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Abstract

We let A(n) equal the number of n×n alternating sign matrices.

From the work of a variety of sources, we know that

A(n) =

n−1∏
`=0

(3` + 1)!

(n + `)!
.

We find an efficient method of determining ordp(A(n)), the highest

power of p which divides A(n), for a given prime p and positive integer

n, which allows us to efficiently compute the prime factorization of

A(n). We then use our method to show that for any nonnegative

integer k, and for any prime p > 3, there are infinitely many positive

integers n such that ordp(A(n)) = k. We show a similar but weaker

theorem for the prime p = 3, and note that the opposite is true for

p = 2.
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1 Background

An n× n alternating sign matrix is an n× n matrix consisting entirely
of 1s, 0s, and −1s with the property that the sum of the entries of each row
and each column must be 1 and the signs of the nonzero entries in each row
and column must alternate. For example, the matrix 0 0 1 0

1 0 0 0
0 1 −1 1
0 0 1 0


is one of the 42 4× 4 alternating sign matrices.

Let A(n) denote the number of n×n alternating sign matrices. Because
each permutation matrix is also an alternating sign matrix, it is clear that
A(n) ≥ n!.

Recently, Zeilberger [9] proved that

A(n) =
n−1∏
`=0

(3` + 1)!
(n + `)!

. (1)

The reader interested in the development of (1) is encouraged to see the
survey articles of Robbins [8] and Bressoud and Propp [4], as well as the
award–winning text of Bressoud [2].

In [5], we gave a characterization of the values of n for which A(n) is odd.
In this paper, we give a method for determining ordp(A(n)), the highest
power of a given prime p that divides A(n) for given n. As a consequence
we obtain a fast method for calculating A(n) for large n. (In general, A(n)
is difficult to compute using (1) if n is large.) Our main theorem however,
is Theorem 1.1 which comes as a consequence of our method. Theorem 1.1
is an interesting contrast to the situation when p = 2 where the opposite
is true (see [6, Corollary 3.8]). We also give a characterization of when a
given prime divides A(n) based on its base p representation.

The basic machinery is given in Section 2 and was largely developed
in [5], (where the authors were primarily interested in the parity of A(n)),
but is greatly simplified and generalized here. As this paper was in prepa-
ration for publication, we were contacted by Cartwright and Kupka and
made aware of their paper [3] which essentially duplicates our method for
determining ordp(A(n)). However, we include that result here anyway as
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our proof emphasizes the periodicity of the function cp,k(n) which is used
in the proof of Theorem 1.1 and is somewhat shorter and easier (though
Cartwright and Kupka’s perspective is broader than ours).

Theorem 1.1. If p is a prime greater than 3, then for each nonneg-
ative integer k there exist infinitely many positive integers n for which
ordp(A(n)) = k.

2 Calculation of A(n)

We begin by stating the following lemma which is critical to our discussion.
For a proof of this lemma, see [7, Theorem 2.29].

Lemma 2.1. For any prime p and any positive integer N ,

ordp(N !) =
∑
k≥1

⌊
N

pk

⌋
.

Applying Lemma 2.1 to (1) then gives us

ordp(A(n)) =
n−1∑
`=0

∑
k≥1

⌊
3` + 1

pk

⌋
−

n−1∑
`=0

∑
k≥1

⌊
n + `

pk

⌋
=
∑
k≥1

cp,k(n), (2)

where

cp,k(n) :=
n−1∑
`=0

(⌊
3` + 1

pk

⌋
+
⌊

`

pk

⌋)
−

2n−1∑
`=0

⌊
`

pk

⌋
. (3)

(
Note that

n−1∑
`=0

⌊
n + `

pk

⌋
=

2n−1∑
`=0

⌊
`

pk

⌋
−

n−1∑
`=0

⌊
`

pk

⌋
.

)

We introduce the increment

cp,k(n + 1)− cp,k(n) =
⌊

3n + 1
pk

⌋
+
⌊

n

pk

⌋
−
⌊

2n + 1
pk

⌋
−
⌊

2n

pk

⌋
of cp,k(n) and note that the increment is periodic of period pk as Proposi-
tion 2.2 shows.

Proposition 2.2. Let k, n be positive integers and p be prime. Then

cp,k(pk + n + 1)− cp,k(pk + n) = cp,k(n + 1)− cp,k(n).
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Proof.

cp,k(pk + n + 1)− cp,k(pk + n)

=
⌊

3(pk + n) + 1
pk

⌋
+
⌊

pk + n

pk

⌋
−
⌊

2pk + 2n + 1
pk

⌋
−
⌊

2pk + 2n

pk

⌋
=

⌊
3 +

3n + 1
pk

⌋
+
⌊
1 +

n

pk

⌋
−
⌊
2 +

2n + 1
pk

⌋
−
⌊
2 +

2n

pk

⌋
=

⌊
3n + 1

pk

⌋
+
⌊

n

pk

⌋
−
⌊

2n + 1
pk

⌋
−
⌊

2n

pk

⌋
+ 3 + 1− 2− 2

= cp,k(n + 1)− cp,k(n).

If p > 2 and 0 ≤ n < pk, we can easily see that

cp,k(n+1)−cp,k(n) =


0 if 0 ≤ n <

∥∥∥pk

3

∥∥∥ , n =
⌊

pk

2

⌋
, or

∥∥∥ 2pk

3

∥∥∥ ≤ n < pk

1 if
∥∥∥pk

3

∥∥∥ ≤ n < pk

2

−1 if pk

2 < n <
∥∥∥ 2pk

3

∥∥∥
(4)

where ‖t‖ is the integer nearest to t. Hence, since the number of +1 incre-
ments is equal to the number of −1 increments, cp,k(pk) = 0 which means
that cp,k(n) is itself periodic of period pk. If p = 2, then equation (4) is
nearly the same except that the increment at pk

2 is −1 rather than 0.

Theorem 2.3. If 0 ≤ n < pk. Then

cp,k(n) = max

{
0,

pk

2
−
∥∥∥∥pk

3

∥∥∥∥− ∣∣∣∣n− pk

2

∣∣∣∣} .

Consequently, cp,k(n) = cp,k(pk − n).

Proof. The increment of cp,k(n) in (4) tells us that if p > 2, the max-
imum value of cp,k(n) is pk

2 −
∥∥∥pk

3

∥∥∥ − 1
2

(
when n = pk

2 ± 1
2

)
and that

it decrements by 1 moving away from these values in either direction.(
If p = 2, the maximum value is pk

2 −
∥∥∥pk

3

∥∥∥ at n = pk

2 .
)

Note that
∥∥∥ 2pk

3

∥∥∥−
pk

2 = pk

2 −
∥∥∥pk

3

∥∥∥ so we have complete symmetry about pk

2 . If n is within∥∥∥pk

3

∥∥∥ of pk

2 then we see that cp,k(n) is the difference of this maximum value
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(
plus 1

2 if p 6= 2
)
, and the distance between n and pk

2 . If not, then we have
passed into an interval where both the value of cp,k(n) and the increment
is 0. Thus, we have our result.

3 Infiniteness Results

In this section, we will prove Theorem 1.1. We first mention two proposi-
tions whose proofs we omit since they are straightforward computations.

Proposition 3.1. If p is a prime and p ≡ 1 (mod 6) then∥∥∥∥pk

3

∥∥∥∥ =
∥∥∥∥pk−i

3

∥∥∥∥+
∥∥∥∥pi

3

∥∥∥∥ · pk−i and∥∥∥∥2pk

3

∥∥∥∥ =
∥∥∥∥2pk−i

3

∥∥∥∥+
(∥∥∥∥2pi

3

∥∥∥∥− 1
)
· pk−i.

Proposition 3.2. If p is a prime and p ≡ 5 (mod 6), then∥∥∥∥pk

3

∥∥∥∥ =
∥∥∥∥pk−2i

3

∥∥∥∥+
∥∥∥∥p2i

3

∥∥∥∥ · pk−2i,∥∥∥∥2pk

3

∥∥∥∥ =
∥∥∥∥2pk−2i

3

∥∥∥∥+
(∥∥∥∥2p2i

3

∥∥∥∥− 1
)

pk−2i,∥∥∥∥pk

3

∥∥∥∥ =
∥∥∥∥2pk−2i−1

3

∥∥∥∥+
(∥∥∥∥p2i+1

3

∥∥∥∥− 1
)

pk−2i−1, and∥∥∥∥2pk

3

∥∥∥∥ =
∥∥∥∥pk−2i−1

3

∥∥∥∥+
∥∥∥∥2p2i+1

3

∥∥∥∥ · pk−2i−1.

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. If k = 0, then we know that cp,i(pj) = 0 for all
positive j, so we have established that ordp(A(n)) = 0 for infinitely many
positive integers n. Assume then that k > 0.

If p ≡ 1 (mod 6), consider n =
∥∥∥pk

3

∥∥∥ + 1. Then n =
(∥∥∥pk−i

3

∥∥∥+ 1
)

+∥∥∥pi

3

∥∥∥ ·pk−i for 0 ≤ i ≤ k−1, so by the periodicity of cp,i for each i, we know

that cp,k−i(n) = cp,k−i

(∥∥∥pk−i

3

∥∥∥+ 1
)

= 1 for 0 ≤ i ≤ k−1. Moreover, since

n <
∥∥∥pj

3

∥∥∥ for all j > k, cp,j(n) = 0 for all j > k. Hence, ordp(A(n)) = k.
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If p ≡ 5 (mod 6), consider n =
∥∥∥p2k

3

∥∥∥ + 1. Then n =
∥∥∥p2k−2i

3

∥∥∥ +

1 +
∥∥∥p2i

3

∥∥∥ · p2k−2i for 0 ≤ i ≤ k − 1, so by the periodicity of cp,i for each

i, we know that cp,2k−2i(n) = cp,2k−2i

(∥∥∥p2k−2i

3

∥∥∥+ 1
)

= 1 for 0 ≤ i ≤

k − 1. Also, n =
∥∥∥p2k

3

∥∥∥ + 1 =
∥∥∥ 2p2k−2i−1

3

∥∥∥ + 1 +
(∥∥∥ 2p2i+1

3

∥∥∥− 1
)

p2k−2i−1,

so cp,2k−2i−1(n) = cp,2k−2i−1

(∥∥∥ 2p2k−2i−1

3

∥∥∥+ 1
)

= 0 for 0 ≤ i ≤ k − 1.

Moreover, since n <
∥∥∥pj

3

∥∥∥ for all j > k, cp,j(n) = 0 for all j > k. Hence,
ordp(A(n)) = k.

In both cases, for each positive integer k we have established the exis-
tence of at least one positive integer n such that ordp(A(n)) = k. To get in-
finitely many, consider n+pj where j > k. Then since n mod pi = n <

∥∥∥pi

3

∥∥∥
for k + 1 ≤ i ≤ j and n + pj <

∥∥∥pi

3

∥∥∥ for i > j, cp,i(n + pj) = cp,i(n) for all

positive i. Hence, we have ordp(A(n + pj)) = k for j > k.

We can prove a result similar to Theorem 1.1 for p = 3, although it
is somewhat weaker. By considering integers of the form 3j + 3k, where
j > k, we can show that there are infinitely many positive integers n such
that 33k |A(n). Moreover, by considering integers of the form 3j + 3k−1,
where j > k, we can show that there are infinitely many positive integers
n such that 33k 6 |A(n), but 33k−1 |A(n). In fact, for a given k, if one can
show that there is some integer n such that ord3(A(n)) = k, then there are
infinitely many integers m such that ord3(A(m)) = k, namely, the integers
m = 2 · 3j + n where j > log3(n) + 1. The situation is very different when
p = 2. In fact, for any positive integer k, there are only finitely many
positive integers n for which ord2(A(n)) = k . For a proof of this claim,
see [6, Corollary 3.8].

We close this section by noting that the intuition we used to prove
Theorem 1.1 and Propositions 3.1 and 3.2 came from viewing Theorem
2.3 in base p. First, n mod pk is simply the last k digits of the base p

representation of n. Moreover, in base p > 2,
∥∥∥pk

3

∥∥∥ and
∥∥∥ 2pk

3

∥∥∥ are k-
digit numbers of a very special form. For example, for p = 13 (which is
congruent to 1 mod 6),

∥∥∥pk

3

∥∥∥ = 444 · · · 4413 while
∥∥∥ 2pk

3

∥∥∥ = 888 · · · 8913, and

for p = 11 (which is congruent to 5 mod 6), we have
∥∥∥pk

3

∥∥∥ = 3737 · · · 3711

or 3737 · · · 37411 and
∥∥∥ 2pk

3

∥∥∥ = 7373 · · · 7411 or 7373 · · · 3711 depending on

6



whether k is even or odd. In general, the digits corresponding to primes
p ≡ 1 (mod 6) are

∥∥p
3

∥∥, ∥∥ 2p
3

∥∥ and
∥∥ 2p

3

∥∥−1, while the digits corresponding

to primes p ≡ 5 (mod 6) are
∥∥p

3

∥∥, ∥∥ 2p
3

∥∥ and
∥∥p

3

∥∥− 1. If p = 3,
∥∥∥pk

3

∥∥∥ is a

power of three while
∥∥∥ 2pk

3

∥∥∥ is twice a power of three (unless k = 1). One
can use such information to write down a characterization of when A(n) is
relatively prime to a given prime p. We do so below. See [3] for a different
characterization.

Let the base p representation of a given positive integer n be represented
by n = pmdm+pm−1dm−1+· · ·+pd1+d0 where 0 ≤ di < p for i = 0, . . . ,m.

Definition 3.3. Let n be a positive integer, and p any prime greater than
3. Let m be 1 or −1 as p ≡ 1 or − 1 (mod 6). Consider a sequence of
consecutive digits di, di−1, . . . , di−j in the base p representation of n. We
call such a sequence a determining sequence if∥∥∥∥pj+1

3

∥∥∥∥ < pjdi + pj−1di−1 + · · ·+ di−j <

∥∥∥∥2pj+1

3

∥∥∥∥− 1 + mj+1

2
.

Proposition 3.4. Using the notation above, the following characterizes for
which values of n, (A(n), p) > 1.

• If p = 2, see [5] and [3].

• If p = 3, (A(n), 3) = 1 if and only if whenever di = 1, dj = 0 for
j = 0, . . . , i− 1.

• If p ≡ 1 (mod 6), then (A(n), p) > 1 if and only if either there is a
determining sequence for n with j ∈ {0, 1} or if d0 =

∥∥ 2p
3

∥∥− 1.

• If p ≡ 5 (mod 6), then (A(n), p) > 1 if and only if either there is
a determining sequence for n with j ∈ {0, 1, 2} or if d1 =

∥∥ 2p
3

∥∥ and
d0 =

∥∥p
3

∥∥− 1.

4 Running Time Analysis

We provide here an analysis of the speed of the method that we and
Cartwright and Kupka independently developed for calculating cp,k(n). As
mentioned in Section 2, it is clear that

ordp(A(n)) =
∑
k≥1

cp,k(n).
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Since A(n) is smooth for each n and only contains primes p < 3n, we
can now quickly determine the prime factorization of A(n) for large val-
ues of n. As an example, we calculated A(50000). Note that A(50000) ≈(

27
16

)500002/2
, so that A(50000) has a base 10 representation with approxi-

mately 284,000,000 digits. The prime factorization of A(50000) is

211102 · 32848 · 52083 · . . . · 14996910 · 14997110 · 1499932.

This value would certainly be intractable if calculated using (1). The Maple
code used to calculate this result can be obtained from the authors.

Calculation of A(n) via the method we describe here is much faster than
calculation using (1). Indeed, since no obvious cancellation scheme appears
available in (1), calculation of A(n) via (1) will involve O(n2) operations.
This is because the number of operations needed to compute n! is n, (or
n − 1 if one ignores the multiplication by 1). But this implies that the
number of multiplications needed to compute A(n) via (1) is at least

0 + 3 + 6 + 9 + . . . + 3n− 3 + (n− 1) + n + (n + 1) + . . . + (2n− 1)

which is O(n2) since 1 + 2 + 3 + . . . + n = n(n + 1)/2. The additional
multiplications needed to combine all of the separate factorials into one
final number will not contribute to a larger order of magnitude, so that
O(n2) is indeed the number of operations involved.

In contrast, determination of the prime factorization of A(n) via the
method in Section 2 involves only O(n) computations. The calculation
involves finding ordp(A(n)) for each p ≤ 3n (since any prime greater than
3n will yield cp,k(n) = 0 for all k), and thus we are calculating a double sum.
The inner sum, which, in practice, runs from k = 1 to dlog2(n)e+1, requires
O(log(n)) computations. The outer sum, which involves all primes p less

than 3n, requires O

(
n

log(n)

)
computations since, by the Prime Number

Theorem [1], if π(x) equals the number of primes less than or equal to x,
then

lim
x→∞

π(x)
x

ln(x)

= 1.

Thus, our algorithm requires O(n) computations since

log(n) · n

log(n)
= n.
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