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Abstract. In this paper, we establish a number of theorems on the classic
Diophantine equation of S.S. Pillai, ax − by = c, where a, b and c are given
nonzero integers with a, b ≥ 2. In particular, we obtain the sharp result that
there are at most two solutions in positive integers x and y and deduce a
variety of explicit conditions under which there exists at most a single such
solution. These improve or generalize prior work of Le, Leveque, Pillai, Scott
and Terai. The main tools used include lower bounds for linear forms in the
logarithms of (two) algebraic numbers and various elementary arguments.

1. Introduction

In a series of papers in the 1930’s and 1940’s, S.S. Pillai [Pi1], [Pi2], [Pi3], [Pi4]
studied the Diophantine equation

(1.1) ax − by = c

in positive integers a, b, x and y, where c is a fixed nonzero integer. Indeed, his
famous conjecture that, for each such c, equation (1.1) has at most finitely many
solutions in integers a, b, x and y exceeding unity appears for the first time in [Pi2].
This remains an outstanding open problem, though the case c = 1 (Catalan’s
Conjecture) was essentially solved by Tijdeman [Ti] (see Mignotte [Mi2] for an
excellent survey of recent developments on this front).

In this paper, we will address the rather more modest problem of equation (1.1)
when all three of a, b and c are fixed nonzero integers with a, b ≥ 2 (this is, in
fact, the situation considered by Pillai in [Pi1] and [Pi2]). Here, we can relax the
conditions on x and y to include the potential solutions x = 1 or y = 1. Already in
this case, from work of Polya [Po], it was known that equation (1.1) could possess
at most finitely many integral solutions. This result was subsequently quantified by
Herschfeld [He] (applying arguments of Pillai [Pi1]) who demonstrated that at most
nine pairs of positive (x, y) may satisfy (1.1), provided c is sufficiently large relative
to a and b and gcd(a, b) = 1. Subsequently, Pillai [Pi2] showed that this equation
has, again if c is sufficiently large and gcd(a, b) = 1, at most one such solution. His
proof of this result relies upon Siegel’s sharpening of Thue’s theorem on rational
approximation to algebraic numbers and is hence ineffective (in the sense that, a
priori, there is no way to quantify the term “sufficiently large”). With a modicum
of computation, we can, in fact, find a number of examples where there are two
solutions to (1.1) in positive integers x and y, corresponding to the following set of
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equations:

(1.2)

3− 2 = 32 − 23 = 1
23 − 3 = 25 − 33 = 5
24 − 3 = 28 − 35 = 13
23 − 5 = 27 − 53 = 3

13− 3 = 133 − 37 = 10
91− 2 = 912 − 213 = 89

6− 2 = 62 − 25 = 4
15− 6 = 152 − 63 = 9

280− 5 = 2802 − 57 = 275
4930− 30 = 49302 − 305 = 4900

64 − 34 = 65 − 38 = 1215

There exist no examples of triples (a, b, c) for which equation (1.1) has three
positive solutions; this is the content of our first result:
Theorem 1.1. If a, b and c are nonzero integers with a, b ≥ 2, then equation (1.1)
has at most two solutions in positive integers x and y.

This theorem sharpens work of Le [Le] (Theorem 2; see also Shorey [Sh]) who
obtained a similar result under the hypotheses min{a, b} ≥ 105, min{x, y} ≥ 2 and
gcd(a, b) = 1 (in case gcd(a, b) > 1, a like result is claimed in [Le], but no proof
is provided). We note that the condition min{x, y} ≥ 2 is actually very restrictive
(as is evident from the examples in (1.2)) and appears crucially in the arguments
of [Le]. While Theorem 1.1 is essentially sharp, as indicated by (1.2), one might, in
light of Pillai’s work, believe that something rather stronger is true. We formulate
this in the following
Conjecture 1.2. If a, b and c are positive integers with a, b ≥ 2, then equation
(1.1) has at most one solution in positive integers x and y, except for those triples
(a, b, c) corresponding to (1.2).

As evidence for this, we provide a number of results, the first two of which
indicate that Conjecture 1.2 is true if c is either “sufficiently large” or “sufficiently
small”, with respect to a and b. The first of these is an explicit version of the
aforementioned theorem of Pillai, valid additionally for pairs (a, b) which fail to be
relatively prime (we note that Pillai’s treatment of this latter situation in [Pi2] is
inadequate).
Theorem 1.3. If a, b and c are positive integers with a, b ≥ 2 and

c ≥ b2a
2 log a ( or, if a is prime, c ≥ ba) ,

then equation (1.1) has at most one solution in positive integers x and y.
We take this opportunity to observe that the exponents above are artifices of our

proof and may be somewhat reduced, via more precise application of lower bounds
for linear forms in logarithms of algebraic numbers.

If, instead, we suppose that c is suitably small, relative to a and b, elaborating
an argument of Terai [Te], we may derive a complementary result to Theorem 1.3.
To state our result concisely, we require some notation. Let us define, given a and b
integers exceeding unity, a0 to be the largest positive integral divisor of a satisfying
gcd(a0, b) = 1 and write

δ(a, b) =
log a0

log a
and δ∗(a, b) = max {δ(a, b), 1− δ(a, b)} .
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Theorem 1.4. If a, b and c are positive integers with a, b ≥ 2, then equation (1.1)
has at most one solution in positive integers x and y with

by ≥ 6000 c1/δ
∗(a,b).

Terai [Te] (Theorem 3) obtained a result of this shape, under the additional
assumptions that (x, y) = (1, 1) is a solution of (1.1) and that gcd(a, b) = 1. His
stated constant is 1697 rather than 6000, which reflects both the further constraints
imposed and discrepancies between the lower bounds for linear forms in two loga-
rithms used in [Te] and in the paper at hand. We note that the constant 6000 may
be readily reduced by arguing somewhat more carefully.

In case c = 1, Conjecture 1.2 is a well known theorem of Leveque [Lev] (proved,
independently, by Cassels [Ca]). Terai (Theorem 4 of [Te]) considered the case
c = 2 under the restrictive (and, as it transpires, unnecessary) condition that
(x, y) = (1, 2) is a solution to (1.1). In fact, one may derive an efficient procedure for
testing the validity of this conjecture for any fixed c, thereby generalizing Leveque’s
theorem; for small values, we have
Theorem 1.5. If a, b and c are integers with a, b ≥ 2 and 1 ≤ c ≤ 100, then
equation (1.1) has at most one solution in positive integers x and y, except for
triples (a, b, c) satisfying

(a, b, c) ∈ {(3, 2, 1), (2, 3, 5), (2, 3, 13), (4, 3, 13), (16, 3, 13),
(2, 5, 3), (13, 3, 10), (91, 2, 89), (6, 2, 4), (15, 6, 9)} .

In each of these cases, (1.1) has precisely two positive solutions.
Finally, if we restrict our attention to prime values of a (where we assume that

c is positive), we may verify Conjecture 1.2 for a number of fixed values of a. The
first result of this nature was obtained by Scott [Sc] in the case a = 2 (we will
discuss this in more detail in Section 2). We prove
Theorem 1.6. If a, b ≥ 2 and c are positive integers, with a prime and b ≡
±1 (mod a), then (1.1) has at most one positive solution (x, y) unless

(a, b, c) ∈ {(3, 2, 1), (2, 3, 5), (2, 3, 13)} .

In each of these cases, there are precisely two such solutions.

An (almost) immediate corollary of this, which proves Conjecture 1.2 for a =
2n + 1 prime (i.e. for the Fermat primes; a presumably finite set), is the following
Corollary 1.7. If a ∈ {3, 5, 17, 257, 65537} and b ≥ 2, then (1.1) has at most
one positive solution (x, y) unless (a, b, c) = (3, 2, 1), in which case there are two
solutions (x, y) = (1, 1) and (x, y) = (2, 3).

It appears to be difficult to prove Conjecture 1.2 for an infinite family of values
of a or, for that matter, for even a single fixed b. We note that Conjecture 1.2,
in the special case where (1.1) possesses a minimal solution (x, y) = (1, 1), has
been considered from a rather different viewpoint by Mignotte and Pethő [MP],
motivated by computations of Fielder and Alford [FA]. Additionally, results of
Mordell [Mo] and Pintér [Pin] on elliptic Diophantine equations may be recast as
cases of Conjecture 1.2, where we specify values of positive solutions (x1, y1) and
(x2, y2) as (x1, y1, x2, y2) = (1, 1, 2, 3) and (2, 1, 3, 2), respectively. Further, (1.1) is
a simple example of an S-unit equation. Though general bounds for the number
of solutions to such equations have reached an admirable state of refinement (see
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e.g. Beukers and Schlickewei [BS]) or Shorey and Tijdeman [ShTi]), we feel there
is still some merit in careful examination of a restricted situation.

2. Elementary results

Before we proceed with the proofs of our Theorems, we will mention a related
result due to Scott [Sc]. By applying elementary properties of integers in quadratic
fields, Scott proved the following (an immediate consequence of Theorems 3 and 4
of [Sc]):
Proposition 2.1. If b > 1 and c are positive integers and a is a positive rational
prime, then equation (1.1) has at most one solution in positive integers x and y
unless either (a, b, c) = (3, 2, 1), (2, 3, 5), (2, 3, 13) or (2, 5, 3), or a > 2, gcd(a, b) = 1
and the smallest t ∈ N such that bt ≡ 1 (mod a) satisfies t ≡ 1 (mod 2). In
these situations, the given equation has at most two such solutions. If equation
(1.1), with the above hypotheses, has distinct positive solutions (x1, y1) and (x2, y2),
then y2 − y1 ≡ 1 (mod 2), unless (a, b, c) = (3, 2, 1), (2, 3, 5), (2, 3, 13), (2, 5, 3) or
(13, 3, 10).

This result establishes Conjecture 1.2 in the case a = 2 and includes the pairs
(a, b) = (3, 2) and (2, 3) as special cases (Conjecture 1.2 for these pairs was an
old question of Pillai [Pi2], resolved via the theory of linear forms in logarithms
of algebraic numbers by Stroeker and Tijdeman [StTi]; see also Chein [Ch] and
Herschfeld [He]). From Proposition 2.1, we can, in the proof of Theorem 1.1,
restrict attention to those a that possess at least two distinct prime factors (so
that a ≥ 6). For Theorems 1.3, 1.4 and 1.5, we will also suppose that a ≥ 6, an
assumption we will not justify until Section 7 (the proof of Theorem 1.6 will not
rely upon any prior results). In all cases, we will henceforth assume, without loss
of generality, that a and b are not perfect powers and that c is positive.

3. Proof of Theorem 1.1

In this section, we will prove that equation (1.1) has at most two positive solu-
tions (x, y), provided a, b and c are positive integers with a, b ≥ 2. Let us suppose
that, in fact, there are three such solutions (xi, yi) in positive integers, where

x1 < x2 < x3 and y1 < y2 < y3.

We begin by noting that, for i = 1, 2, we have

(3.1) yi+1xi − xi+1yi > 0.

To see this, observe that the function Ax − Bx is monotone increasing for x ≥ 1,
provided A > B > 1, and so

axi+1 − byi
xi+1
xi > c = axi+1 − byi+1 .

It follows that yi+1xi > yixi+1, as desired. Inequality (3.1), though extremely
simple, will prove to be of crucial importance in establishing a “gap principle” for
the solutions (xi, yi); i.e. a result which guarantees that these solutions do not lie
too close together. In the context of equation (1.1), this inequality occurs first in
work of Terai [Te].

We first suppose that gcd(a, b) > 1. There thus exists a prime p dividing a and
b, say with ordpa = α ≥ 1 and ordpb = β ≥ 1. Since

axi
(
axi+1−xi − 1

)
= byi

(
byi+1−yi − 1

)
,
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it follows that αxi = βyi for i = 1, 2, whereby
x1

y1
=
x2

y2
=
β

α
,

contradicting (3.1). We will therefore assume, for the remainder of this section,
that gcd(a, b) = 1.

Let us write
Λi = xi log a− yi log b,

whereby
eΛi − 1 =

c

byi

and so
log |Λi| < log

( c

byi

)
.

We will use this inequality to show, at least for i ≥ 2, that |Λi| is “small”. From this,
we will (eventually) derive a contradiction. Arguing crudely, since x3 > x2 > x1,
we have

ax3 ≥ ax1+2 > a2c and ax2 ≥ ax1+1 > ac,

whence
axi

byi
=

axi

axi − c <
ai−1

ai−1 − 1
for 2 ≤ i ≤ 3.

It follows that

byi < axi <
ai−1

ai−1 − 1
byi

and so

(3.2) log |Λi| < log
(

min
{

ai−1c

(ai−1 − 1)axi
,
c

byi

})
for 2 ≤ i ≤ 3. Let us also note that

yi+1Λi − yiΛi+1 = (xiyi+1 − xi+1yi) log a ≥ log a,

where the inequality follows from (3.1). Since Λi+1 > 0, we thus have

(3.3)
xi+1

log b
>
yi+1

log a
>

1
Λi
.

The following is the Corollary to Theorem 2 of Mignotte [Mi]; here, h(α) denotes
the absolute logarithmic Weil height of α, defined, for an algebraic integer α, by

h(α) =
1

[Q(α) : Q]
log
∏
σ

max{1, |σ(α)|},

where σ runs over the embeddings of Q(α) into C.
Lemma 3.1. Consider the linear form

Λ = b2 logα2 − b1 logα2

where b1 and b2 are positive integers and α1, α2 are nonzero, multiplicatively inde-
pendent algebraic numbers. Set

D = [Q(α1, α2) : Q]/[R(α1, α2) : R]

and let ρ, λ, a1 and a2 be positive real numbers with ρ ≥ 4, λ = log ρ,

ai ≥ max {1, ρ| logαi| − log |αi|+ 2Dh(αi)} (1 ≤ i ≤ 2)
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and
a1a2 ≥ max

{
20, 4λ2

}
.

Further suppose h is a real number with

h ≥ max
{

3.5, 1.5λ,D
(

log
(
b1
a2

+
b2
a1

)
+ log λ+ 1.377

)
+ 0.023

}
,

χ = h/λ and υ = 4χ+ 4 + 1/χ. We may conclude, then, that

log |Λ| ≥ − (C0 + 0.06) (λ+ h)2 a1a2,

where

C0 =
1
λ3


(

2 +
1

2χ(χ+ 1)

)1
3

+

√
1
9

+
4λ
3υ

(
1
a1

+
1
a2

)
+

32
√

2(1 + χ)3/2

3υ2
√
a1a2


2

.

We apply this lemma to |Λ3| where, in the notation of Lemma 3.1, we have

D = 1, α1 = b, α2 = a, b1 = y3, b2 = x3

and, since we assume b ≥ 2 and a ≥ 6, may take

a1 = (ρ+ 1) log b, a2 = (ρ+ 1) log a.

Choosing ρ = 4.74, it follows that a1a2 ≥ max
{
20, 4λ2

}
. Let

h = max
{

9.365, log
(
x3

log b

)
+ 0.788

}
.

That this is a valid choice for h follows from the inequality
x3

log b
>

y3

log a
.

We will treat the two possible choices for h in turn. Suppose first that

h = log
(
x3

log b

)
+ 0.788

whereby we have

(3.4)
x3

log b
> 5308.

If b = 2, from Proposition 2.1, we may assume that a ≥ 15, while, for b ≥ 3,
we may suppose that a ≥ 6. It follows that 1

a1
+ 1

a2
and 1

a1a2
are both maximal

for (a, b) = (15, 2) and hence, in Lemma 3.1, we have C0 < 0.615. Applying this
lemma, we conclude that

log |Λ3| > −22.24
(

log
(
x3

log b

)
+ 2.345

)2

log a log b.

Combining this with (3.2), we find, since a ≥ 6, that

x3

log b
<

log c
log a log b

+
log (36/35)
log a log b

+ 22.24
(

log
(
x3

log b

)
+ 2.345

)2

.

Since (x1, y1) is a solution to equation (1.1), it follows that c < ax1 and so, in
conjunction with log a log b ≥ log 2 log 15, we have

x3 − x1

log b
< 0.01 + 22.24

(
log
(
x3

log b

)
+ 2.345

)2

.
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From (1.1), we obtain

(3.5) axi+1−xi ≡ 1 (mod byi) and byi+1−yi ≡ 1 (mod axi)

and, consequently,
ax3−x2 > by2 > by1ax1 .

It follows that x3 − x1 > x1 and so

x3

log b
< 0.02 + 44.48

(
log
(
x3

log b

)
+ 2.345

)2

,

contradicting (3.4).
We therefore have that h = 9.365, whereby

(3.6)
x3

log b
< 5309.

Since (3.2) and (3.3) yield

x3

log b
>

1
Λ2

>
by2

c
>
ax2 − ax1

c
> ax2−x1 − 1,

where the last two inequalities follow from ax2 − ax1 < by2 < ax2 and ax1 > c, we
may thus conclude that

ax2−x1 ≤ 5309.

Since a ≥ 6 and (via Proposition 2.1) ω(a) ≥ 2 (i.e. a possesses at least two distinct
prime factors), we are left to consider

(3.7)

x2 − x1 = 1 6 ≤ a ≤ 5308
x2 − x1 = 2 6 ≤ a ≤ 72
x2 − x1 = 3 6 ≤ a ≤ 15
x2 − x1 = 4 a = 6

.

To deal with the remaining cases, we first note that, from (3.2), we have

(3.8)
∣∣∣∣ log b
log a

− xi
yi

∣∣∣∣ < c

yibyi log a
.

We may thus conclude that xi
yi

is a convergent in the simple continued fraction
expansion to log b

log a , provided
c

yibyi log a
<

1
2y2
i

i.e. if
byi log a
cyi

> 2.

In particular, since (3.5) yields

byi+1−yi > axi > byi,

we have
by3 log a
cy3

>
by3−y2+y1

y3
log a ≥ b

1
2y3+ 1

2 +y1

y3
log a > 2,
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where the last inequality follows from yi+1 ≥ 2yi + 1 (whereby y3 ≥ 7) and b ≥ 2.
Thus x3

y3
is a convergent in the simple continued fraction expansion to log b

log a . On the
other hand, if pr/qr is the rth such convergent, then∣∣∣∣ log b

log a
− pr
qr

∣∣∣∣ > 1
(ar+1 + 2) q2

r

where ar+1 is the (r+ 1)st partial quotient to log b
log a (see e.g. [Kh]). It follows, then,

if x3
y3

= pr
qr

, that

(3.9) ar+1 >
by3 log a
cy3

− 2 >
b

1
2y3+ 1

2 +y1

y3
log a− 2.

For each 1 ≤ x2−x1 ≤ 4 and each a in the ranges given in (3.7) we compute, for
each b dividing ax2−x1−1, the initial terms in the infinite simple continued fraction
expansion to log b

log a . To carry out this calculation, we utilize Maple V and find, in all
cases except (a, b) = (3257, 148), (4551, 25) and (5261, 526), that the denominator
of the 19th convergent to log b

log a satisfies q19 ≥ 5309 loga. Since 3257 and 5261 are
prime and 25 = 52, these cases are excluded by hypothesis. It follows from

y3

log a
<

x3

log b

and (3.6) that y3 < 5309 loga and so we necessarily have x3
y3

= pr
qr

with 1 ≤ r ≤ 18.
The only a and b under consideration for which we find a partial quotient ak

with k ≤ 19 and ak ≥ 100000 are given in the following table

(3.10)

a b ak
1029 257 a4 = 146318
1837 204 a16 = 1859087
2105 526 a14 = 149863
2179 33 a8 = 169118
2194 731 a4 = 251316
3741 5 a14 = 197241
4348 621 a15 = 132488

.

On the other hand, (3.9) implies, since b ≥ 2 (and a ≥ 15 if b = 2), that ar+1 >
100000 provided y3 ≥ 38. It follows that y3 ≤ 37 in all cases (since a much stronger
result is a consequence of (3.9) for those (a, b) listed in (3.10)). Since

y3

log a
> ax2−x1 − 1,

we have (ax2−x1 − 1) log a < 37, whereby 6 ≤ a ≤ 14 and x2 − x1 = 1 (whence
(a, b) ∈ {(6, 5), (10, 3), (14, 13)}). For these three cases, we find that qk ≥ 5309 loga
with k = 12, 9 and 9, respectively and the largest partial quotient under consider-
ation is a3 = 34 to log 13

log 14 . Together with (3.9), this contradicts

y3 ≥ 2y2 + 1 ≥ 4y1 + 3 ≥ 7,

completing the proof of Theorem 1.1.
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4. Effective Pillai

One deficiency in the main theorem of Pillai [Pi2] is the ineffectivity stemming
from the application of Siegel’s Theorem. In this section, we will derive an effec-
tive (indeed, explicit) version, valid, additionally, for pairs (a, b) which fail to be
relatively prime.

We will have use of the following result (see Ribenboim [Ri] (C6.5), pp 276–278
for a proof); to state it, we require some notation. If gcd(a, b) = 1, define m(a, b)
and n(a, b) to be positive integers such that

bn(a,b) = 1 + lam(a,b)

with l an integer, gcd(l, a) = 1, m(a, b) ≥ 2 and n(a, b) minimal. That such m(a, b)
and n(a, b) exist follows from e.g. Ribenboim [Ri] (C6.5). We have
Lemma 4.1. Suppose that a and b are relatively prime integers with a, b ≥ 2. If
N,M ≥ 2 are positive integers with M ≥ m(a, b) and bN ≡ 1 (mod aM ), then N is
divisible by n(a, b)aM−m(a,b).

In essense, this follows from the well known fact that, if x and y are non-zero,
relatively prime integers and n > 1, then

gcd
(
x− y, x

n − yn
x− y

)
= gcd(x− y, n).

To apply this lemma, we require an upper bound for m(a, b).
Lemma 4.2. If a, b ≥ 2 are relatively prime integers, then

m(a, b) < φ(a2)
log b
log 2

,

where φ denotes Euler’s totient function.

Proof. We follow work of Pillai [Pi2] (see the erratum on P. 215). Let us begin by
writing

a = pα1
1 pα2

2 . . . pαrr ,

where p1, . . . , pr are distinct primes and αi ∈ N, and choosing t1 ∈ N minimal such
that

bt1 ≡ 1 (mod a2).

We thus have
bt1 = 1 +M1p

β1
1 pβ2

2 . . . pβrr a
s1

where s1 ≥ 2, M1 ∈ N, gcd(M1, a) = 1 and βi ≤ αi − 1 for at least one value of
1 ≤ i ≤ r. If r = 1 and a ≥ 3, it follows that

bt1p
α1−β1
1 = 1 +M2a

s1+1

where gcd(M2, a) = 1, and so m(a, b) ≤ s1 + 1. By the definition of t1, we have
t1 ≤ φ(a2) and so, since as1 < bt1 ,

m(a, b) < φ(a2)
log b
log a

+ 1 < φ(a2)
log b
log 2

.

On the other hand, if a = 2, then necessarily β1 = 0 and so

m(a, b) = s1 < φ(a2)
log b
log 2

.
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If r ≥ 2, then arguing as in (C6.5) of Ribenboim [Ri] (see pages 275–276), if k ∈ N
is minimal such that βi < kαi for 1 ≤ i ≤ r, we have

m(a, b) ≤ s1 + k + 1.

Suppose, without loss of generality, that (k − 1)α1 ≤ β1 < kα1, so that

as1 <
(
M1p

β1
1 pβ2

2 . . . pβrr

)−1

bt1 < p
−(k−1)α1
1 bt1 .

From t1 ≤ φ(a2), we have

as1 < p
−(k−1)α1
1 bφ(a2)

whereby
s1 log a+ (k − 1)α1 log p1 < φ(a2) log b.

Since we assume that r ≥ 2, we thus have a ≥ 6, whence

s1 log 6 + (k − 1) log 2 < φ(a2) log b.

Using that s1 ≥ 2, we conclude that

m(a, b) ≤ s1 + k + 1 < φ(a2)
log b
log 2

,

as desired.
�

We will first prove Theorem 1.3 in the situation where δ(a, b) = 0. In this case,
something stronger is true.
Lemma 4.3. If a, b and c are positive integers with a, b ≥ 2 and δ(a, b) = 0, then
equation (1.1) has at most a single solution in positive integers (x, y).

Proof. To prove this, note first that δ(a, b) = 0 implies gcd(a, b) > 1. If (1.1) has
two distinct positive solutions (say (x1, y1) and (x2, y2), with x2 > x1), then from

ax2 − by2 = ax1 − by1 = c > 0,

if p is a prime dividing gcd(a, b), with ordpa = α and ordpb = β, we have

(4.1) x1α = y1β

and, by (3.1),
x2α < y2β.

It follows that

(4.2) ordpc = x2α.

Since we have assumed that δ(a, b) = 0, every prime dividing a also divides gcd(a, b)
and thus ax2 divides c = ax1 − by1 , contradicting x2 > x1. �

If δ(a, b) > 0, Theorem 1.3 is a consequence of the following result.
Proposition 4.4. If a, b and c are positive integers with a, b ≥ 2 and δ(a, b) > 0,
then equation (1.1) has at most a single solution in positive integers (x, y) with

x ≥ m(a0, b) + 5
δ(a, b)

.
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Proof. The constant 5 on the right hand side of the above inequality may likely
be replaced by 0, with a certain amount of effort; we will not undertake this here.
Since δ(a, b) > 0, we have 2 ≤ a0 ≤ a. Let us suppose that we have two solutions
to (1.1) in positive integers, say (x1, y1) and (x2, y2), with

x2 > x1 =
m(a0, b) + k

δ(a, b)
,

where k ≥ 5. From the equation

ax1
(
ax2−x1 − 1

)
= by1

(
by2−y1 − 1

)
,

it follows that
by2−y1 ≡ 1 (mod ax1

0 )

and so Lemma 4.1 implies that ax1−m(a0,b)
0 divides y2 − y1. Thus

(4.3) y2 > a
m(a0,b)+k
δ(a,b) −m(a0,b)

0 = (a/a0)
m(a0,b) ak ≥ a5.

On the other hand, c < ax1 , so

log c < x1 log a =
(m(a0, b) + k) log2 a

log a0
.

The first inequality in (4.3) thus implies that

y2 log b
log c

>
(a/a0)

m(a0,b) ak log a0 log b
(m(a0, b) + k) log2 a

≥ ak log b
(m(a0, b) + k) log a

.

From Lemma 4.2, we have

m(a0, b) <
φ(a2

0) log b
log 2

<
a2

0 log b
log 2

≤ a2 log b
log 2

and so

(4.4)
y2 log b
log c

>
ak(

a2

log 2 + k
log b

)
log a

> 73,

where the second inequality follows from k ≥ 5, a ≥ 6 and b ≥ 2. We will use (4.3)
and (4.4) to deduce absolute upper bounds upon a and y2, in conjunction with
Lemma 3.1.

Let us write
Λ2 = x2 log a− y2 log b,

where, in the notation of Lemma 3.1, we have

D = 1, α1 = b, α2 = a, b1 = y2, b2 = x2, a1 = (ρ+ 1) log b, a2 = (ρ+ 1) log a.

Further, take ρ = 4.1 and

h = max
{

9, log
(
x2

log b

)
+ 0.9

}
.

As before, these are valid choices in Lemma 3.1. Suppose first that

h = log
(
x2

log b

)
+ 0.9,

whereby we have

(4.5)
x2

log b
> 3294.
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By Proposition 2.1 and our assumption that a ≥ 6, it follows that

1
a1

+
1
a2

and
1

a1a2

are both maximal for (a, b) = (6, 2) and hence, in Lemma 3.1, we have C0 < 0.87.
Applying this lemma, we conclude that

log |Λ2| > −24.2
(

log
(
x2

log b

)
+ 2.4

)2

log a log b.

Combining this with (3.2), we find, since a ≥ 6, that

(4.6)
x2

log b
<

log(6c/5)
log a log b

+ 24.2
(

log
(
x2

log b

)
+ 2.4

)2

.

Since
x2

log b
>

y2

log a
>

73 log(c)
log a log b

,

where the latter inequality follows from (4.4), (4.6) thus implies (with a ≥ 6 and
b ≥ 2) that

x2

log b
< 0.2 + 24.6

(
log
(
x2

log b

)
+ 2.4

)2

which contradicts (4.5). We therefore have
y2

log a
<

x2

log b
< 3295.

From inequality (4.3), it follows that

a5

log a
< 3295.

Since a ≥ 6, this contradiction completes the proof of Proposition 4.4. �

We will now prove Theorem 1.3. As previously mentioned, the cases a = 3 and
a = 5 will be treated in Section 7. From Proposition 2.1, we therefore assume
a ≥ 6. If δ(a, b) = 0, then the desired conclusion is immediate from Lemma 4.3.
Let us suppose that a, b and c are positive integers with a, b ≥ 2, δ(a, b) > 0 and
c ≥ b2a

2 log a, for which equation (1.1) possesses distinct positive solutions (x1, y1)
and (x2, y2) (with x2 > x1). Since ax1 > c, we thus have x1 > 2a2 log b. On the
other hand, Lemma 4.2 gives

m(a0, b)
δ(a, b)

=
m(a0, b) log a

log a0
<
a2

0 log b log a
log 2 log a0

≤ a2 log b
log 2

and so

x1 −
m(a0, b)
δ(a, b)

>

(
2− 1

log 2

)
a2 log b.

Since a ≥ 6, b ≥ 2 and a0 ≥ 2, this last quantity exceeds 5 log a
log a0

, completing the
proof of Theorem 1.3, in case a is composite.

Let us now suppose that a ≥ 7 is prime, b ≥ 2 and c ≥ ba. Since δ(a, b) > 0, it
follows that gcd(a, b) = 1. We begin by calculating m(a, b) more precisely in this
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situation. Choose n to be the smallest positive integer such that bn ≡ 1 (mod a)
and write bn = 1 + ja. If gcd(j, a) = 1, then

ban ≡ 1 + ja2 +
(
a

2

)
j2a2 (mod a3).

Since a > 2 is prime, it follows that ban ≡ 1 + ja2 (mod a3), whence

gcd
(
ban − 1
a2

, a

)
= 1

and therefore m(a, b) = 2. If, on the other hand, gcd(j, a) > 1 (so that a divides
j), then we can write bn = 1 + lam(a,b). Since n divides φ(a) = a − 1 and, via
Proposition 2.1, we may assume that n is odd, we have n ≤ a−1

2 and so

am(a,b) < bn ≤ b
a−1

2 .

It follows that

(4.7) m(a, b) < max
{

2,
a− 1

2
log b
log a

}
.

Now
a− 1

2
log b
log a

≥ 2

for a ≥ 7 prime, unless b = 2 and 7 ≤ a ≤ 17 or (a, b) = (7, 3). From Proposition
2.1, if (a, b) 6= (7, 2), since ax1 > c ≥ ba, (4.7) implies that x1 > 2m(a, b) and thus
Lemma 4.1 yields

y2 > ax1−m(a,b) ≥ a
x1+1

2 .

Applying the arguments immediately preceding and following (4.6), we obtain
y2

log a < 3295. If a ≥ 47, this implies that x1 ≤ 4, contradicting x1 > 2m(a, b) ≥ 4.
Similarly, we have x1 ≤ 9 (if a = 7), x1 ≤ 7 (if 11 ≤ a ≤ 13), x1 ≤ 6 (if 17 ≤ a ≤ 19)
and x1 ≤ 5 (if 23 ≤ a ≤ 43). Since ax1 > c ≥ ba, we derive the inequalities b ≤ 12
(if a = 7), b ≤ 4 (if a = 11), b ≤ 3 (if a = 13), b = 2 (if a = 17 or 19) and a
contradiction for larger values of a. After application of Proposition 2.1, we are left
to consider only the pairs (a, b) = (7, 11), (11, 3) and (13, 3). In each case, we have
m(a, b) = 2 and so the inequalities

ax1−m(a,b) < 3295 loga, ax1 > c ≥ ba and x1 ≥ 2m(a, b) + 1 = 5

lead to immediate contradictions. Finally, if we suppose that (a, b) = (7, 2), then

(−1)y1 ≡ (−1)y2 (mod 3),

which implies that y1 ≡ y2 (mod 2), contradicting Proposition 2.1.

5. Generalizing Terai

In [Te], Terai obtains a result which implies Conjecture 1.2 in case equation (1.1)
has the solution (x, y) = (1, 1) and (a, b, c) are relatively prime, positive integers
with a ≥ 2 and b ≥ 1697c. In this section, we will generalize this to include the
possibility that gcd(a, b) > 1 and eliminate any suppositions about the size of the
smallest solution (x, y).

Suppose that a, b and c are positive integers, with a, b ≥ 2, for which we have
two positive solutions (x1, y1) and (x2, y2) to (1.1), with x1 < x2 and

by2 > by1 ≥ 6000c1/δ
∗(a,b),
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where
δ∗(a, b) = max {δ(a, b), 1− δ(a, b)} .

Let us define, as in Section 1, a0 and b0 to be the largest positive integral divisors
of a and b, respectively, relatively prime to b and a, respectively. From (4.2) and
the arguments preceding it, we have that (a/a0)x2 divides c and so

c ≥ a(1−δ(a,b))x2 .

Since

(5.1) ax1 > by1 > 6000c1/δ
∗(a,b),

it follows that

x1 >
(1− δ(a, b))
δ∗(a, b)

x2.

From x2 > x1 and the definition of δ∗(a, b), we thus have δ(a, b) > 1/2 and so
δ∗(a, b) = δ(a, b). From (4.1),

(a/a0)
x1 = (b/b0)

y1

and so by1 > 6000c, ax1 = by1 + c and ax2−x1 ≡ 1 (mod by1
0 ) together imply that

ax2−x1 > by1
0 >

6000
6001

ax1
0 =

6000
6001

aδ(a,b)x1 .

We may therefore conclude that

(5.2) x2 > (1 + δ(a, b))x1 −
log (6001/6000)

log a
.

Since δ(a, b) > 1/2, a and b are necessarily multiplicatively independent and we
may again apply Lemma 3.1 to Λ2 = x2 log a− y2 log b, where we take

D = 1, α1 = b, α2 = a, b1 = y2, b2 = x2, a1 = (ρ+ 1) log b, a2 = (ρ+ 1) log a.

Choosing ρ = 4.7 and

h = max
{

9.45, log
(
x2

log b

)
+ 0.79

}
.

we argue as in Section 3 (with 1
a1

+ 1
a2

and 1
a1a2

maximal for (a, b) = (6, 2), whence
C0 < 0.65). Our conclusion is that, if

h = log
(
x2

log b

)
+ 0.79,

whence

(5.3)
x2

log b
> 5767,

we have
x2

log b
<

log(6c/5)
log a log b

+ 23.1
(

log
(
x2

log b

)
+ 2.4

)2

.

From (5.1),
c < 6000δ(a,b)aδ(a,b)x1

and so, combining this with (5.2) and using that δ(a, b) > 1/2, we find that

x2

log b
− log(6c/5)

log a log b
>

1
1 + δ(a, b)

x2

log b
,



ON SOME EXPONENTIAL EQUATIONS OF S.S. PILLAI 15

whereby
x2

log b
< 23.1 (1 + δ(a, b))

(
log
(
x2

log b

)
+ 2.4

)2

.

Since δ(a, b) ≤ 1, this contradicts (5.3). It follows that

log
(
x2

log b

)
+ 0.79 < 9.45,

or
x2

log b
< 5768.

On the other hand, (3.2) and (3.3) imply that

x2

log b
>

1
Λ1

>
by1

c
> 6000,

which yields the desired contradiction.

6. Small values of c

In this section, we will prove Conjecture 1.2 for all 1 ≤ c ≤ 100, including cases
with gcd(a, b) > 1. Our proof will, in contrast to those of Leveque [Lev] and Cassels
[Ca] for c = 1, rely upon lower bounds for linear forms in logarithms. It does not
appear to be a routine matter to extend their arguments to larger values of c.

Suppose first that gcd(a, b) = 1 and that we have two positive solutions (x1, y1)
and (x2, y2) to (1.1), with x1 < x2 and y1 < y2. Once again, applying Lemma 3.1
to

Λ2 = x2 log a− y2 log b,

we may choose ρ = 5.11 and

h = max
{

8.56, log
(
x2

log b

)
+ 0.773

}
.

If we have

h = log
(
x2

log b

)
+ 0.773,

then

(6.1)
x2

log b
> 2409

and thus, since 1
a1

+ 1
a2

and 1
a1a2

are maximal for (a, b) = (7, 2), C0 < 0.556.
Applying Lemma 3.1, we conclude that

log |Λ2| > −22.997
(

log
(
x2

log b

)
+ 2.405

)2

log a log b.

Combining this with (3.2), we find, since a ≥ 6, that

x2

log b
<

log(6c/5)
log a log b

+ 22.997
(

log
(
x2

log b

)
+ 2.405

)2

.

From 1 ≤ c ≤ 100 and log a log b ≥ log 7 log 2, we thus have

x2

log b
< 3.715 + 22.997

(
log
(
x2

log b

)
+ 2.405

)2

,
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contradicting (6.1). It follows that

(6.2)
by1

c
<

x2

log b
< 2410.

For each value of 1 ≤ c ≤ 100, this provides an upper bound upon by1 and, via
ax1 = by1 + c, upon ax1 . To complete the proof of Theorem 1.5 for relatively prime
a and b, we will argue as in Section 3. Let us first suppose that

by2 log a
cy2

> 2,

so that x2
y2

is a convergent in the simple continued fraction expansion to log b
log a , say

x2
y2

= pr
qr

. In fact, we must have x2 = pr and y2 = qr. If not, then gcd(x2, y2) = d > 1
and so, writing x2 = dx and y2 = dy,

ax2 − by2 = (ax − by) ·
d−1∑
i=0

aixb(d−i−1)y = c.

It follows that

(6.3)
d−1∑
i=0

aixb(d−i−1)y ≤ c.

If x1 = 1, this is an immediate contradiction, since a > a − by1 = c. Similarly,
if x1 = 2, we have x2 ≥ 3 and so a(d−1)x > a2 − by1 . We may thus assume that
x1 ≥ 3 (so that x2 ≥ 4). If d = 2 and x2 = 4, we have y2 ≥ 6, whereby inequality
(6.3) implies that a2 + b3 ≤ c ≤ 100. Since we assume that a and b are not perfect
powers, with gcd(a, b) = 1, Proposition 2.1 implies (a, b) = (7, 2), contradicting
0 < a4 − by2 ≤ 100. If d = 2 and x2 ≥ 6, then y2 ≥ 4 and so a3 + b2 ≤ 100,
contradicting a ≥ 6. Finally, if d ≥ 3 and x2 ≥ 4, then (d − 1)x ≥ 3 and so
a3 < 100, again contradicting a ≥ 6.

We thus have

(6.4) ar+1 >
by2 log a
cy2

− 2 =
bqr log a
cqr

− 2.

For each pair (a, b) under consideration, we compute the initial terms in the contin-
ued fraction expansions to log b

log a via Maple V and check to see if there exists a conver-
gent pr/qr with pr < 2410 log b, pr ≥ 2, qr ≥ 3 and related partial quotient ar+1 sat-
isfying (6.4). This is a relatively substantial calculation, as there are roughly seven
million pairs (a, b) to treat. We find that the numerators pr satisfy p16 > 2410 log b,
with precisely three exceptions corresponding to (a, b) = (98, 17), (108, 53) and
(165, 91). In the first of these, we have p18 > 2410 log b, while in the second and
third, we have p17 > 2410 log b. The largest partial quotient we encounter, associ-
ated with a convergent for which pr < 2410 log b, is a8 = 15741332, corresponding
to (a, b) = (1968, 1937) (this contradicts (6.4), however). In fact, the only (a, b) not
excluded by Proposition 2.1 for which we find convergents and partial quotients
satisfying all the desired properties have either (pr, qr) = (2, 3) or are as given in
the following table:
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(6.5)

a b r ar pr qr c
23 2 4 10 2 9 15, 17, 19, 21
45 2 3 30 2 11 29, 37, 41, 43
91 2 4 31 2 13 87, 89
13 3 4 79 3 7 10, 88
47 3 4 54 2 7 22, 38, 44
421 3 4 1034 2 11 94
56 5 4 228 2 5 11, 31, 51
130 7 4 175 2 5 93
6 11 3 21 4 3 95
3 13 3 79 7 3 14, 68, 74

.

Since a theorem of Mordell [Mo] ensures that the Diophantine equation

a− b = a2 − b3

has precisely the solutions

(a, b) ∈ {(−14, 6), (−2, 2), (0,−1), (0, 0), (0, 1), (1,−1), (1, 0), (1, 1), (3, 2), (15, 6)} ,
we may restrict attention to (a, b, c) in (6.5). It is easily checked that amongst
these, there exist positive integers x1 < pr and y1 < qr with

apr − bqr = ax1 − by1 > 0

only for (a, b, c) = (91, 2, 89) and (13, 3, 10).
Next suppose that

(6.6)
by2 log a
cy2

≤ 2.

Since a ≥ 6, y2 ≥ 3 and 1 ≤ c ≤ 100, we thus have 2 ≤ b ≤ 7. More precisely,
if b = 7, it follows that y2 = 3 and y1 = 1, whereby ax1 divides 48. This implies
that c ≤ 41, contradicting (6.6). Similarly, if b = 6, y2 = 3, y1 = 1, 35 is divisible
by ax1 and so c ≤ 29, again contrary to (6.6). If b = 5, y1 = 1, y2 = 3 or 4
and ax1 divides 24 or 124, respectively. We thus have ax1 ∈ {6, 12, 24} if y2 = 3
or ax1 ∈ {31, 62, 124}, if y2 = 4, in each case contradicting (6.6). If b = 3, then
Proposition 2.1 implies that we may assume a ≥ 10, so (6.6) and c ≤ 100 yield
y2 ≤ 5, whence ax1 divides 8 (if (y1, y2) = (1, 3)), 26 (if (y1, y2) = (1, 4) or (2, 5))
or 80 (if (y1, y2) = (1, 5)). The first of these is excluded by Proposition 2.1, the
second and third by inequality (6.6). If b = 2, a ≥ 7 and so y2 ≤ 10. It follows that
ax1 divides 2y2−y1 − 1, where 2 ≤ y2 − y1 ≤ 9. From a ≥ 6 and

a2 ≤ ax2 ≤ 2y2 + 100 ≤ 1124,

whereby a ≤ 33, we have that ax1 is equal to one of 7 (with y2 − y1 ∈ {3, 6, 9}),
15 (y2 − y1 ∈ {4, 8}), 17 (y2 − y1 = 8), 21 (y2 − y1 = 6) or 31 (y2 − y1 = 5). The
cases ax1 = 17 and 21 immediately contradict (6.6). If ax1 = 7 then (6.6) implies
(y1, y2) = (1, 4) so that 7x2 = 21. Similarly, ax1 = 15 leads to 15x2 = 45 and
ax1 = 31 implies 31x2 = 93. These contradictions complete the proof of Theorem
1.5 for pairs (a, b) with gcd(a, b) = 1.

Finally, we turn our attention to triples (a, b, c) with gcd(a, b) > 1 and 1 ≤ c ≤
100. If the equation at hand has two positive solutions, then, from

ax1
(
ax2−x1 − 1

)
= by1

(
by2−y1 − 1

)
,
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if ordpa = α and ordpb = β, equations (4.1) and (4.2) are necessarily satisfied. For
fixed c, this yields bounds upon α and x2, and hence upon x1, y1 and β. Since

(6.7) y2β ≥ x2α+ 1,

the equation

(6.8) (by1 + c)
x2
x1 − by2 = c

provides explicit bounds upon b and, via ax1 = by1 + c, upon a.
By way of example, we will give our arguments in detail for c = 4, 8 and 9, noting

that we need not consider squarefree values of c. If c = 4, then gcd(a, b) > 1 implies
gcd(a, b) = 2 and so, from (4.2), x2 = 2 and α = 1. Equation (4.1) thus implies
that x1 = y1 = β = 1 and so, from (6.7) and (6.8),

(b+ 4)2 − b3 ≥ 4.

This implies that b ≤ 3. Since 2 divides b, it follows that b = 2. We thus have
2y2 = 32 and so y2 = 5, corresponding to 6− 2 = 62 − 25 = 4.

If c = 8, we have, if gcd(a, b) > 1, that gcd(a, b) = 2, x2α = 3 (so that x2 = 3
and α = 1) and x1 ∈ {1, 2}. In the first case (where we have y1 = β = 1), we are
led to

(b+ 8)3 − b4 ≥ 8,

whereby b ≤ 7. Since ord2b = β = 1, in this situation, we thus have b = 2 or b = 6,
whence 2y2 = 992 or 6y2 = 2736, both contradictions. If, instead, x1 = 2, then
(4.1) implies that y1β = 2. In case y1 = 1, we have, from y2 ≥ 2y1 + 1,

(b+ 8)3/2 − b3 ≥ 8,

and so b ≤ 3, contradicting β = 2. If y1 = 2, y2 ≥ 5 and(
b2 + 8

)3/2 − b5 ≥ 8,

whence b ≤ 2 (so that b = 2). Since 12 is not a square, we conclude that equation
(1.1) has at most one positive solution (x, y) provided c = 8 and gcd(a, b) > 1.

Similarly, if we consider c = 9 with gcd(a, b) > 1, then necessarily x1 = y1 =
α = β = 1 and x2 = 2, so that

(b+ 9)2 − b3 ≥ 9.

This implies that b ≤ 6. Since 3 divides b, we are thus left with the cases b = 3 and
b = 6. In the former, (6.8) yields 3y2 = 135, a contradiction, while the latter leads
to 6y2 = 216; i.e. to the known example 15− 6 = 152 − 63 = 9. Arguing similarly
for the remaining 36 non-squarefree values of c ≤ 100, we find no other additional
triples (a, b, c) for which (1.1) has two positive solutions and gcd(a, b) > 1. This
completes the proof of Theorem 1.5.

7. Prime values of a

In the previous section, we studied the problem of deducing Conjecture 1.2 for
fixed values of c. Essentially, we used the fact that Theorem 1.4 enables one to
bound a and b explicitly in terms of c. If instead, we suppose that a is fixed (where
c is positive), we cannot usually obtain such bounds upon c, solely in terms of
a. In the special case where a = 2, however, Conjecture 1.2 is a consequence of
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Proposition 2.1. We will now extend this to include all primes of the form a = 2n+1,
for n ∈ N. Unfortunately, this is, in all likelihood, just the set

a ∈ {3, 5, 17, 257, 65537}
(i.e. the known Fermat primes). From Proposition 2.1, if a is prime and s is the
smallest positive integer such that bs ≡ 1 (mod a), then Conjecture 1.2 obtains
provided s is even. Theorem 1.6 will therefore follow from showing that a like
conclusion is valid for s = 1. We suppose, then, that a ≥ 3 is prime and b ≡
1 (mod a). Further, assume, as usual, that we have distinct positive solutions
(x1, y1) and (x2, y2) to (1.1), with x2 > x1. From Section 4, either b = 1 + ja with
gcd(j, a) = 1 (whereby n(a, b) = a and m(a, b) = 2) or b = 1 + lam(a,b) for some
positive integer l with gcd(l, a) = 1. In the first case, ax1 > by1 ≥ b > a and so
x1 ≥ 2. Lemma 4.1 thus implies that ax1−1 divides y2 − y1. In the second, since
ax1 > b > am(a,b), we have x1 ≥ m(a, b) + 1 and y2 − y1 divisible by ax1−m(a,b).

Arguing as in previous sections, we find, if x2 ≥ 2410 log b, that

(7.1)
x2

log b
<

log(ac/(a− 1))
log a log b

+ 22.997
(

log
(
x2

log b

)
+ 2.405

)2

.

Since c < ax1 ,

(7.2)
log(ac/(a− 1))

log a log b
<

log(3/2)
log 3 log 7

+
x1

log b
< 0.19 +

x1

log b
.

Let us first suppose that b = 1 + ja with gcd(j, a) = 1 (so that we may write
y2 − y1 = tax1−1 for t a positive integer and x1 ≥ 2). If x1 = 2, then b ≥ 7, with
(7.1) and (7.2), contradicts x2 ≥ 2410 log b and hence

(7.3)
y2

log a
<

x2

log b
< 2410 or y2 < 2410 loga.

From b > a, we have y1 = 1, 1 ≤ j ≤ a − 1 and, via Proposition 2.1, may assume
that y2 is even (so that t is odd). It follows that x2 is odd, since otherwise, writing
x2 = 2x and y2 = 2y,

a2 − b = a2x − b2y ≥ ax + by > a2.

We may thus restrict attention to those pairs (a, b) for which the smallest positive
integer s with as ≡ 1 (mod b) is odd. In particular, this enables us to suppose
that 1 < j < a − 1, since as ≡ 1 (mod a2 − a+ 1) implies s ≡ 0 (mod 6), while
as ≡ 1 (mod a+ 1) implies s ≡ 0 (mod 2). Further, considering the equation

(7.4) a2 − (1 + ja) = ax2 − (1 + ja)y2

modulo 3 and modulo 8 implies that a 6≡ 2 (mod 3), b 6≡ 2 (mod 3) and either
a− j ≡ 1 (mod 8) or j ≡ −1 (mod 8). Similarly, working modulo a4, we find that

(7.5)
(1 + ta)

2
tj2a+ 1 + tj ≡ 0 (mod a2).

In particular, a divides 1 + tj and thus, since j < a − 1, it follows that t ≥ 3.
Inequality (7.3) thus yields ta < 2410 loga, whence 3 ≤ a ≤ 7121. For each prime a
between 3 and 7121, we search, via Maple V, for integers j and t (i.e. for quadruples
(a, b, c, y2)) which satisfy the above elementary constraints. We find none.

We argue similarly for larger values of x1, where we again deduce

(7.6) ax1−1 < y2 < 2410 loga,
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so that 3 ≤ x1 ≤ 8 and 3 ≤ a ≤ 103. We search for quadruples (a, b, c, y2) satisfying
b = 1 + ja, y2 = y1 + tax1−1, c = ax1 − by1 and, analogous to (7.5),

(tax1−1 + 2y1 − 1)
2

tj2a+ 1 + tj ≡ 0 (mod a2).

Here, j and t are integers with gcd(j, a) = 1, t odd and

1 ≤ j ≤ a
x1−y1
y1 , 1 ≤ t < 2410 loga

ax1−1
.

For each of these quadruples, we obtain congruence conditions upon x2 such that
ax2 = by2 + c, by considering the equation modulo m for m ∈ {3, 4, 5, 7, 11, 13}.
In conjunction with the fact that x2 ≡ x1 (mod s) where s is the smallest positive
integer such that as ≡ 1 (mod b), these conditions lead to contradictions in all cases
except (a, b, c, y2) = (79, 243321, 249718, 6242). For this quadruple (a, b, c, y2), we
have by2 + c 6≡ 0 (mod a6), and hence conclude as desired.

Now, let us turn our attention to those b ≡ 1 (mod a) of the form b = 1+lam(a,b),
for l ∈ N with gcd(l, a) = 1. As mentioned previously, we may write x1 = m(a, b)+k
and y2 − y1 = tak, where k and t are positive integers and m(a, b) < log b

log a . Again,
if x2 ≥ 2410 log b, we have (7.1) and, from (7.2),

(7.7)
log(ac/(a− 1))

log a log b
< 0.19 +

x1

log b
< 0.19 +

1
log a

+
k

log b
.

Since y2 > ak, b > am(a,b) and x2
log b >

y2
log a , we find that

(7.8) x2 > m(a, b)ak.

Combining (7.1), (7.7) and (7.8), from a ≥ 3, we find that x2 < 2410 log b, contrary
to our assumptions. It follows that necessarily y2 < 2410 loga.

Consider now equation (1.1), or, in our case,

(7.9) am(a,b)+k −
(
1 + lam(a,b)

)y1

= ax2 −
(
1 + lam(a,b)

)y2

.

Since (3.5) implies ax2−x1 > by1 , we have

x2 > (y1 + 1)m(a, b) + k ≥ 2m(a, b) + k,

and so, expanding (7.9) by the binomial theorem, we find that

am(a,b)+k +
y2∑
r=1

((
y2

r

)
−
(
y1

r

))
lrarm(a,b) ≡ 0 (mod a2m(a,b)+k).

Since y2 − y1 = tak, if α is the largest nonnegative integer such that aα divides r!,
we find that aβ divides

((
y2
r

)
−
(
y1
r

))
arm(a,b), for r ≥ 3, where

β ≥ rm(a, b) + k − α > rm(a, b) + k − r

a− 1
> 2m(a, b) + k.

From (
y2

2

)
−
(
y1

2

)
=

(y1 + y2 − 1)
2

tak,

we conclude that

(7.10) 1 + tl ≡ 0 (mod am(a,b)).
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Further, b = 1 + lam(a,b) < ax1 = am(a,b)+k, whereby l < ak and so the above
congruence implies the inequality y2 − y1 + 1 > am(a,b). We conclude, therefore,
that

(7.11) amax{m(a,b),k} < y2 < 2410 loga,

whence 3 ≤ a ≤ 103, 1 ≤ k ≤ 7 and 2 ≤ m(a, b) ≤ 7.
To eliminate the remaining possibilities, we begin by supposing that 23 ≤ a ≤

103, whence, from (7.11), 1 ≤ k ≤ 2, m(a, b) = 2, and necessarily y1 = 1. Again,
since we may assume that y2 is even, necessarily x2 is odd. There are precisely 69
triples (a, t, l) for the primes a under consideration with t odd and satisfying (7.10)
and (7.11) (30 with k = 1 and 39 with k = 2). For the examples corresponding to
k = 1, we deduce a contradiction to the parity of x2 by considering the equation
ax2 = by2 +cmodulo one of 3, 4, 5 or 7, unless (a, b, c, y2) = (59, 83545, 121834, 8556)
or (83, 385785, 186002, 10210), where a like contradiction is obtained modulo 13 and
11, respectively. For the examples with k = 2, we have that the smallest s ∈ N with
as ≡ 1 (mod b) is even (again, contrary to the fact that x2 is odd) for all but the
case (a, b, c, y2) = (23, 25393, 254448, 5820), which leads to a contradiction modulo
3.

We may thus suppose that 3 ≤ a ≤ 19. It is easy to see that we have y1 = 1
unless (a,m(a, b), k) is in the set

{(3, 2, 3), (3, 3, 4), (5, 2, 3), (3, 2, 4), (3, 3, 5), (5, 2, 4), (3, 2, 5), (3, 2, 6), (3, 2, 7)}
in which case we can have y1 = 2 (or y1 = 3 if (a,m(a, b), k) = (3, 2, 5)). Again,
we use (7.10) and (7.11) to reduce the set of possible quadruples to a manageable
level and then eliminate those remaining with local arguments (though we could
just as easily check to see if, in any case, by2 + c is a perfect power). Considerations
modulo 3, 4, 5, 7, 8, 11 and 13 suffice to deal with all quadruples (a, b, c, y2) other
than (a, b, c, y2) = (5, 74376, 3749, 2626) and (17, 751401, 668456, 4914). For these
we obtain contradictions modulo 19 and 16, respectively. This completes the proof
of Theorem 1.6. Corollary 1.7 is now immediate upon noting, if a = 2k + 1 is
prime with k ∈ N, that the desired result follows from Proposition 2.1, unless
b ≡ 1 (mod a). In this latter case, we apply Theorem 1.6 to obtain the stated
conclusion.

8. Concluding remarks

Arguments similar to those in this paper may be applied to sharpen results of
Le [Le] and Shorey [Sh] on the somewhat more general Diophantine equation

rax − sby = c,

where a, b, c, r and s are given positive integers (again, with a, b ≥ 2). It is also
worth noting that the finiteness of the list of exceptions to Conjecture 1.2 may be
shown to follow in somewhat nontrivial fashion from the abc-conjecture of Masser-
Oesterlé.
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