JACOBI'S TWO-SQUARE THEOREM AND RELATED IDENTITIES

Michael D. Hirschhorn

(RAMA83-97)

Abstract

We show that Jacobi's two-square theorem is an almost immediate consequence of a famous identity of his, and draw combinatorial conclusions from two identities of Ramanujan.

Keywords: Jacobi's two-square theorem, identities of Ramanujan Classification: 11E25

1. Introduction

Jacobi's two-square theorem states that
The number of representations of n as a sum of two squares is 4 times the difference between the number of divisors of n congruent to 1 modulo 4 and the number of divisors of n congruent to 3 modulo 4 .

This theorem is equivalent to the q-series identity

$$
\begin{equation*}
\left(\sum_{-\infty}^{\infty} q^{n^{2}}\right)^{2}=1+4 \sum_{n \geq 0}\left(\frac{q^{4 n+1}}{1-q^{4 n+1}}-\frac{q^{4 n+3}}{1-q^{4 n+3}}\right) \tag{1}
\end{equation*}
$$

It is possible to give a proof of (1) directly from Jacobi's triple product identity [2], Theorem 352,

$$
\begin{equation*}
\prod_{n \geq 1}\left(1+a q^{2 n-1}\right)\left(1+a^{-1} q^{2 n-1}\right)\left(1-q^{2 n}\right)=\sum_{-\infty}^{\infty} a^{n} q^{n^{2}} \tag{2}
\end{equation*}
$$

Indeed, I gave such a proof in [4]. The proof there consists of two parts. First it is shown that
(3)

$$
\prod_{n \geq 1}\left(1-q^{n}\right)^{3}=\prod_{n \geq 1}\left(1+q^{4 n-3}\right)\left(1+q^{4 n-1}\right)\left(1-q^{4 n}\right)\left\{1-4 \sum_{n \geq 0}\left(\frac{q^{4 n+1}}{1+q^{4 n+1}}-\frac{q^{4 n+3}}{1+q^{4 n+3}}\right)\right\}
$$

and then it is shown that (3) can be transformed to give (1).
In this note I intend to do several things. I show how (3) can be obtained from Jacobi's celebrated identity [3], Theorem 357

$$
\begin{equation*}
\prod_{n \geq 1}\left(1-q^{n}\right)^{3}=\sum_{n \geq 0}(-1)^{n}(2 n+1) q^{\frac{1}{2}\left(n^{2}+n\right)} \tag{4}
\end{equation*}
$$

(which itself, of course, follows from (2)), and I streamline the derivation of (1) from (3). Thus we obtain an extremely short proof of Jacobi's two-square theorem.

In the same manner I show that two identities of Ramanujan [1], pp. 114-115 which can be cast as

$$
\begin{equation*}
\prod_{n \geq 1}\left(1-q^{2 n-1}\right)^{5}\left(1-q^{2 n}\right)^{3}=\sum_{-\infty}^{\infty}(6 n+1) q^{\left(3 n^{2}+n\right) / 2} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\prod_{n \geq 1}\left(1-q^{4 n-3}\right)^{2}\left(1-q^{4 n-2}\right)\left(1-q^{4 n-1}\right)^{2}\left(1-q^{4 n}\right)^{3}=\sum_{-\infty}^{\infty}(3 n+1) q^{3 n^{2}+2 n} \tag{6}
\end{equation*}
$$

lead to companion identities to (1), namely

$$
\begin{equation*}
\left(\sum_{-\infty}^{\infty} q^{n^{2}}\right)^{3} / \sum_{-\infty}^{\infty} q^{3 n^{2}}=1+6 \sum_{n \geq 0}(-1)^{n}\left(\frac{q^{3 n+1}}{1-(-1)^{n} q^{3 n+1}}+\frac{q^{3 n+2}}{1+(-1)^{n} q^{3 n+2}}\right) \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\sum_{n \geq 0} q^{\left(n^{2}+n\right) / 2}\right)^{3} / \sum_{n \geq 0} q^{3\left(n^{2}+n\right) / 2}=1+3 \sum_{n \geq 0}\left(\frac{q^{6 n+1}}{1-q^{6 n+1}}-\frac{q^{6 n+5}}{1-q^{6 n+5}}\right) \tag{8}
\end{equation*}
$$

Identities (7) and (8) have the following combinatorial interpretations.
Theorem 1. The number of representations of n as a sum of three squares is

$$
6\left(d_{1,3}^{*}(n)-d_{-1,3}^{*}(n)\right)+12 \sum_{k>0}\left(d_{1,3}^{*}\left(n-3 k^{2}\right)-d_{-1,3}^{*}\left(n-3 k^{2}\right)\right)+2 \delta
$$

where for $i= \pm 1$ and $n>0$,

$$
d_{i, 3}^{*}(n)=\sum_{\substack{d \mid n \\ d \equiv i(\bmod 3)}}(-1)^{\frac{n}{d}\left(\frac{d-i}{3}\right)}
$$

and $\delta=0$ unless n is three times a square, in which case $\delta=1$.
Theorem 2. The number of representations of n as a sum of three triangular numbers is

$$
3 \sum_{k \geq 0}\left(d_{1,6}\left(n-3\left(k^{2}+k\right) / 2\right)-d_{-1,6}\left(n-3\left(k^{2}+k\right) / 2\right)\right)+\delta
$$

where for $i= \pm 1$ and $n>0$

$$
d_{i, 6}(n)=\sum_{\substack{d \mid n \\ d \equiv i(\bmod 6)}} 1
$$

and $\delta=0$ unless n is three times a triangle, in which case $\delta=1$.
Theorem 2 was found by John A. Ewell [2].

2. Proofs

We have

$$
\prod_{n \geq 1}\left(1-q^{n}\right)^{3}=\sum_{n \geq 0}(-1)^{n}(2 n+1) q^{\left(n^{2}+n\right) / 2}
$$

which we cunningly write

$$
\prod_{n \geq 1}\left(1-q^{n}\right)^{3}=\sum_{-\infty}^{\infty}(4 n+1) q^{2 n^{2}+n}
$$

Now, it follows from (2) that

$$
\sum_{-\infty}^{\infty} a^{4 n+1} q^{2 n^{2}+n}=a \prod_{n \geq 1}\left(1+a^{4} q^{4 n-1}\right)\left(1+a^{-4} q^{4 n-3}\right)\left(1-q^{4 n}\right)
$$

If we differentiate this with respect to a, then set $a=1$, we find

$$
\sum_{-\infty}^{\infty}(4 n+1) q^{2 n^{2}+n}=\prod_{n \geq 1}\left(1+q^{4 n-3}\right)\left(1+q^{4 n-1}\right)\left(1-q^{4 n}\right)\left\{1-4 \sum_{n \geq 0}\left(\frac{q^{4 n+1}}{1+q^{4 n+1}}-\frac{q^{4 n+3}}{1+q^{4 n+3}}\right)\right\}
$$

Thus we have
$\prod_{n \geq 1}\left(1-q^{n}\right)^{3}=\prod_{n \geq 1}\left(1+q^{4 n-3}\right)\left(1+q^{4 n-1}\right)\left(1-q^{4 n}\right)\left\{1-4 \sum_{n \geq 0}\left(\frac{q^{4 n+1}}{1+q^{4 n+1}}-\frac{q^{4 n+3}}{1+q^{4 n+3}}\right)\right\}$
which is (3).
We now proceed to prove (1) from (3).
The product on the left of (3) can be written

$$
\prod_{n \geq 1}\left(1-q^{2 n-1}\right)^{3}\left(1-q^{2 n}\right)^{3}
$$

and the product on the right can be written

$$
\prod_{n \geq 1}\left(1+q^{2 n-1}\right)\left(1-q^{4 n}\right)=\prod_{n \geq 1}\left(1-q^{4 n-2}\right)\left(1-q^{4 n}\right) /\left(1-q^{2 n-1}\right)=\prod_{n \geq 1}\left(1-q^{2 n}\right) /\left(1-q^{2 n-1}\right)
$$

so we have

$$
\prod_{n \geq 1}\left(1-q^{2 n-1}\right)^{3}\left(1-q^{2 n}\right)^{3}=\prod_{n \geq 1} \frac{\left(1-q^{2 n}\right)}{\left(1-q^{2 n-1}\right)}\left\{1-4 \sum_{n \geq 0}\left(\frac{q^{4 n+1}}{1+q^{4 n+1}}-\frac{q^{4 n+3}}{1+q^{4 n+3}}\right)\right\}
$$

Thus we find

$$
\prod_{n \geq 1}\left(1-q^{2 n-1}\right)^{4}\left(1-q^{2 n}\right)^{2}=1-4 \sum_{n \geq 0}\left(\frac{q^{4 n+1}}{1+q^{4 n+1}}-\frac{q^{4 n+3}}{1+q^{4 n+3}}\right)
$$

or,

$$
\left(\sum_{-\infty}^{\infty}(-1)^{n} q^{n^{2}}\right)^{2}=1-4 \sum_{n \geq 0}\left(\frac{q^{4 n+1}}{1+q^{4 n+1}}-\frac{q^{4 n+3}}{1+q^{4 n+3}}\right)
$$

If we put $-q$ for q, we obtain

$$
\left(\sum_{-\infty}^{\infty} q^{n^{2}}\right)^{2}=1+4 \sum_{n \geq 0}\left(\frac{q^{4 n+1}}{1-q^{4 n+1}}-\frac{q^{4 n+3}}{1-q^{4 n+3}}\right)
$$

which is (1), and the proof of Jacobi's two-square theorem is complete!
We now show that (5) leads to (7), (6) to (8). We have from (2) that

$$
\sum_{-\infty}^{\infty} a^{6 n+1} q^{\left(3 n^{2}+n\right) / 2}=a \prod_{n \geq 1}\left(1+a^{6} q^{3 n-1}\right)\left(1+a^{-6} q^{3 n-2}\right)\left(1-q^{3 n}\right)
$$

If we differentiate this with respect to a, then set $a=1$, we find

$$
\sum_{-\infty}^{\infty}(6 n+1) q^{\left(3 n^{2}+n\right) / 2}=\prod_{n \geq 1}\left(1+q^{3 n-2}\right)\left(1+q^{3 n-1}\right)\left(1-q^{3 n}\right)\left\{1-6 \sum_{n \geq 0}\left(\frac{q^{3 n+1}}{1+q^{3 n+1}}-\frac{q^{3 n+2}}{1+q^{3 n+2}}\right)\right\}
$$

Thus (5) becomes
(9)

$$
\begin{aligned}
& \prod_{n \geq 1}\left(1-q^{2 n-1}\right)^{5}\left(1-q^{2 n}\right)^{3} \\
& \quad=\prod_{n \geq 1}\left(1+q^{3 n-2}\right)\left(1+q^{3 n-1}\right)\left(1-q^{3 n}\right)\left\{1-6 \sum_{n \geq 0}\left(\frac{q^{3 n+1}}{1+q^{3 n+1}}-\frac{q^{3 n+2}}{1+q^{3 n+2}}\right)\right\}
\end{aligned}
$$

Now, the product on the right of (9) can be written

$$
\prod_{n \geq 1} \frac{\left(1+q^{n}\right)\left(1-q^{3 n}\right)}{\left(1+q^{3 n}\right)}=\prod_{n \geq 1} \frac{\left(1-q^{6 n-3}\right)\left(1-q^{3 n}\right)}{\left(1-q^{2 n-1}\right)}=\prod_{n \geq 1}\left(1-q^{6 n-3}\right)^{2}\left(1-q^{6 n}\right) / \prod_{n \geq 1}\left(1-q^{2 n-1}\right)
$$

so (9) becomes

$$
\prod_{n \geq 1}\left(1-q^{2 n-1}\right)^{6}\left(1-q^{2 n}\right)^{3} / \prod_{n \geq 1}\left(1-q^{6 n-3}\right)^{2}\left(1-q^{6 n}\right)=1-6 \sum_{n \geq 0}\left(\frac{q^{3 n+1}}{1+q^{3 n+1}}-\frac{q^{3 n+2}}{1+q^{3 n+2}}\right)
$$

or,

$$
\left(\sum_{-\infty}^{\infty}(-1)^{n} q^{n^{2}}\right)^{3} / \sum_{-\infty}^{\infty}(-1)^{n} q^{3 n^{2}}=1-6 \sum_{n \geq 0}\left(\frac{q^{3 n+1}}{1+q^{3 n+1}}-\frac{q^{3 n+2}}{1+q^{3 n+2}}\right)
$$

If we now replace q by $-q$, we obtain (7).
Similarly, it follows from (2) that

$$
\sum_{-\infty}^{\infty} a^{3 n+1} q^{3 n^{2}+2 n}=a \prod_{n \geq 1}\left(1+a^{3} q^{6 n-1}\right)\left(1+a^{-3} q^{6 n-5}\right)\left(1-q^{6 n}\right)
$$

If we differentiate this with respect to a, then set $a=1$, we obtain

$$
\sum_{-\infty}^{\infty}(3 n+1) q^{3 n^{2}+2 n}=\prod_{n \geq 1}\left(1+q^{6 n-5}\right)\left(1+q^{6 n-1}\right)\left(1-q^{6 n}\right)\left\{1-3 \sum_{n \geq 0}\left(\frac{q^{6 n+1}}{1+q^{6 n+1}}-\frac{q^{6 n+5}}{1+q^{6 n+5}}\right)\right\}
$$

Thus (6) becomes
(10)

$$
\begin{aligned}
& \prod_{n \geq 1}\left(1-q^{4 n-3}\right)^{2}\left(1-q^{4 n-2}\right)\left(1-q^{4 n-1}\right)^{2}\left(1-q^{4 n}\right)^{3} \\
& \quad=\prod_{n \geq 1}\left(1+q^{6 n-5}\right)\left(1+q^{6 n-1}\right)\left(1-q^{6 n}\right)\left\{1-3 \sum_{n \geq 0}\left(\frac{q^{6 n+1}}{1+q^{6 n+1}}-\frac{q^{6 n+5}}{1+q^{6 n+5}}\right)\right\}
\end{aligned}
$$

The product on the left of (10) can be written

$$
\prod_{n \geq 1} \frac{\left(1-q^{2 n-1}\right)^{2}\left(1-q^{2 n}\right)^{3}}{\left(1-q^{4 n-2}\right)^{2}}=\prod_{n \geq 1} \frac{\left(1-q^{2 n}\right)^{3}}{\left(1+q^{2 n-1}\right)^{2}}
$$

while the product on the right can be written

$$
\prod_{n \geq 1} \frac{\left(1+q^{2 n-1}\right)\left(1-q^{6 n}\right)}{\left(1+q^{6 n-3}\right)}
$$

so (10) becomes

$$
\prod_{n \geq 1} \frac{\left(1-q^{2 n}\right)^{3}}{\left(1+q^{2 n-1}\right)^{3}} / \prod_{n \geq 1} \frac{\left(1-q^{6 n}\right)}{\left(1+q^{6 n-3}\right)}=1-3 \sum_{n \geq 0}\left(\frac{q^{6 n+1}}{1+q^{6 n+1}}-\frac{q^{6 n+5}}{1+q^{6 n+5}}\right)
$$

If we now put $-q$ for q and use the fact that

$$
\prod_{n \geq 1} \frac{\left(1-q^{2 n}\right)}{\left(1-q^{2 n-1}\right)}=\sum_{n \geq 0} q^{\left(n^{2}+n\right) / 2}
$$

we obtain (8).

References

[1] B. C. Berndt, Ramanujan's Notebooks, Part III, Springer-Verlag, New York, 1991.
[2] J. A. Ewell, On sums of three triangular numbers, Fibonacci Quart., 26 (1988), 332-335.
[3] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Clarendon Press, Oxford, 1979.
[4] M. D. Hirschhorn, A simple proof of Jacobi's two-square theorem, Amer. Math. Monthly, 92 (1985), 579-580.

School of Mathematics, UNSW, Sydney 2052, Australia
m.hirschhorn@unsw.edu.au

