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If we want 200-digit prime numbers, we
cannot use the naive method we learned
in gradeschool: we would not complete the
computation in the lifetime of the universe,
even using all the computational power of
the whole internet.

Note that these well-known tests for primal-
ity confirm that a number is prime exactly
by failing to factor it.

It turns out that primality testing is
much easier than factoring.

Factoring big numbers is hard, despite
striking (and wacky) modern factorization
techniques much better than trial division.

Even more surprising are fast modern
probabilistic primality tests.

For those who long for absolute certainty,
it is possible to construct large primes with
accompanying certificates of primality
indicating how to reprove their primality
upon demand.
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Facts

The number π(N) of primes less than N is

π(N) ∼ x

log x

This is the Prime Number Theorem
(Hadamard and de la Vallée Poussin, 1896).

Riemann observed (1858) that if all the
complex zeros of the zeta function ζ(s) =∑
n−s lay on the line Re(s) = 1

2 then (as
refined...)

π(N) =
x

log x
+O(

√
x log x)

The conjecture on the location of the zeros
is the Riemann Hypothesis.

No result approaching this is known: there
is no known zero-free region Re(s) ≥ σ for
σ < 1.

The Prime Number Theorem uses the non-
vanishing of ζ(s) on Re(s) = 1.
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Special Primes

As of January 2000, the largest prime
known was the 38th Mersenne prime

26972593 − 1

Theorem (Lucas-Lehmer) Define Lo = 4,
Ln = L2

n−1− 2. Let p be an odd prime. The
Mersenne number 2p − 1 is prime if and
only if

Lp−2 = 0 mod 2p − 1

Theorem (Proth) The Fermat number
Fn = 22n + 1 is prime if and only if

3(Fn−1)/2 = −1 mod Fn
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Hunting for primes

Nevertheless, when developing expectations
for hunting for primes, we pretend that
primes are distributed as evenly as possible.

Note: it is not true that primes are dis-
tributed evenly, even under the Riemann
Hypothesis.

But if primes were evenly distributed, then
near x primes would be about lnx apart.

Thus, in hunting for primes near x expect
to examine 1

2 lnx candidates:

For x ∼ 1020 we have 1
2 lnx ∼ 23

For x ∼ 10100 we have 1
2 lnx ∼ 115

For x ∼ 10500 we have 1
2 lnx ∼ 575
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Failure of trial division:

Trial division attempts to divide a given
number N by integers from 2 up through√
N . Either we find a proper factor of N ,

or N is prime. (If N has a proper factor `
larger than

√
N , then N/` ≤

√
N .) The

extreme case takes roughly
√
N steps, or at

least
√
N/ lnN .

If N ∼ 10200 is prime, or if it is the product
of two primes each ∼ 10100, then it will take
about 10100 trial divisions to discover this.
Even if we’re clever, it will take more than
1098 trial divisions.

If we could do 1012 trials per second, and if
there were a 1012 hosts on the internet, with
< 108 seconds per year, a massively parallel
trial division would take ...

1066 years
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Examples of trial division

What are the practical limitations of trial
division? On a 2.5 Gigahertz machine, code
in C++ using GMP

1002904102901 has factor 1001401

(‘instantaneous’)

100001220001957 has factor 10000019

(3 seconds)

10000013000000861 has factor 100000007

(27 seconds)

1000000110000000721 has factor 1000000007

(4 minutes)
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The Birthday Paradox [sic]

For n + 1 things chosen (with replacement)
from N the probability that they’re all dif-
ferent is

p = (1− 1
N

)(1− 2
N

) · · · (1− n

N
)

Then from ln(1 − x) > −x for small x one
has

ln p > −
n∑
`=1

`

N
∼ −

1
2n

2

N

Thus, to be sure that p ≥ 1
2 it suffices to

take n such that

n >
√
N ·
√

2 ln 2 ∼ 1.1774 ·
√
N

Thus, with 23 people in a room the proba-
bility is greater than 1

2 that two will have
the same birthday.
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Pollard’s rho method (circa 1976)

We’ll try to beat the
√
N steps trial division

needs to factor N .

First try: Suppose that N = p ·M with p
prime and p <

√
N . If we choose somewhat

more than
√
p integers xi at random, then

the probability is > 1
2 that for some i 6= j

we’ll have
xi = xj mod p

The probability is roughly 1√
N/p
∼ 0 that

xi=xj mod N , so most likely for some pair

gcd(xi − xj , N) = proper factor of N

But we might have to compare
√
p · √p = p ∼

√
N

pairs, no better than trial division.

(In any case, we compute gcd’s quickly by
the Euclidean algorithm.)
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Second try at Pollard’s rho

Since we would have had trouble mak-
ing a large number of truly random
choices anyway, let’s stipulate that we
choose the xi’s in a more structure way,
in a sort of random walk in Z/N . Let
f : Z/N → Z/N be a deterministic ‘ran-
dom’ function, fix xo, and define

xi+1 = f(xi)

Since f is deterministic

f(xi) = xj =⇒

f(xi+1) = f(f(xi)) = f(xj) = xj+1

So if the walk enters a cycle it stays there.
We use Floyd’s cycle-detection trick:
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Floyd’s cycle-detection trick:

Fix xo, define yo = xo, and define

xi+1 = f(xi) yi+1 = f(f(yi))

so the yi’s take the same walk but twice as
fast.

Once the cycle is entered, the y’s walk
one unit faster than the x’s, so in fewer
additional steps than the cycle length,
xj = yj mod p.

In summary: the initial walk plus cycle
takes

√
p ≤ N1/4 steps, and another

√
p

for the y’s to catch the x’s modulo p, so

2
√
p ≤ 2N1/4 steps

to find the factor p of N .
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Examples of Pollard’s rho factorization

Take xo = 2 and f(x) = x2 + 2 mod N
(this is random...?). In less than 10 seconds
total,

2661 steps to find factor

10000103 of 100001220001957

14073 steps to find factor

100000007 of 10000013000000861

9630 steps to find factor

1000000103 of 1000000110000000721

(Even larger...) 129665 steps for factor

10000000019 of 100000001220000001957

162944 steps for factor

100000000103 of 10000000010600000000309
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Yet larger...

89074 steps for

1000000000039 of
1000000000160000000004719

12 seconds, 584003 steps for

10000000000037 of
100000000001660000000004773

2 minutes, 5751662 steps for

100000000000031 of
10000000000016400000000004123
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Modern factorization methods

Since the 1970’s, better methods have been
found (but not polynomial-time):

quadratic sieve: the most elementary of
modern factorization methods, and still very
good by comparison to other methods. De-
scended from Dixon’s algorithm.

elliptic curve sieve: to factor n, this re-
places the group Z/n× with an elliptic
curve E defined over Z/n. In effect, the dif-
ference between Z/n× and Z/n − {0} is
what indicates that n is composite, and an
analogous discrepancy in the case of elliptic
curves can be similarly exploited.

number field sieve: Descended from sev-
eral sources, including Adleman, Pomer-
ance, and Rumely (1983), which made novel
use of exponential sums (hence, of irrational
algebraic numbers)
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Bargain-basement Primality Test:
Fermat pseudoprimes

Fermat’s Little Theorem asserts that for p
prime, bp = b mod p.

Proven by induction on b, using

(b+ 1)p = bp +
(
p
1

)
bp−1 + . . .+

(
p
p−1

)
b+ 1

= bp + 1 mod p

The binomial coefficients are integers, and
on the other hand, they are divisible by p,
since (

p

i

)
=

p!
i! (p− i)!

and the denominator has no factor of p.
(Unique Factorization...)

Thus, if n is an integer and bn 6= b mod n
for some b, then n is composite.

The converse is false, but not very false...
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The only non-prime n < 5000 with
2n = 2 mod n are 341 561 645 1105 1387
1729 1905 2047 2465 2701 2821 3277 4033
4369 4371 4681

Requiring also 3n = 3 mod n leaves 561
1105 1729 2465 2701 2821

Requiring also 5n = 5 mod n leaves 561
1105 1729 2465 2821

Compared with 669 primes under 5000, this
is a false positive failure rate of less than
1%.

n is a Fermat pseudoprime base b if
bn = b mod n.
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Terminology

Usage is not consistent.

My usage is that a number that has passed
a primality test (Fermat, Miller-Rabin, etc.)
is a pseudoprime.

Sometimes a pseudoprime is meant to be a
non-prime which has nevertheless passed a
primality test such as Fermat. But for large
numbers which have passed pseudoprimality
tests we may never know for sure whether
or not they’re prime or composite ...

Another usage is to call a number that has
passed a test a probable prime.

But this is dangerously close to provable
prime, which is sometimes used to describe
primes with accompanying certificates of
their primality.
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There are only 172 non-prime Fermat
pseudoprimes base 2 under 500,000 versus
41,538 primes, a false positive rate of less
than 0.41%

There are only 49 non-prime Fermat pseu-
doprimes base 2 and 3 under 500,000, a
false positive rate of less than 0.118%

There are only 32 non-prime Fermat pseu-
doprimes base 2, 3, 5 under 500,000

There are still 32 non-prime Fermat pseu-
doprimes base 2, 3, 5, 7, 11, 13, 17 under
500,000

561 1105 1729 2465 2821 6601 8911 10585
15841 29341 41041 46657 52633 62745 63973
75361 101101 115921 126217 162401 172081
188461 252601 278545 294409 314821
334153 340561 399001 410041 449065
488881
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Adding more such requirements does not
shrink these lists further.

n is a Carmichael number if it is a
non-prime Fermat pseudoprime to every
base b.

In 1994 Alford, Granville, and Pomer-
ance showed that there are infinitely-many
Carmichael numbers.

And it appears that among large numbers
Carmichael numbers become more common.

Nevertheless, the Fermat test is a very fast
way to test for compositeness, and is so easy
and cheap that it is still the best first ap-
proximation to primality.

It is cheap because bn mod n can be
computed in ∼ log n steps, not n...
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Fast modular exponentiation

To compute bn mod n, with n ∼ 10100 or
larger, do not multiply 10100 times.

Rather, note that repeated squaring re-
duces the number of operations:

b69 = b2
6+22+20

= (((((b2)2)2)2)2)2 · (b2)2 · b

To compute xe mod n

initialize (X,E, Y ) = (x, e, 1)
while E > 0

if E is even
replace X by X2 mod n
replace E by E/2

elsif E is odd
replace Y by X · Y mod n
replace E by E − 1

The final value of Y is xe mod n.
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Better primality test: Miller-Rabin
(1978)

If n = r · s is composite (with gcd(r, s) = 1)
then by Sun-Ze’s theorem there are at least
4 solutions to

x2 = 1 mod n

namely the 4 choices of sign in

x = ±1 mod r x = ±1 mod s

Thus, if we find b 6= ±1 mod n such that
b2 = 1 mod n, n is definitely not composite.

Roughly, the Miller-Rabin test looks
for such extra square roots of 1 modulo n
(details below).

Theorem: (Miller-Rabin) For composite
n, at least 3/4 of b in the range 1 < b < n
will detect the compositeness (via the
Miller-Rabin test)
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Pseudo-corollary If n passes the Miller-
Rabin test with k random bases b, then
(exercise: explain the fallacy)

probability(n is prime) ≥ 1−
(

1
4

)k
Miller-Rabin test base b:
factor n− 1 = 2s ·m with m odd
replace b by bm mod n

if b = ±1 mod n stop: n is 3/4 prime
else continue

set r = 0
while r < s

replace b by b2 mod n
if b = −1 mod n stop: n is 3/4 prime
elsif b = +1 mod n stop: n is composite
else continue
replace r by r + 1

if we fall out of the loop, n is composite.

If n passes this test it is a
strong pseudoprime base b.
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Failure rate of Miller-Rabin?

The fraction of b’s which detect composite-
ness is apparently much greater than 3/4.
For n = 21311 the detection rate is 0.9976.
For 64777 the detection rate is 0.99972. For
1112927 the detection rate is 0.9999973

For n < 50, 000 there are only 9 non-prime
strong pseudoprimes base 2, namely 2047
3277 4033 4681 8321 15841 29341 42799
49141

For n < 500, 000 there are only 33 non-
prime strong pseudoprimes base 2.

For n < 500, 000 there are no non-prime
strong pseudoprimes base 2 and 3

For 100, 000, 000 < n < 101, 000, 000 there
are 3 strong pseudoprimes base 2 whose
compositeness is detected base 3, namely
100463443 100618933 100943201
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Some big strong pseudoprimes
Primality testing Fermat base 2, Miller-
Rabin base 2, 3, 5, to find next prime
after...

(’instantaneous’)
First prime after 1021 is 1021 + 117

(’instantaneous’)
First prime after 1050 is 1050 + 151

(’hint of time taken’)
First prime after 10100 is 10100 + 267

(3 seconds)
First prime after 10200 is 10200 + 357

(8 seconds)
First prime after 10300 is 10300 + 331

(97 seconds)
First prime after 101000 is 101000 + 453
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Primality Certificates

With origins in work of Eduard Lucas in
1876 and 1891, a very simple form of the
Pocklington-Lehmer theorem asserts
that N is prime if we have

a factorization N − 1 = p · U
where p is prime
where p >

√
N

b with bN−1 = 1 mod N
but gcd(bU − 1, N) = 1

The factorization N − 1 = p · U and the b
is the simplest instance of a certificate of
primality for N .

This requires recursive certification of the
prime p.

(The Lucas-Lehmer and Proth criteria are
cousins of this idea.)
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Lemma (Fermat, Euler) For a positive in-
teger N , let b be such that bN−1 =1modN
but gcd(b(N−1)/p−1, N)=1. Then a prime
divisor q of N satisfies q=1 mod p

Proof of lemma: As b · bN−2 = 1 mod N it
must be that b is prime to N , so b is prime
to q. Let t be the order of b in Z/q×. By
Fermat’s Little Theorem bq−1 = 1 mod q, so
t|q − 1. But the gcd condition implies that

b(N−1)/p 6= 1 mod q

Thus, t does not divide (N − 1)/p. Yet,
t|N − 1. Thus, p|t. From t|q − 1 and p|t we
get p|q − 1, or q = 1 mod p. ///
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Proof of theorem

(Note that if N is prime then Z/N has a
primitive root b which fulfills the condition
of the theorem.)

If the conditions of the theorem are met,
then all divisors of N are 1 modulo p. If
N were not prime, it would have a prime
divisor q in the range 1 < q ≤

√
N . But q =

1 mod p and p >
√
N make this impossible.

Thus, N is prime. ///
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Example

By trial division, p = 1000003 is prime.

The first strong pseudoprime above 1000 · p
of the form p · U + 1 is

N = 1032003097 = 1032 · p+ 1

By luck, with b = 2

2N−1 = 1 mod N

while

gcd(2(N−1)/p− 1, N) = gcd(21032− 1, N) = 1

Therefore, N is certified prime.
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Continued Example

Let p be the certified prime 1032003097.

The first strong pseudoprime above 109 · p of
the form p · U + 1 is
N = 1032003247672452163 which is

N = p · (109 + 146) + 1

By luck, with b = 2

2N−1 = 1 mod N

while
gcd(2(N−1)/p − 1, N) = 1

Therefore, N is certified prime.
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Continued

Let p be the certified prime
1032003247672452163

The first strong pseudoprime N above 1017 ·
p of the form p · U + 1 is

p · (1017 + 24) + 1

= 103200324767245241068077944138851913

By luck, with b = 2

2N−1 = 1 mod N

while
gcd(2(N−1)/p − 1, N) = 1

Therefore, N is certified prime.
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Continued

Let p be the certified prime
103200324767245241068077944138851913

The first strong pseudoprime N above 1034 ·
p of the form p · U + 1 is

p · (1034 + 224) + 1

= 103200324767245241068077944138
854224687274786293399924945948
7102828513

By luck, with b = 2

2N−1 = 1 mod N

while
gcd(2(N−1)/p − 1, N) = 1

Therefore, N is certified prime.
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Continued

Let p be the certified prime

10320032476724524106807794413885422
46872747862933999249459487102828513

The first strong pseudoprime N above
1060 · p of the form p · U + 1 is (computing
for about 5 seconds)

p · (1060 + 1362) + 1

= 10320032476724524106807794413
88542246872747862933999249460
89269125184288018334722159917
11945402406825893161069777638
21434052434707

By luck, b = 2 works again and N is
certified prime.
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Continued

Let p be the certified prime

10320032476724524106807794413
88542246872747862933999249460
89269125184288018334722159917
11945402406825893161069777638
21434052434707

The first strong pseudoprime N above
10120 · p of the form p · U + 1 is (computing
a few seconds)

p · (10120 + 796) + 1 =

1032003247672452410680779441388542
2468727478629339992494608926912518
4288018334722159917119454024068258
9316106977763822255527019854272118
9019004353452796285107072988954634
0257087058223646693262594438839294
0270854031583341095621154300001861
505738026773

b = 2 works again and N is certified prime.
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Fast deterministic test for primality

In 2002, Agarwal, Kayal, and Saxena an-
nounced a fast (i.e., polynomial time) de-
terministic algorithm for primality testing.

Their algorithm has been checked by a num-
ber of experts, including Pomerance.

Still, their algorithm is much slower than
the probabilistic Miller-Rabin test.

And there has been recent progress in fast
deterministic construction of random certifi-
able primes by Peter Smith, improving Mau-
rer’s probabilistic method, and approaching
the speed of Miller-Rabin.
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