II.

D. In much the same manner as one labels symmetry operations on the
faces of a regular polyhedron to obtain the group of symmetries of that con-
figuration, one can find groups associated with flexagons. For example, one group
associated with F; is S;. These usually turn out to be dihedral groups, and
finding them is useful and interesting in the teaching of elementary group
theory.

E. The number v, of flexagons of order m adds to the very long list of com-
binatorial interpretations (ranging from election possibilities and postage stamps
to continued fractions) of the recursion formula ©,=1; v,,= ZZ‘;‘ ViV Which
has appeared—with variations—many times in the literature. Some inter-
pretations are mentioned by Becker [1], and a paper by Motzkin [5] gives inter-
pretations and generalizations. The numbers u#xy of this paper constitute a
variation, and the relevance of continued fractions is given by Touchard [7].
Other references are given in these papers.

Added in proof: An article by Martin Gardner on flexagons appeared in
Scientific American, December, 1956. While non-mathematical in nature, the
article indicates rather complete unpublished work by the inventors, and is an
account of the interesting history of the gadgets.
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