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1 Motivation

The NSW numbers (named in honor of Newman, Shanks, and Williams [3]) were

studied approximately 20 years ago in connection with the order of certain simple
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groups. These are the numbers fn which satisfy the recurrence

fn+1 = 6fn − fn−1 (1)

with initial conditions f1 = 1 and f2 = 7.

These numbers have also been studied in other contexts. For example, Bonin,

Shapiro, and Simion [2] discuss them in relation to Schröder numbers and combina-

torial statistics on lattice paths.

Recently, Barcucci et.al. [1] provided a combinatorial interpretation for the NSW

numbers by defining a certain regular language L and studying particular properties

of L. They close their note by asking two questions:

1. Do there exist infinitely many fn prime?

2. Do there exist infinitely many fn composite?

The goal of this paper is to affirmatively answer the second question above, but

in a much broader context. Fix an integer k ≥ 2 and consider the sequence of values

satisfying fn+1 = kfn − fn−1, f1 = 1, f2 = k + 1. Then we have the following:

Theorem 1.1. For all m ≥ 1 and all n ≥ 0, fm | f(2m−1)n+m.

2 The Necessary Tools

To prove Theorem 1.1, we need to develop a few key tools. First, let α be a zero of

x2 − kx + 1, the characteristic polynomial of the recurrence. If α ∈ Q (the rational

numbers), then we may assume that α = m
n
, where m, n ∈ Z and (m,n) = 1. Hence,
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m2 − kmn + n2 = 0 or m2 = kmn − n2. It is clear then that m |n2 and n | m2, so

that m
n

= ±1 because (m, n) = 1. Thus, Z[α] ∩Q = Z.

Now define congruence in Z[α] by writing λ ≡ µ (mod ν) for λ, µ, ν ∈ Z[α] to

mean that (λ−µ)
ν

∈ Z[α] (where ν 6= 0). Note that if λ, µ, ν ∈ Z and λ ≡ µ (mod ν)

by this definition, then (λ−µ)
ν

∈ Z[α] ∩ Q, which implies (λ−µ)
ν

∈ Z, so that λ ≡ µ

(mod ν) by the conventional definition of congruence.

Also, note that if γ ∈ Q(α) and λ, µ, ν, γλ, γµ, γν ∈ Z[α], then λ ≡ µ (mod ν)

implies γλ ≡ γµ (mod γν).

Now we are ready to complete the proof of Theorem 1.1.

Proof. We first handle the case k = 2 separately. In this case, it is easy to show that

fn = 2n− 1 for n ≥ 1. Then f(2m−1)n+m = 2((2m− 1)n + m)− 1 = (2m− 1)(2n + 1),

and fm | f(2m−1)n+m clearly.

Next, we assume k > 2. Since α is a zero of x2 − kx + 1, α is neither 0 nor 1.

Also, α2 + 1 = kα. Note that β = 1
α

is the other zero of x2 − kx + 1, and α + β = k.

Since α and β are distinct, we know fn = Aαn + Bβn for some constants A and B.

Since f0 = −1 and f1 = 1, we have A + B = −1 and Aα + Bβ = 1. Solving these two

equations yields

A =
1 + β

α− β
and B = − 1 + α

α− β
.

Therefore,

fm =
1

α− β
((1 + β)αm − (1 + α)βm)

=
1

α− β

((
1 +

1

α

)
αm − (1 + α)βm

)
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=
1

α− β

(
(1 + α) αm−1 − (1 + α)βm

)
=

1 + α

α− β
(αm−1 − βm).

Now let Um = αm−1 − βm ∈ Z[α] (β = k − α) where m ≥ 1. Then αm−1 ≡ βm

(mod Um) implies

α2m−1 = αmαm−1 ≡ αmβm ≡ 1 (mod Um)

and

β2m−1 = βmβm−1 ≡ αm−1βm−1 ≡ 1 (mod Um).

Hence,

U(2m−1)n+m = α(2m−1)n+m−1 − β(2m−1)n+m

≡ βm
(
α(2m−1)n − β(2m−1)n

)
(mod Um)

≡ 0 (mod Um).

Therefore, (
1 + α

α− β

)
U(2m−1)n+m ≡ 0 (mod

(
1 + α

α− β

)
Um)

or fm | f(2m−1)n+m.

3 Closing Thoughts

We close by noting that this theorem proves fm | f(2m−1)n+m for a variety of well–

known sequences {fm}∞m=1 other than the NSW numbers, including the odd numbers

(k = 2), the Lucas numbers L2n (k = 3), and the Fibonacci numbers F4n+2 (k = 7).

4



References

[1] Barcucci, E., Brunetti, S., Del Lungo, A., and Del Ristoro, F., A combinatorial

interpretation of the recurrence fn+1 = 6fn − fn−1, Discrete Mathematics, 190

(1998), 235-240.

[2] Bonin, J., Shapiro, L., and Simion, R., Some q–analogues of the Schröder num-
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