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1 Motivation

The NSW numbers were introduced approximately 20 years ago [3]
in connection with the order of certain simple groups. These are the

numbers f,, which satisfy the recurrence

fn+1 = an - fnfl (1)

with initial conditions f; =1 and fo = 7.

In recent years, these numbers have been studied from a variety of
perspectives [I], [2]. Moreover, the author, in collaboration with Hugh
Williams, has proven that there are infinitely many composite NSW
numbers [4] as requested in [I]. The goal of this note is to provide a

purely inductive proof of the main theorem in [4]. We restate it here.



Theorem 1.1. For allm > 1 and alln >0, fu | fom-1)ntm.

2 The Necessary Tools

To prove Theorem [I.1] we need to develop a few key tools.

Proposition 2.1. For all integers a,b > 0, and for alll < 7 < a+b—2,
we have

fa+b = 3j+1fa+b—j - 5jfa+b—j—1 (2)

J L
where s; = Y (—=1)" f;.

i=1
Proof. We prove this proposition using induction on j. First, when

J = 1, the right hand side of is (fo—f1) fasv—1— f1farp—2 01 6 forp1—
Jat+b—2, which equals f,, thanks to ([1)).
Next, we assume
Jatp = 3j+1fa+b—j - 5jfa+bfj71
for j < a+b— 2. Thus, since foyp—j = 6fatv—j—1 — fatp—j—2, We have
Jaorv = Sj11(6favb—j—1 — fato—j—2) — 8jfarb—j—1
= (65541 — 55) fatv—j—1 — Sj41 fatb—j—2.
Then we note that
Jj+1 J
6sj41 —5; = 62(_1)Zﬂ+1f¢ - Z(‘l)lﬂfi
i=1 i=1
j+1

= G(=1)"2f+ 6 (-1 =D (=),
i=2 i=1
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= 6(=1)"fi+ 62(—1>”j+2fi+1 =D (=)™,

=1

= (o= D)+ Z D2 (6 fin — fi)

= (fa— f1)( J+2 + Z ZJerr2fz‘+2 by

]+2
= (fo— f)(= ]+2+Z D™ f;
Jj+2
- Z(—l)zﬂfi
i=1
= Sj+2.
Therefore, we have
farr = (65j+1 - Sj)fa-i—b—j—l - 3j+1fa+b—j—2

= Sjtafarb—j—1 — Sjt1farv—j—2,

which completes the proof of Proposition 2.1} O
Proposition 2.2. Forallm > 1 and for alll <c<m—1, fi | finset+
Jrn—ec
Proof. For ¢ = 1, we know from that 6f,, = fe1 + fim_1, so that
f | fos1 + fm—1. Next, we assume fo, | foie + fin—e for 1 < ¢ < d for
some value d < m — 1. Since

Jmtdr1 = 6 frmtd — fmya—1r and fr_qg—1 = 6fm_a— fr—as1,
we know

fmtdt1 + fm—@r1)y = 6fmia — fnvda—1 + 6fm—a — fn—at1
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= 6(fmrd + fm-d) = (frmrd—1 + fr—(a-1))-
By the induction hypothesis, the result follows. O]
Proposition 2.3. For allm > 1, f,, | Som-1-

Proof. We see that

2m—1

sima1= 3 (=17 fi=fi—fotfs— A (D" o+ fomet
i=1

Notice that this sum is centered about f,,, which divides itself, and

that the rest of the terms can be paired in such a way that Proposition

can be applied easily. O
We are now ready to prove Theorem [1.1]

Proof. When n = 0, the result is clear. Next, assume fn, | fom-1)ntm

or fum | fomn—ni+m-. We want to prove

fm | f(2m—1)(n+1)+m or fm | f2mn—n+m+(2m—1)-

Using Proposition 2.1 with a = 2mn—n+m, b = 2m—1, and j = 2m—2,

we have

f2mn—n+m+(2m—1) = 82m71f2mn7n+m+1 - 82m72f2mn7n+m-

From Proposition , we know f,, | Sem_1, and from the induction

hypothesis, f. | fomn—ntm. The result follows. O
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