Infinitely Many Composite NSW Numbers:

An Inductive Proof

January 22, 2003

1 Motivation

The NSW numbers were introduced approximately 20 years ago [3] in connection with the order of certain simple groups. These are the numbers f_{n} which satisfy the recurrence

$$
\begin{equation*}
f_{n+1}=6 f_{n}-f_{n-1} \tag{1}
\end{equation*}
$$

with initial conditions $f_{1}=1$ and $f_{2}=7$.
In recent years, these numbers have been studied from a variety of perspectives [1], 2]. Moreover, the author, in collaboration with Hugh Williams, has proven that there are infinitely many composite NSW numbers [4] as requested in [1]. The goal of this note is to provide a purely inductive proof of the main theorem in (4]. We restate it here.

Theorem 1.1. For all $m \geq 1$ and all $n \geq 0, f_{m} \mid f_{(2 m-1) n+m}$.

2 The Necessary Tools

To prove Theorem 1.1, we need to develop a few key tools.

Proposition 2.1. For all integers $a, b \geq 0$, and for all $1 \leq j \leq a+b-2$, we have

$$
\begin{equation*}
f_{a+b}=s_{j+1} f_{a+b-j}-s_{j} f_{a+b-j-1} \tag{2}
\end{equation*}
$$

where $s_{j}=\sum_{i=1}^{j}(-1)^{i+j} f_{i}$.
Proof. We prove this proposition using induction on j. First, when $j=1$, the right hand side of (2) is $\left(f_{2}-f_{1}\right) f_{a+b-1}-f_{1} f_{a+b-2}$ or $6 f_{a+b-1}-$ f_{a+b-2}, which equals f_{a+b} thanks to (1).

Next, we assume

$$
f_{a+b}=s_{j+1} f_{a+b-j}-s_{j} f_{a+b-j-1}
$$

for $j<a+b-2$. Thus, since $f_{a+b-j}=6 f_{a+b-j-1}-f_{a+b-j-2}$, we have

$$
\begin{aligned}
f_{a+b} & =s_{j+1}\left(6 f_{a+b-j-1}-f_{a+b-j-2}\right)-s_{j} f_{a+b-j-1} \\
& =\left(6 s_{j+1}-s_{j}\right) f_{a+b-j-1}-s_{j+1} f_{a+b-j-2} .
\end{aligned}
$$

Then we note that

$$
\begin{aligned}
6 s_{j+1}-s_{j} & =6 \sum_{i=1}^{j+1}(-1)^{i+j+1} f_{i}-\sum_{i=1}^{j}(-1)^{i+j} f_{i} \\
& =6(-1)^{j+2} f_{1}+6 \sum_{i=2}^{j+1}(-1)^{i+j+1} f_{i}-\sum_{i=1}^{j}(-1)^{i+j} f_{i}
\end{aligned}
$$

$$
\begin{aligned}
& =6(-1)^{j+2} f_{1}+6 \sum_{i=1}^{j}(-1)^{i+j+2} f_{i+1}-\sum_{i=1}^{j}(-1)^{i+j} f_{i} \\
& =\left(f_{2}-f_{1}\right)(-1)^{j+2}+\sum_{i=1}^{j}(-1)^{i+j+2}\left(6 f_{i+1}-f_{i}\right) \\
& \left.=\left(f_{2}-f_{1}\right)(-1)^{j+2}+\sum_{i=1}^{j}(-1)^{i+j+2} f_{i+2} \quad \text { by (1) }\right) \\
& =\left(f_{2}-f_{1}\right)(-1)^{j+2}+\sum_{i=3}^{j+2}(-1)^{i+j} f_{i} \\
& =\sum_{i=1}^{j+2}(-1)^{i+j} f_{i} \\
& =s_{j+2} .
\end{aligned}
$$

Therefore, we have

$$
\begin{aligned}
f_{a+b} & =\left(6 s_{j+1}-s_{j}\right) f_{a+b-j-1}-s_{j+1} f_{a+b-j-2} \\
& =s_{j+2} f_{a+b-j-1}-s_{j+1} f_{a+b-j-2}
\end{aligned}
$$

which completes the proof of Proposition 2.1.

Proposition 2.2. For all $m \geq 1$ and for all $1 \leq c \leq m-1, f_{m} \mid f_{m+c}+$ f_{m-c}.

Proof. For $c=1$, we know from (1) that $6 f_{m}=f_{m+1}+f_{m-1}$, so that $f_{m} \mid f_{m+1}+f_{m-1}$. Next, we assume $f_{m} \mid f_{m+c}+f_{m-c}$ for $1 \leq c \leq d$ for some value $d<m-1$. Since

$$
f_{m+d+1}=6 f_{m+d}-f_{m+d-1} \quad \text { and } \quad f_{m-d-1}=6 f_{m-d}-f_{m-d+1},
$$

we know

$$
f_{m+d+1}+f_{m-(d+1)}=6 f_{m+d}-f_{m+d-1}+6 f_{m-d}-f_{m-d+1}
$$

$$
=6\left(f_{m+d}+f_{m-d}\right)-\left(f_{m+d-1}+f_{m-(d-1)}\right) .
$$

By the induction hypothesis, the result follows.

Proposition 2.3. For all $m \geq 1, f_{m} \mid s_{2 m-1}$.

Proof. We see that
$s_{2 m-1}=\sum_{i=1}^{2 m-1}(-1)^{i-1} f_{i}=f_{1}-f_{2}+f_{3}-\ldots+(-1)^{m-1} f_{m}+\ldots+f_{2 m-1}$.
Notice that this sum is centered about f_{m}, which divides itself, and that the rest of the terms can be paired in such a way that Proposition 2.2 can be applied easily.

We are now ready to prove Theorem 1.1.

Proof. When $n=0$, the result is clear. Next, assume $f_{m} \mid f_{(2 m-1) n+m}$ or $f_{m} \mid f_{2 m n-n+m}$. We want to prove

$$
f_{m} \mid f_{(2 m-1)(n+1)+m} \text { or } f_{m} \mid f_{2 m n-n+m+(2 m-1)}
$$

Using Proposition 2.1 with $a=2 m n-n+m, b=2 m-1$, and $j=2 m-2$, we have

$$
f_{2 m n-n+m+(2 m-1)}=s_{2 m-1} f_{2 m n-n+m+1}-s_{2 m-2} f_{2 m n-n+m}
$$

From Proposition 2.3, we know $f_{m} \mid s_{2 m-1}$, and from the induction hypothesis, $f_{m} \mid f_{2 m n-n+m}$. The result follows.

References

[1] Barcucci, E., Brunetti, S., Del Lungo, A., and Del Ristoro, F., A combinatorial interpretation of the recurrence $f_{n+1}=6 f_{n}-f_{n-1}$, Discrete Mathematics, 190 (1998), 235-240.
[2] Bonin, J., Shapiro, L., and Simion, R., Some q-analogues of the Schröder numbers arising from combinatorial statistics on lattice paths, J. Statist. Plann. Inference, 34 (1993), 35-55.
[3] Newman, M., Shanks, D., and Williams, H.C., Simple groups of square order and an interesting sequence of primes, Acta Arithmetica, XXXVIII (1980), 129-140.
[4] Sellers, J., and Williams, H., On the infinitude of composite NSW numbers, Fibonacci Quarterly, to appear.

2000 Mathematics Subject Classification. 11B37, 11B83
keywords: NSW numbers, recurrence relation

Author: James A. Sellers
Address: Department of Mathematics, Penn State University, 107
Whitmore Laboratory, University Park, PA 16802
Email: sellersj@math.psu.edu

