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ABSTRACT. We show that Jacobi’s two—square theorem is an almost immediate consequence
of a famous identity of his, and draw combinatorial conclusions from two identities of Ra-
manujan.
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1. Introduction
Jacobi’s two-square theorem states that

The number of representations of n as a sum of two squares is 4 times the difference
between the number of divisors of n congruent to 1 modulo 4 and the number of divisors

of n congruent to 3 modulo 4.

This theorem is equivalent to the g-series identity

00 2 An+1 An+3
n? _ q q
(1) (Zq ) _1+4Z(1_q4n+1_1_q4n+3>'

n>0

It is possible to give a proof of (1) directly from Jacobi’s triple product identity [2],
Theorem 352,

(2) [[a+a Ha+a e D - =Y amq".

n>1
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Indeed, I gave such a proof in [4]. The proof there consists of two parts. First it is shown
that

3)
H(l _qn)3 _ H(1+q4n—3)(1+q4n—1)(1 _q4n) 1— 42 ( gint! B gint3 )

An+1 4n+3
n>1 n>1 n>0 ]_—|—q” ]_—|—qn

and then it is shown that (3) can be transformed to give (1).
In this note I intend to do several things. I show how (3) can be obtained from Jacobi’s
celebrated identity [3], Theorem 357

(4) [T —a%% =3 (-1)"@n+ 1)gz "+,

n>1 n>0
(which itself, of course, follows from (2)), and I streamline the derivation of (1) from (3).
Thus we obtain an extremely short proof of Jacobi’s two-square theorem.

In the same manner I show that two identities of Ramanujan [1], pp. 114-115 which

can be cast as

oo

(5) H(l _ q2n—1)5(1 _ q2n)3 _ Z(Gn + 1)q(3"2+")/2
n>1 — 00
and
(6) H (]_ _ q4n—3)2(1 _ q4n—2)(1 o q4n—1)2(1 _ q4n)3 _ Z(3n + 1)q3n2+2n
n>1 ~

lead to companion identities to (1), namely

o) , 3 [e'e) ) 3n+1 3n+2
" (an> /3o =10 o (g )

n>0

and
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(8) Zq /Zq i Z 1—gbntl 1 — gbnts )

n>0 n>0 n>0
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Identities (7) and (8) have the following combinatorial interpretations.

Theorem 1. The number of representations of n as a sum of three squares is

6 (d; 5(n) —d*; 5(n)) +12 Z (df 3(n — 3k*) —d* | 5(n — 3k%)) + 26
k>0

where for i = +1 and n > 0,

d|n
d=i (mod 3)

and & = 0 unless n is three times a square, in which case § = 1.
Theorem 2. The number of representations of n as a sum of three triangular numbers is
3 (dis(n—3(k* + k)/2) — d_1,6(n — 3(k* + k)/2)) +
k>0

where for i = +1 and n >0

di,G(n) = Z 1
d|n
d=i (mod 6)
and § = 0 unless n is three times a triangle, in which case § = 1.

Theorem 2 was found by John A. Ewell [2].

2. Proofs

We have
[T —am? =Y (~1)"@2n + 1)g+m/2,

n>1 n>0

which we cunningly write

(o]
[T0 - =3 ¢n+ g+
n>1 —o0

Now, it follows from (2) that

o0
Za4n+1q2n2+n —a H(]' + a4q4n71)(1 + a74q4n73)(1 o q4n).
—00 n>1
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If we differentiate this with respect to a, then set a = 1, we find

i(4n+1)q2"2+" = [+ (A+g"H(1—g") s 1 -4 (MRS L
—o0 n>1 o\l + gintl 1 4 gint3

Thus we have

3 4n—3 4n—1 4 gt g t?
n _ n— n— _ n _ J—
[Ta-a = [Lase™ e g -0 (Fo - )

n>1 n>1 n>0

which is (3).

We now proceed to prove (1) from (3).
The product on the left of (3) can be written

H (1 _ q2n71)3(1 _ q2n)3

n>1

and the product on the right can be written

[[a+@ Ha—-¢*) = [a-¢" 0 -¢")/0- ) = [ =)/ 0 -,

n>1 n>1 n>1
so we have
B 1— qzn) q4n+1 q4n+3
1— 2n 131_ 2n\3 _ ( 1—4 —
g( q ) ( q ) J;[l (1 _ qgn_l) nz>:0 1 + q4n+1 1 +q4n+3
Thus we find
An+1 4n+3
_ q q
H(l_qzn 1)4(1_q2n)2:1_42( - _ )
+1 4n+3
n>1 n>0 1+ 7" 1+ "
or,

2
o An+1 4an+3
E(—l)nqn2 _1_4Z< . Intl 1 1 3>'
1+qn+ 1_|_qn+

n>0
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If we put —q for ¢, we obtain
4n+1

Oon2 q4n+3
(S0) creas (1o - ).

n>0

which is (1), and the proof of Jacobi’s two-square theorem is complete!

We now show that (5) leads to (7), (6) to (8). We have from (2) that

Za6n+1 (3n%+n)/2 _ —a H 1 +a6 3n— 1 (1 +a—6q3n—2)(1 o q3n).
n>1

If we differentiate this with respect to a, then set a = 1, we find

= (3n%4+n)/2 _ 3n—2 3n—1\/1_ 3n . 3n+1 . q3n+2
> (6n+1)g =[]+ ) A+ (A-¢*) 1 -6

3n+1 3n+2
—00 n>1 n>0 1+ q 1+ a

Thus (5) becomes

9)

H(l _ q2n—1)5(1 _ q2n)3
n>1

3n+1 q3n+2
1+g3ntl 1 +q3n+2>

~Tlas s H-¢ -6 % (4

n>1 n>0

Now, the product on the right of (9) can be written

n _ 3n _ ,6n—3 _ 3n
H (1+((i_')_(q13n)q ):H (1 (ql_qgfll_l)q ):H(l 6n=3)2(1_ 46 /H ety

n>1 n>1 n>1 n>1
so (9) becomes
3n+1 3n+2
1— 2n1 6n3 1—d®) = 1-6 < q g >
}:[1( ! /}:[1 " ;0 L ghntt 1 gont2)?
or,

3n+1

. n 3n q3n+2
(Z ) /Z _1_62<1+q3n+1_1+q3n+2>'

n>0
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If we now replace ¢ by —¢, we obtain (7).

Similarly, it follows from (2) that
e 2
Za?erlq?m +2n __ —a H 1 +a3 6n— 1 (1 +a73 6n— 5)(1 _ an).
n>1
If we differentiate this with respect to a, then set a = 1, we obtain

oo

q

6n—+5

Z(3n+1)q3n2+2n _ H(1+q6n75)(1+q6n71)(1_q6n) 1 32 < ¢on+

—00 n>1 n>0

Thus (6) becomes
(10)

H(]' _ q4n73)2(1 _ q4n72)(1 _ q4n71)2(1 _ q4n)3

n>1

6n-+5

1+ gbntl 14 gbnt5

6n+1
_ 6n—>5 6n—1 6 q
_H(l—f—q” (1 +¢" )(1_(1”) 1_32(1+q6n+1 1+q6n+5>

n>1 n>0

The product on the left of (10) can be written
(1 _ q2n—1)2(1 _ q2n) 1 q2n)3
H (1 _ q4n—2)2 H 1 + q2n 1)2’

n>1 n>1

while the product on the right can be written

r[ﬂ+q%ﬂﬂl—fﬂ

6n—3
S (1+4¢%3)

o (10) becomes

n>1
If we now put —¢q for ¢ and use the fact that

(1-¢*") _ (n%+n)/2
II 1— ¢ 1) =>4 ’

n>1

(=g (1—¢" q
H (1 + q2n 1 3 / H ]_ + q6n 3 Z 1 + q6n+1 1 + q6n+5

)
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we obtain (8).
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