## Big Primes

## Factoring Big Integers

Paul Garrett
garrett@math.umn.edu

University of Minnesota

If we want 200-digit prime numbers, we cannot use the naive method we learned in gradeschool: we would not complete the computation in the lifetime of the universe, even using all the computational power of the whole internet.
Note that these well-known tests for primality confirm that a number is prime exactly by failing to factor it.
It turns out that primality testing is much easier than factoring.
Factoring big numbers is hard, despite striking (and wacky) modern factorization techniques much better than trial division.
Even more surprising are fast modern probabilistic primality tests.
For those who long for absolute certainty, it is possible to construct large primes with accompanying certificates of primality indicating how to reprove their primality upon demand.

## Facts

The number $\pi(N)$ of primes less than $N$ is

$$
\pi(N) \sim \frac{x}{\log x}
$$

This is the Prime Number Theorem (Hadamard and de la Vallée Poussin, 1896).

Riemann observed (1858) that if all the complex zeros of the zeta function $\zeta(s)=$ $\sum n^{-s}$ lay on the line $\operatorname{Re}(s)=\frac{1}{2}$ then (as refined...)

$$
\pi(N)=\frac{x}{\log x}+O(\sqrt{x} \log x)
$$

The conjecture on the location of the zeros is the Riemann Hypothesis.
No result approaching this is known: there is no known zero-free region $\operatorname{Re}(s) \geq \sigma$ for $\sigma<1$.
The Prime Number Theorem uses the nonvanishing of $\zeta(s)$ on $\operatorname{Re}(s)=1$.

## Special Primes

As of January 2000, the largest prime known was the $38^{\text {th }}$ Mersenne prime

$$
2^{6972593}-1
$$

Theorem (Lucas-Lehmer) Define $L_{o}=4$, $L_{n}=L_{n-1}^{2}-2$. Let $p$ be an odd prime. The Mersenne number $2^{p}-1$ is prime if and only if

$$
L_{p-2}=0 \bmod 2^{p}-1
$$

Theorem (Proth) The Fermat number $F_{n}=2^{2^{n}}+1$ is prime if and only if

$$
3^{\left(F_{n}-1\right) / 2}=-1 \bmod F_{n}
$$

## Hunting for primes

Nevertheless, when developing expectations for hunting for primes, we pretend that primes are distributed as evenly as possible.
Note: it is not true that primes are distributed evenly, even under the Riemann Hypothesis.
But if primes were evenly distributed, then near $x$ primes would be about $\ln x$ apart.
Thus, in hunting for primes near $x$ expect to examine $\frac{1}{2} \ln x$ candidates:
For $x \sim 10^{20}$ we have $\frac{1}{2} \ln x \sim 23$
For $x \sim 10^{100}$ we have $\frac{1}{2} \ln x \sim 115$
For $x \sim 10^{500}$ we have $\frac{1}{2} \ln x \sim 575$

## Failure of trial division:

Trial division attempts to divide a given number $N$ by integers from 2 up through $\sqrt{N}$. Either we find a proper factor of $N$, or $N$ is prime. (If $N$ has a proper factor $\ell$ larger than $\sqrt{N}$, then $N / \ell \leq \sqrt{N}$.) The extreme case takes roughly $\sqrt{N}$ steps, or at least $\sqrt{N} / \ln N$.

If $N \sim 10^{200}$ is prime, or if it is the product of two primes each $\sim 10^{100}$, then it will take about $10^{100}$ trial divisions to discover this. Even if we're clever, it will take more than $10^{98}$ trial divisions.

If we could do $10^{12}$ trials per second, and if there were a $10^{12}$ hosts on the internet, with $<10^{8}$ seconds per year, a massively parallel trial division would take ...

## $10^{66}$ years

6

## Examples of trial division

What are the practical limitations of trial division? On a 2.5 Gigahertz machine, code in $\mathrm{C}++$ using GMP

1002904102901 has factor 1001401 ('instantaneous')

100001220001957 has factor 10000019 (3 seconds)

10000013000000861 has factor 100000007 (27 seconds)

1000000110000000721 has factor 1000000007 (4 minutes)

## The Birthday Paradox [sic]

For $n+1$ things chosen (with replacement) from $N$ the probability that they're all different is

$$
p=\left(1-\frac{1}{N}\right)\left(1-\frac{2}{N}\right) \cdots\left(1-\frac{n}{N}\right)
$$

Then from $\ln (1-x)>-x$ for small $x$ one has

$$
\ln p>-\sum_{\ell=1}^{n} \frac{\ell}{N} \sim-\frac{\frac{1}{2} n^{2}}{N}
$$

Thus, to be sure that $p \geq \frac{1}{2}$ it suffices to take $n$ such that

$$
n>\sqrt{N} \cdot \sqrt{2 \ln 2} \sim 1.1774 \cdot \sqrt{N}
$$

Thus, with 23 people in a room the probability is greater than $\frac{1}{2}$ that two will have the same birthday.

## Pollard's rho method (circa 1976)

We'll try to beat the $\sqrt{N}$ steps trial division needs to factor $N$.

First try: Suppose that $N=p \cdot M$ with $p$ prime and $p<\sqrt{N}$. If we choose somewhat more than $\sqrt{p}$ integers $x_{i}$ at random, then the probability is $>\frac{1}{2}$ that for some $i \neq j$ we'll have

$$
x_{i}=x_{j} \bmod p
$$

The probability is roughly $\frac{1}{\sqrt{N / p}} \sim 0$ that $x_{i}=x_{j} \bmod N$, so most likely for some pair
$\operatorname{gcd}\left(x_{i}-x_{j}, N\right)=$ proper factor of $N$
But we might have to compare

$$
\sqrt{p} \cdot \sqrt{p}=p \sim \sqrt{N}
$$

pairs, no better than trial division.
(In any case, we compute $g c d$ 's quickly by the Euclidean algorithm.)

## Second try at Pollard's rho

Since we would have had trouble making a large number of truly random choices anyway, let's stipulate that we choose the $x_{i}$ 's in a more structure way, in a sort of random walk in $\mathbf{Z} / N$. Let $f: \mathbf{Z} / N \rightarrow \mathbf{Z} / N$ be a deterministic 'random' function, fix $x_{o}$, and define

$$
x_{i+1}=f\left(x_{i}\right)
$$

Since $f$ is deterministic

$$
\begin{gathered}
f\left(x_{i}\right)=x_{j} \quad \Longrightarrow \\
f\left(x_{i+1}\right)=f\left(f\left(x_{i}\right)\right)=f\left(x_{j}\right)=x_{j+1}
\end{gathered}
$$

So if the walk enters a cycle it stays there.
We use Floyd's cycle-detection trick:

## Floyd's cycle-detection trick:

Fix $x_{o}$, define $y_{o}=x_{o}$, and define

$$
x_{i+1}=f\left(x_{i}\right) \quad y_{i+1}=f\left(f\left(y_{i}\right)\right)
$$

so the $y_{i}$ 's take the same walk but twice as fast.

Once the cycle is entered, the $y$ 's walk one unit faster than the $x$ 's, so in fewer additional steps than the cycle length, $x_{j}=y_{j} \bmod p$.

In summary: the initial walk plus cycle takes $\sqrt{p} \leq N^{1 / 4}$ steps, and another $\sqrt{p}$ for the $y$ 's to catch the $x$ 's modulo $p$, so

$$
2 \sqrt{p} \leq 2 N^{1 / 4} \quad \text { steps }
$$

to find the factor $p$ of $N$.

## Examples of Pollard's rho factorization

Take $x_{o}=2$ and $f(x)=x^{2}+2 \bmod N$ (this is random...?). In less than 10 seconds total,

2661 steps to find factor 10000103 of 100001220001957

14073 steps to find factor 100000007 of 10000013000000861

9630 steps to find factor 1000000103 of 1000000110000000721
(Even larger...) 129665 steps for factor 10000000019 of 100000001220000001957

162944 steps for factor
100000000103 of 10000000010600000000309

Yet larger...
89074 steps for
1000000000039 of
1000000000160000000004719

12 seconds, 584003 steps for
10000000000037 of 100000000001660000000004773

2 minutes, 5751662 steps for 100000000000031 of 10000000000016400000000004123

## Modern factorization methods

Since the 1970's, better methods have been found (but not polynomial-time):
quadratic sieve: the most elementary of modern factorization methods, and still very good by comparison to other methods. Descended from Dixon's algorithm.
elliptic curve sieve: to factor $n$, this replaces the group $\mathbf{Z} / n^{\times}$with an elliptic curve $E$ defined over $\mathbf{Z} / n$. In effect, the difference between $\mathbf{Z} / n^{\times}$and $\mathbf{Z} / n-\{0\}$ is what indicates that $n$ is composite, and an analogous discrepancy in the case of elliptic curves can be similarly exploited.
number field sieve: Descended from several sources, including Adleman, Pomerance, and Rumely (1983), which made novel use of exponential sums (hence, of irrational algebraic numbers)

## Bargain-basement Primality Test: <br> Fermat pseudoprimes

Fermat's Little Theorem asserts that for $p$ prime, $b^{p}=b \bmod p$.

Proven by induction on $b$, using

$$
\begin{aligned}
& (b+1)^{p}=b^{p}+\binom{p}{1} b^{p-1}+\ldots+\binom{p}{p-1} b+1 \\
& =b^{p}+1 \bmod p
\end{aligned}
$$

The binomial coefficients are integers, and on the other hand, they are divisible by $p$, since

$$
\binom{p}{i}=\frac{p!}{i!(p-i)!}
$$

and the denominator has no factor of $p$. (Unique Factorization...)

Thus, if $n$ is an integer and $b^{n} \neq b \bmod n$ for some $b$, then $n$ is composite.

The converse is false, but not very false...

The only non-prime $n<5000$ with $2^{n}=2 \bmod n$ are 34156164511051387 17291905204724652701282132774033 436943714681

Requiring also $3^{n}=3 \bmod n$ leaves 561 11051729246527012821

Requiring also $5^{n}=5 \bmod n$ leaves 561 1105172924652821

Compared with 669 primes under 5000, this is a false positive failure rate of less than $1 \%$.
$n$ is a Fermat pseudoprime base $b$ if $b^{n}=b \bmod n$.

## Terminology

Usage is not consistent.
My usage is that a number that has passed a primality test (Fermat, Miller-Rabin, etc.) is a pseudoprime.

Sometimes a pseudoprime is meant to be a non-prime which has nevertheless passed a primality test such as Fermat. But for large numbers which have passed pseudoprimality tests we may never know for sure whether or not they're prime or composite ...

Another usage is to call a number that has passed a test a probable prime.

But this is dangerously close to provable prime, which is sometimes used to describe primes with accompanying certificates of their primality.

There are only 172 non-prime Fermat pseudoprimes base 2 under 500,000 versus 41,538 primes, a false positive rate of less than $0.41 \%$

There are only 49 non-prime Fermat pseudoprimes base 2 and 3 under 500,000, a false positive rate of less than $0.118 \%$

There are only 32 non-prime Fermat pseudoprimes base $2,3,5$ under 500,000

There are still 32 non-prime Fermat pseudoprimes base $2,3,5,7,11,13,17$ under 500,000

56111051729246528216601891110585 15841293414104146657526336274563973 75361101101115921126217162401172081 188461252601278545294409314821 334153340561399001410041449065 488881

Adding more such requirements does not shrink these lists further.
$n$ is a Carmichael number if it is a non-prime Fermat pseudoprime to every base $b$.

In 1994 Alford, Granville, and Pomerance showed that there are infinitely-many Carmichael numbers.

And it appears that among large numbers Carmichael numbers become more common.

Nevertheless, the Fermat test is a very fast way to test for compositeness, and is so easy and cheap that it is still the best first approximation to primality.

It is cheap because $b^{n} \bmod n$ can be computed in $\sim \log n$ steps, not $n \ldots$

## Fast modular exponentiation

To compute $b^{n} \bmod n$, with $n \sim 10^{100}$ or larger, do not multiply $10^{100}$ times.

Rather, note that repeated squaring reduces the number of operations:

$$
b^{69}=b^{2^{6}+2^{2}+2^{0}}=\left(\left(\left(\left(\left(b^{2}\right)^{2}\right)^{2}\right)^{2}\right)^{2}\right)^{2} \cdot\left(b^{2}\right)^{2} \cdot b
$$

To compute $x^{e} \bmod n$
initialize $(X, E, Y)=(x, e, 1)$
while $E>0$
if $E$ is even
replace $X$ by $X^{2} \bmod n$
replace $E$ by $E / 2$
elsif $E$ is odd
replace $Y$ by $X \cdot Y \bmod n$ replace $E$ by $E-1$

The final value of $Y$ is $x^{e} \bmod n$.

## Better primality test: Miller-Rabin (1978)

If $n=r \cdot s$ is composite (with $\operatorname{gcd}(r, s)=1)$
then by Sun-Ze's theorem there are at least
4 solutions to

$$
x^{2}=1 \bmod n
$$

namely the 4 choices of sign in

$$
x= \pm 1 \bmod r \quad x= \pm 1 \bmod s
$$

Thus, if we find $b \neq \pm 1 \bmod n$ such that $b^{2}=1 \bmod n, n$ is definitely not composite.

Roughly, the Miller-Rabin test looks for such extra square roots of 1 modulo $n$ (details below).

Theorem: (Miller-Rabin) For composite $n$, at least $3 / 4$ of $b$ in the range $1<b<n$ will detect the compositeness (via the Miller-Rabin test)

Pseudo-corollary If $n$ passes the Miller-
Rabin test with $k$ random bases $b$, then
(exercise: explain the fallacy)

$$
\operatorname{probability}(n \text { is prime }) \geq 1-\left(\frac{1}{4}\right)^{k}
$$

## Miller-Rabin test base $b$ :

factor $n-1=2^{s} \cdot m$ with $m$ odd
replace $b$ by $b^{m} \bmod n$
if $b= \pm 1 \bmod n$ stop: $n$ is $3 / 4$ prime else continue
set $r=0$
while $r<s$
replace $b$ by $b^{2} \bmod n$
if $b=-1 \bmod n$ stop: $n$ is $3 / 4$ prime
elsif $b=+1 \bmod n$ stop: $n$ is composite
else continue
replace $r$ by $r+1$
if we fall out of the loop, $n$ is composite.
If $n$ passes this test it is a
strong pseudoprime base $b$.

## Failure rate of Miller-Rabin?

The fraction of $b$ 's which detect compositeness is apparently much greater than $3 / 4$. For $n=21311$ the detection rate is 0.9976 . For 64777 the detection rate is 0.99972 . For 1112927 the detection rate is 0.9999973

For $n<50,000$ there are only 9 non-prime strong pseudoprimes base 2 , namely 2047 3277403346818321158412934142799 49141

For $n<500,000$ there are only 33 nonprime strong pseudoprimes base 2 .

For $n<500,000$ there are no non-prime strong pseudoprimes base 2 and 3

For 100, 000, $000<n<101,000,000$ there are 3 strong pseudoprimes base 2 whose compositeness is detected base 3 , namely 100463443100618933100943201

## Some big strong pseudoprimes

Primality testing Fermat base 2, MillerRabin base $2,3,5$, to find next prime after...
('instantaneous')
First prime after $10^{21}$ is $10^{21}+117$
('instantaneous')
First prime after $10^{50}$ is $10^{50}+151$
('hint of time taken')
First prime after $10^{100}$ is $10^{100}+267$
(3 seconds)
First prime after $10^{200}$ is $10^{200}+357$
(8 seconds)
First prime after $10^{300}$ is $10^{300}+331$
(97 seconds)
First prime after $10^{1000}$ is $10^{1000}+453$

## Primality Certificates

With origins in work of Eduard Lucas in 1876 and 1891, a very simple form of the Pocklington-Lehmer theorem asserts that $N$ is prime if we have
a factorization $N-1=p \cdot U$
where $p$ is prime
where $p>\sqrt{N}$
$b$ with $b^{N-1}=1 \bmod N$
but $\operatorname{gcd}\left(b^{U}-1, N\right)=1$
The factorization $N-1=p \cdot U$ and the $b$ is the simplest instance of a certificate of primality for $N$.

This requires recursive certification of the prime $p$.
(The Lucas-Lehmer and Proth criteria are cousins of this idea.)

Lemma (Fermat, Euler) For a positive integer $N$, let $b$ be such that $b^{N-1}=1 \bmod N$ but $\operatorname{gcd}\left(b^{(N-1) / p}-1, N\right)=1$. Then a prime divisor $q$ of $N$ satisfies $q=1 \bmod p$

Proof of lemma: As $b \cdot b^{N-2}=1 \bmod N$ it must be that $b$ is prime to $N$, so $b$ is prime to $q$. Let $t$ be the order of $b$ in $\mathbf{Z} / q^{\times}$. By Fermat's Little Theorem $b^{q-1}=1 \bmod q$, so $t \mid q-1$. But the $g c d$ condition implies that

$$
b^{(N-1) / p} \neq 1 \bmod q
$$

Thus, $t$ does not divide $(N-1) / p$. Yet, $t \mid N-1$. Thus, $p \mid t$. From $t \mid q-1$ and $p \mid t$ we get $p \mid q-1$, or $q=1 \bmod p$. ///

## Proof of theorem

(Note that if $N$ is prime then $\mathbf{Z} / N$ has a primitive root $b$ which fulfills the condition of the theorem.)

If the conditions of the theorem are met, then all divisors of $N$ are 1 modulo $p$. If $N$ were not prime, it would have a prime divisor $q$ in the range $1<q \leq \sqrt{N}$. But $q=$ $1 \bmod p$ and $p>\sqrt{N}$ make this impossible. Thus, $N$ is prime. ///

## Example

By trial division, $p=1000003$ is prime.
The first strong pseudoprime above $1000 \cdot p$ of the form $p \cdot U+1$ is

$$
N=1032003097=1032 \cdot p+1
$$

By luck, with $b=2$

$$
2^{N-1}=1 \bmod N
$$

while
$\operatorname{gcd}\left(2^{(N-1) / p}-1, N\right)=\operatorname{gcd}\left(2^{1032}-1, N\right)=1$

Therefore, $N$ is certified prime.

## Continued Example

Let $p$ be the certified prime 1032003097 .
The first strong pseudoprime above $10^{9} \cdot p$ of the form $p \cdot U+1$ is $N=1032003247672452163$ which is

$$
N=p \cdot\left(10^{9}+146\right)+1
$$

By luck, with $b=2$

$$
2^{N-1}=1 \bmod N
$$

while

$$
\operatorname{gcd}\left(2^{(N-1) / p}-1, N\right)=1
$$

Therefore, $N$ is certified prime.

## Continued

Let $p$ be the certified prime
1032003247672452163
The first strong pseudoprime $N$ above $10^{17}$. $p$ of the form $p \cdot U+1$ is

$$
p \cdot\left(10^{17}+24\right)+1
$$

$=103200324767245241068077944138851913$
By luck, with $b=2$

$$
2^{N-1}=1 \bmod N
$$

while

$$
\operatorname{gcd}\left(2^{(N-1) / p}-1, N\right)=1
$$

Therefore, $N$ is certified prime.

## Continued

Let $p$ be the certified prime
103200324767245241068077944138851913
The first strong pseudoprime $N$ above $10^{34}$.
$p$ of the form $p \cdot U+1$ is

$$
p \cdot\left(10^{34}+224\right)+1
$$

$=103200324767245241068077944138$
854224687274786293399924945948 7102828513

By luck, with $b=2$

$$
2^{N-1}=1 \bmod N
$$

while

$$
\operatorname{gcd}\left(2^{(N-1) / p}-1, N\right)=1
$$

Therefore, $N$ is certified prime.

## Continued

Let $p$ be the certified prime
10320032476724524106807794413885422
46872747862933999249459487102828513
The first strong pseudoprime $N$ above
$10^{60} \cdot p$ of the form $p \cdot U+1$ is (computing for about 5 seconds)

$$
p \cdot\left(10^{60}+1362\right)+1
$$

$=10320032476724524106807794413$
88542246872747862933999249460
89269125184288018334722159917
11945402406825893161069777638
21434052434707

By luck, $b=2$ works again and $N$ is certified prime.

## Continued

Let $p$ be the certified prime
10320032476724524106807794413
88542246872747862933999249460
89269125184288018334722159917
11945402406825893161069777638 21434052434707

The first strong pseudoprime $N$ above $10^{120} \cdot p$ of the form $p \cdot U+1$ is (computing a few seconds)

$$
p \cdot\left(10^{120}+796\right)+1=
$$

1032003247672452410680779441388542
2468727478629339992494608926912518 4288018334722159917119454024068258 9316106977763822255527019854272118 9019004353452796285107072988954634 0257087058223646693262594438839294 0270854031583341095621154300001861 505738026773
$b=2$ works again and $N$ is certified prime.

## Fast deterministic test for primality

In 2002, Agarwal, Kayal, and Saxena announced a fast (i.e., polynomial time) deterministic algorithm for primality testing.

Their algorithm has been checked by a number of experts, including Pomerance.

Still, their algorithm is much slower than the probabilistic Miller-Rabin test.

And there has been recent progress in fast deterministic construction of random certifiable primes by Peter Smith, improving Maurer's probabilistic method, and approaching the speed of Miller-Rabin.

