Prime Power Divisors of the Number of $n \times n$
 Alternating Sign Matrices

Darrin D. Frey
Department of Science and Math
Cedarville University
Cedarville, OH 45314
freyd@cedarville.edu
and
James A. Sellers
Department of Mathematics
The Pennsylvania State University
University Park, PA 16802
sellersj@math.psu.edu

January 15, 2002

Abstract

We let $A(n)$ equal the number of $n \times n$ alternating sign matrices. From the work of a variety of sources, we know that $$
A(n)=\prod_{\ell=0}^{n-1} \frac{(3 \ell+1)!}{(n+\ell)!} .
$$

We find an efficient method of determining $\operatorname{ord}_{p}(A(n))$, the highest power of p which divides $A(n)$, for a given prime p and positive integer n, which allows us to efficiently compute the prime factorization of $A(n)$. We then use our method to show that for any nonnegative integer k, and for any prime $p>3$, there are infinitely many positive integers n such that $\operatorname{ord}_{p}(A(n))=k$. We show a similar but weaker theorem for the prime $p=3$, and note that the opposite is true for $p=2$.

1 Background

An $n \times n$ alternating sign matrix is an $n \times n$ matrix consisting entirely of $1 \mathrm{~s}, 0 \mathrm{~s}$, and -1 s with the property that the sum of the entries of each row and each column must be 1 and the signs of the nonzero entries in each row and column must alternate. For example, the matrix

$$
\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & -1 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

is one of the 424×4 alternating sign matrices.
Let $A(n)$ denote the number of $n \times n$ alternating sign matrices. Because each permutation matrix is also an alternating sign matrix, it is clear that $A(n) \geq n!$.

Recently, Zeilberger [9] proved that

$$
\begin{equation*}
A(n)=\prod_{\ell=0}^{n-1} \frac{(3 \ell+1)!}{(n+\ell)!} \tag{1}
\end{equation*}
$$

The reader interested in the development of (1) is encouraged to see the survey articles of Robbins [8] and Bressoud and Propp [4], as well as the award-winning text of Bressoud [2].

In [5], we gave a characterization of the values of n for which $A(n)$ is odd. In this paper, we give a method for determining $\operatorname{ord}_{p}(A(n))$, the highest power of a given prime p that divides $A(n)$ for given n. As a consequence we obtain a fast method for calculating $A(n)$ for large n. (In general, $A(n)$ is difficult to compute using (1) if n is large.) Our main theorem however, is Theorem 1.1 which comes as a consequence of our method. Theorem 1.1 is an interesting contrast to the situation when $p=2$ where the opposite is true (see [6, Corollary 3.8]). We also give a characterization of when a given prime divides $A(n)$ based on its base p representation.

The basic machinery is given in Section 2 and was largely developed in [5], (where the authors were primarily interested in the parity of $A(n)$), but is greatly simplified and generalized here. As this paper was in preparation for publication, we were contacted by Cartwright and Kupka and made aware of their paper [3] which essentially duplicates our method for determining $\operatorname{ord}_{p}(A(n))$. However, we include that result here anyway as
our proof emphasizes the periodicity of the function $c_{p, k}(n)$ which is used in the proof of Theorem 1.1 and is somewhat shorter and easier (though Cartwright and Kupka's perspective is broader than ours).

Theorem 1.1. If p is a prime greater than 3, then for each nonnegative integer k there exist infinitely many positive integers n for which $\operatorname{ord}_{p}(A(n))=k$.

2 Calculation of $A(n)$

We begin by stating the following lemma which is critical to our discussion. For a proof of this lemma, see [7, Theorem 2.29].

Lemma 2.1. For any prime p and any positive integer N,

$$
\operatorname{ord}_{p}(N!)=\sum_{k \geq 1}\left\lfloor\frac{N}{p^{k}}\right\rfloor
$$

Applying Lemma 2.1 to (1) then gives us

$$
\begin{equation*}
\operatorname{ord}_{p}(A(n))=\sum_{\ell=0}^{n-1} \sum_{k \geq 1}\left\lfloor\frac{3 \ell+1}{p^{k}}\right\rfloor-\sum_{\ell=0}^{n-1} \sum_{k \geq 1}\left\lfloor\frac{n+\ell}{p^{k}}\right\rfloor=\sum_{k \geq 1} c_{p, k}(n) \tag{2}
\end{equation*}
$$

where

$$
\begin{align*}
& c_{p, k}(n):=\sum_{\ell=0}^{n-1}\left(\left\lfloor\frac{3 \ell+1}{p^{k}}\right\rfloor+\left\lfloor\frac{\ell}{p^{k}}\right\rfloor\right)-\sum_{\ell=0}^{2 n-1}\left\lfloor\frac{\ell}{p^{k}}\right\rfloor . \tag{3}\\
& \left(\text { Note that } \sum_{\ell=0}^{n-1}\left\lfloor\frac{n+\ell}{p^{k}}\right\rfloor=\sum_{\ell=0}^{2 n-1}\left\lfloor\frac{\ell}{p^{k}}\right\rfloor-\sum_{\ell=0}^{n-1}\left\lfloor\frac{\ell}{p^{k}}\right\rfloor .\right)
\end{align*}
$$

We introduce the increment

$$
c_{p, k}(n+1)-c_{p, k}(n)=\left\lfloor\frac{3 n+1}{p^{k}}\right\rfloor+\left\lfloor\frac{n}{p^{k}}\right\rfloor-\left\lfloor\frac{2 n+1}{p^{k}}\right\rfloor-\left\lfloor\frac{2 n}{p^{k}}\right\rfloor
$$

of $c_{p, k}(n)$ and note that the increment is periodic of period p^{k} as Proposition 2.2 shows.

Proposition 2.2. Let k, n be positive integers and p be prime. Then

$$
c_{p, k}\left(p^{k}+n+1\right)-c_{p, k}\left(p^{k}+n\right)=c_{p, k}(n+1)-c_{p, k}(n) .
$$

Proof.

$$
\begin{aligned}
& c_{p, k}\left(p^{k}+n+1\right)-c_{p, k}\left(p^{k}+n\right) \\
= & \left\lfloor\frac{3\left(p^{k}+n\right)+1}{p^{k}}\right\rfloor+\left\lfloor\frac{p^{k}+n}{p^{k}}\right\rfloor-\left\lfloor\frac{2 p^{k}+2 n+1}{p^{k}}\right\rfloor-\left\lfloor\frac{2 p^{k}+2 n}{p^{k}}\right\rfloor \\
= & \left\lfloor 3+\frac{3 n+1}{p^{k}}\right\rfloor+\left\lfloor 1+\frac{n}{p^{k}}\right\rfloor-\left\lfloor 2+\frac{2 n+1}{p^{k}}\right\rfloor-\left\lfloor 2+\frac{2 n}{p^{k}}\right\rfloor \\
= & \left\lfloor\frac{3 n+1}{p^{k}}\right\rfloor+\left\lfloor\frac{n}{p^{k}}\right\rfloor-\left\lfloor\frac{2 n+1}{p^{k}}\right\rfloor-\left\lfloor\frac{2 n}{p^{k}}\right\rfloor+3+1-2-2 \\
= & c_{p, k}(n+1)-c_{p, k}(n) .
\end{aligned}
$$

If $p>2$ and $0 \leq n<p^{k}$, we can easily see that

$$
c_{p, k}(n+1)-c_{p, k}(n)=\left\{\begin{array}{lll}
0 & \text { if } \quad 0 \leq n<\left\|\frac{p^{k}}{3}\right\|, n=\left\lfloor\frac{p^{k}}{2}\right\rfloor, \text { or }\left\|\frac{2 p^{k}}{3}\right\| \leq n<p^{k} \tag{4}\\
1 & \text { if } \quad\left\|\frac{p^{k}}{3}\right\| \leq n<\frac{p^{k}}{2} \\
-1 & \text { if } \quad \frac{p^{k}}{2}<n<\left\|\frac{2 p^{k}}{3}\right\|
\end{array}\right.
$$

where $\|t\|$ is the integer nearest to t. Hence, since the number of +1 increments is equal to the number of -1 increments, $c_{p, k}\left(p^{k}\right)=0$ which means that $c_{p, k}(n)$ is itself periodic of period p^{k}. If $p=2$, then equation (4) is nearly the same except that the increment at $\frac{p^{k}}{2}$ is -1 rather than 0 .

Theorem 2.3. If $0 \leq n<p^{k}$. Then

$$
c_{p, k}(n)=\max \left\{0, \frac{p^{k}}{2}-\left\|\frac{p^{k}}{3}\right\|-\left|n-\frac{p^{k}}{2}\right|\right\} .
$$

Consequently, $c_{p, k}(n)=c_{p, k}\left(p^{k}-n\right)$.
Proof. The increment of $c_{p, k}(n)$ in (4) tells us that if $p>2$, the maximum value of $c_{p, k}(n)$ is $\frac{p^{k}}{2}-\left\|\frac{p^{k}}{3}\right\|-\frac{1}{2} \quad\left(\right.$ when $\left.n=\frac{p^{k}}{2} \pm \frac{1}{2}\right)$ and that it decrements by 1 moving away from these values in either direction. (If $p=2$, the maximum value is $\frac{p^{k}}{2}-\left\|\frac{p^{k}}{3}\right\|$ at $n=\frac{p^{k}}{2}$.) Note that $\left\|\frac{2 p^{k}}{3}\right\|-$ $\frac{p^{k}}{2}=\frac{p^{k}}{2}-\left\|\frac{p^{k}}{3}\right\|$ so we have complete symmetry about $\frac{p^{k}}{2}$. If n is within $\left\|\frac{p^{k}}{3}\right\|$ of $\frac{p^{k}}{2}$ then we see that $c_{p, k}(n)$ is the difference of this maximum value
(plus $\frac{1}{2}$ if $p \neq 2$), and the distance between n and $\frac{p^{k}}{2}$. If not, then we have passed into an interval where both the value of $c_{p, k}(n)$ and the increment is 0 . Thus, we have our result.

3 Infiniteness Results

In this section, we will prove Theorem 1.1. We first mention two propositions whose proofs we omit since they are straightforward computations.

Proposition 3.1. If p is a prime and $p \equiv 1(\bmod 6)$ then

$$
\begin{aligned}
\left\|\frac{p^{k}}{3}\right\| & =\left\|\frac{p^{k-i}}{3}\right\|+\left\|\frac{p^{i}}{3}\right\| \cdot p^{k-i} \text { and } \\
\left\|\frac{2 p^{k}}{3}\right\| & =\left\|\frac{2 p^{k-i}}{3}\right\|+\left(\left\|\frac{2 p^{i}}{3}\right\|-1\right) \cdot p^{k-i}
\end{aligned}
$$

Proposition 3.2. If p is a prime and $p \equiv 5(\bmod 6)$, then

$$
\begin{aligned}
\left\|\frac{p^{k}}{3}\right\| & =\left\|\frac{p^{k-2 i}}{3}\right\|+\left\|\frac{p^{2 i}}{3}\right\| \cdot p^{k-2 i} \\
\left\|\frac{2 p^{k}}{3}\right\| & =\left\|\frac{2 p^{k-2 i}}{3}\right\|+\left(\left\|\frac{2 p^{2 i}}{3}\right\|-1\right) p^{k-2 i}, \\
\left\|\frac{p^{k}}{3}\right\| & =\left\|\frac{2 p^{k-2 i-1}}{3}\right\|+\left(\left\|\frac{p^{2 i+1}}{3}\right\|-1\right) p^{k-2 i-1}, \quad \text { and } \\
\left\|\frac{2 p^{k}}{3}\right\| & =\left\|\frac{p^{k-2 i-1}}{3}\right\|+\left\|\frac{2 p^{2 i+1}}{3}\right\| \cdot p^{k-2 i-1} .
\end{aligned}
$$

We are now ready to prove Theorem 1.1.
Proof of Theorem 1.1. If $k=0$, then we know that $c_{p, i}\left(p^{j}\right)=0$ for all positive j, so we have established that $\operatorname{ord}_{p}(A(n))=0$ for infinitely many positive integers n. Assume then that $k>0$.

If $p \equiv 1 \quad(\bmod 6)$, consider $n=\left\|\frac{p^{k}}{3}\right\|+1$. Then $n=\left(\left\|\frac{p^{k-i}}{3}\right\|+1\right)+$ $\left\|\frac{p^{i}}{3}\right\| \cdot p^{k-i}$ for $0 \leq i \leq k-1$, so by the periodicity of $c_{p, i}$ for each i, we know that $c_{p, k-i}(n)=c_{p, k-i}\left(\left\|\frac{p^{k-i}}{3}\right\|+1\right)=1$ for $0 \leq i \leq k-1$. Moreover, since $n<\left\|\frac{p^{j}}{3}\right\|$ for all $j>k, c_{p, j}(n)=0$ for all $j>k$. Hence, $\operatorname{ord}_{p}(A(n))=k$.

If $p \equiv 5 \quad(\bmod 6)$, consider $n=\left\|\frac{p^{2 k}}{3}\right\|+1$. Then $n=\left\|\frac{p^{2 k-2 i}}{3}\right\|+$ $1+\left\|\frac{p^{2 i}}{3}\right\| \cdot p^{2 k-2 i}$ for $0 \leq i \leq k-1$, so by the periodicity of $c_{p, i}$ for each i, we know that $c_{p, 2 k-2 i}(n)=c_{p, 2 k-2 i}\left(\left\|\frac{p^{2 k-2 i}}{3}\right\|+1\right)=1$ for $0 \leq i \leq$ $k-1$. Also, $n=\left\|\frac{p^{2 k}}{3}\right\|+1=\left\|\frac{2 p^{2 k-2 i-1}}{3}\right\|+1+\left(\left\|\frac{2 p^{2 i+1}}{3}\right\|-1\right) p^{2 k-2 i-1}$, so $c_{p, 2 k-2 i-1}(n)=c_{p, 2 k-2 i-1}\left(\left\|\frac{2 p^{2 k-2 i-1}}{3}\right\|+1\right)=0$ for $0 \leq i \leq k-1$. Moreover, since $n<\left\|\frac{p^{j}}{3}\right\|$ for all $j>k, c_{p, j}(n)=0$ for all $j>k$. Hence, $\operatorname{ord}_{p}(A(n))=k$.

In both cases, for each positive integer k we have established the existence of at least one positive integer n such that $\operatorname{ord}_{p}(A(n))=k$. To get infinitely many, consider $n+p^{j}$ where $j>k$. Then since $n \bmod p^{i}=n<\left\|\frac{p^{i}}{3}\right\|$ for $k+1 \leq i \leq j$ and $n+p^{j}<\left\|\frac{p^{i}}{3}\right\|$ for $i>j, c_{p, i}\left(n+p^{j}\right)=c_{p, i}(n)$ for all positive i. Hence, we have $\operatorname{ord}_{p}\left(A\left(n+p^{j}\right)\right)=k$ for $j>k$.

We can prove a result similar to Theorem 1.1 for $p=3$, although it is somewhat weaker. By considering integers of the form $3^{j}+3^{k}$, where $j>k$, we can show that there are infinitely many positive integers n such that $3^{3^{k}} \mid A(n)$. Moreover, by considering integers of the form $3^{j}+3^{k-1}$, where $j>k$, we can show that there are infinitely many positive integers n such that $3^{3^{k}} \not \backslash A(n)$, but $3^{3^{k-1}} \mid A(n)$. In fact, for a given k, if one can show that there is some integer n such that $\operatorname{ord}_{3}(A(n))=k$, then there are infinitely many integers m such that $\operatorname{ord}_{3}(A(m))=k$, namely, the integers $m=2 \cdot 3^{j}+n$ where $j>\log _{3}(n)+1$. The situation is very different when $p=2$. In fact, for any positive integer k, there are only finitely many positive integers n for which $\operatorname{ord}_{2}(A(n))=k$. For a proof of this claim, see [6, Corollary 3.8].

We close this section by noting that the intuition we used to prove Theorem 1.1 and Propositions 3.1 and 3.2 came from viewing Theorem 2.3 in base p. First, $n \bmod p^{k}$ is simply the last k digits of the base p representation of n. Moreover, in base $p>2,\left\|\frac{p^{k}}{3}\right\|$ and $\left\|\frac{2 p^{k}}{3}\right\|$ are k digit numbers of a very special form. For example, for $p=13$ (which is congruent to $1 \bmod 6$), $\left\|\frac{p^{k}}{3}\right\|=444 \cdots 44_{13}$ while $\left\|\frac{2 p^{k}}{3}\right\|=888 \cdots 89_{13}$, and for $p=11$ (which is congruent to $5 \bmod 6$), we have $\left\|\frac{p^{k}}{3}\right\|=3737 \cdots 37_{11}$ or $3737 \cdots 374_{11}$ and $\left\|\frac{2 p^{k}}{3}\right\|=7373 \cdots 74_{11}$ or $7373 \cdots 37_{11}$ depending on
whether k is even or odd. In general, the digits corresponding to primes $p \equiv 1 \quad(\bmod 6)$ are $\left\|\frac{p}{3}\right\|,\left\|\frac{2 p}{3}\right\|$ and $\left\|\frac{2 p}{3}\right\|-1$, while the digits corresponding to primes $p \equiv 5 \quad(\bmod 6)$ are $\left\|\frac{p}{3}\right\|,\left\|\frac{2 p}{3}\right\|$ and $\left\|\frac{p}{3}\right\|-1$. If $p=3,\left\|\frac{p^{k}}{3}\right\|$ is a power of three while $\left\|\frac{2 p^{k}}{3}\right\|$ is twice a power of three (unless $k=1$). One can use such information to write down a characterization of when $A(n)$ is relatively prime to a given prime p. We do so below. See [3] for a different characterization.

Let the base p representation of a given positive integer n be represented by $n=p^{m} d_{m}+p^{m-1} d_{m-1}+\cdots+p d_{1}+d_{0}$ where $0 \leq d_{i}<p$ for $i=0, \ldots, m$.
Definition 3.3. Let n be a positive integer, and p any prime greater than 3. Let m be 1 or -1 as $p \equiv 1$ or $-1(\bmod 6)$. Consider a sequence of consecutive digits $d_{i}, d_{i-1}, \ldots, d_{i-j}$ in the base p representation of n. We call such a sequence a determining sequence if

$$
\left\|\frac{p^{j+1}}{3}\right\|<p^{j} d_{i}+p^{j-1} d_{i-1}+\cdots+d_{i-j}<\left\|\frac{2 p^{j+1}}{3}\right\|-\frac{1+m^{j+1}}{2}
$$

Proposition 3.4. Using the notation above, the following characterizes for which values of $n,(A(n), p)>1$.

- If $p=2$, see [5] and [3].
- If $p=3,(A(n), 3)=1$ if and only if whenever $d_{i}=1, d_{j}=0$ for $j=0, \ldots, i-1$.
- If $p \equiv 1(\bmod 6)$, then $(A(n), p)>1$ if and only if either there is a determining sequence for n with $j \in\{0,1\}$ or if $d_{0}=\left\|\frac{2 p}{3}\right\|-1$.
- If $p \equiv 5(\bmod 6)$, then $(A(n), p)>1$ if and only if either there is a determining sequence for n with $j \in\{0,1,2\}$ or if $d_{1}=\left\|\frac{2 p}{3}\right\|$ and $d_{0}=\left\|\frac{p}{3}\right\|-1$.

4 Running Time Analysis

We provide here an analysis of the speed of the method that we and Cartwright and Kupka independently developed for calculating $c_{p, k}(n)$. As mentioned in Section 2, it is clear that

$$
\operatorname{ord}_{p}(A(n))=\sum_{k \geq 1} c_{p, k}(n)
$$

Since $A(n)$ is smooth for each n and only contains primes $p<3 n$, we can now quickly determine the prime factorization of $A(n)$ for large values of n. As an example, we calculated $A(50000)$. Note that $A(50000) \approx$ $\left(\frac{27}{16}\right)^{50000^{2} / 2}$, so that $A(50000)$ has a base 10 representation with approximately $284,000,000$ digits. The prime factorization of $A(50000)$ is

$$
2^{11102} \cdot 3^{2848} \cdot 5^{2083} \cdot \ldots \cdot 149969^{10} \cdot 149971^{10} \cdot 149993^{2}
$$

This value would certainly be intractable if calculated using (1). The Maple code used to calculate this result can be obtained from the authors.

Calculation of $A(n)$ via the method we describe here is much faster than calculation using (1). Indeed, since no obvious cancellation scheme appears available in (1), calculation of $A(n)$ via (1) will involve $O\left(n^{2}\right)$ operations. This is because the number of operations needed to compute n ! is n, (or $n-1$ if one ignores the multiplication by 1). But this implies that the number of multiplications needed to compute $A(n)$ via (1) is at least

$$
0+3+6+9+\ldots+3 n-3+(n-1)+n+(n+1)+\ldots+(2 n-1)
$$

which is $O\left(n^{2}\right)$ since $1+2+3+\ldots+n=n(n+1) / 2$. The additional multiplications needed to combine all of the separate factorials into one final number will not contribute to a larger order of magnitude, so that $O\left(n^{2}\right)$ is indeed the number of operations involved.

In contrast, determination of the prime factorization of $A(n)$ via the method in Section 2 involves only $O(n)$ computations. The calculation involves finding $\operatorname{ord}_{p}(A(n))$ for each $p \leq 3 n$ (since any prime greater than $3 n$ will yield $c_{p, k}(n)=0$ for all k), and thus we are calculating a double sum. The inner sum, which, in practice, runs from $k=1$ to $\left\lceil\log _{2}(n)\right\rceil+1$, requires $O(\log (n))$ computations. The outer sum, which involves all primes p less than $3 n$, requires $O\left(\frac{n}{\log (n)}\right)$ computations since, by the Prime Number Theorem [1], if $\pi(x)$ equals the number of primes less than or equal to x, then

$$
\lim _{x \rightarrow \infty} \frac{\pi(x)}{x}=1
$$

Thus, our algorithm requires $O(n)$ computations since

$$
\log (n) \cdot \frac{n}{\log (n)}=n
$$

References

[1] T. M. Apostol, "Introduction to Analytic Number Theory", SpringerVerlag, 1976.
[2] D. M. Bressoud, "Proofs and Confirmations: The story of the alternating sign matrix conjecture", Cambridge University Press, 1999.
[3] D. I. Cartwright and J. Kupka, When Factorial Quotients are Integers, preprint (submitted to Gazette of the Australian Mathematics Society).
[4] D. M. Bressoud and J. Propp, How the Alternating Sign Matrix Conjecture Was Solved, Notices of the American Mathematical Society, 46 (6) (1999), 637-646.
[5] D. D. Frey and J. A. Sellers, Jacobsthal Numbers and Alternating Sign Matrices, Journal of Integer Sequences, 3 (2000), Article 00.2.3.
[6] D. D. Frey and J. A. Sellers, On Powers of 2 Dividing the Values of Certain Plane Partition Functions, Journal of Integer Sequences, 4 (2001), Article 01.1.8.
[7] C. T. Long, "Elementary Introduction to Number Theory", 3rd edition, Waveland Press, Inc., Prospect Heights, IL, 1995.
[8] D. P. Robbins, The Story of $1,2,7,42,429,7436, \ldots$, The Mathematical Intelligencer, 13 (2) (1991), 12-19.
[9] D. Zeilberger, Proof of the alternating sign matrix conjecture, Electronic Journal of Combinatorics 3 (1996), R13.

