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Abstract. We show that Jacobi’s two–square theorem is an almost immediate consequence
of a famous identity of his, and draw combinatorial conclusions from two identities of Ra-
manujan.
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1. Introduction

Jacobi’s two-square theorem states that

The number of representations of n as a sum of two squares is 4 times the difference
between the number of divisors of n congruent to 1 modulo 4 and the number of divisors
of n congruent to 3 modulo 4.

This theorem is equivalent to the q-series identity

(1)

( ∞∑
−∞

qn2

)2

= 1 + 4
∑
n≥0

(
q4n+1

1 − q4n+1
− q4n+3

1 − q4n+3

)
.

It is possible to give a proof of (1) directly from Jacobi’s triple product identity [2],
Theorem 352,

(2)
∏
n≥1

(1 + aq2n−1)(1 + a−1q2n−1)(1 − q2n) =
∞∑
−∞

anqn2
.
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Indeed, I gave such a proof in [4]. The proof there consists of two parts. First it is shown
that
(3)

∏
n≥1

(1− qn)3 =
∏
n≥1

(1+ q4n−3)(1+ q4n−1)(1− q4n)


1 − 4

∑
n≥0

(
q4n+1

1 + q4n+1
− q4n+3

1 + q4n+3

)


and then it is shown that (3) can be transformed to give (1).
In this note I intend to do several things. I show how (3) can be obtained from Jacobi’s

celebrated identity [3], Theorem 357

(4)
∏
n≥1

(1 − qn)3 =
∑
n≥0

(−1)n(2n + 1)q
1
2 (n2+n),

(which itself, of course, follows from (2)), and I streamline the derivation of (1) from (3).
Thus we obtain an extremely short proof of Jacobi’s two-square theorem.

In the same manner I show that two identities of Ramanujan [1], pp. 114-115 which
can be cast as

(5)
∏
n≥1

(1 − q2n−1)5(1 − q2n)3 =
∞∑
−∞

(6n + 1)q(3n2+n)/2

and

(6)
∏
n≥1

(1 − q4n−3)2(1 − q4n−2)(1 − q4n−1)2(1 − q4n)3 =
∞∑
−∞

(3n + 1)q3n2+2n

lead to companion identities to (1), namely

(7)

( ∞∑
−∞

qn2

)3

/

∞∑
−∞

q3n2
= 1 + 6

∑
n≥0

(−1)n

(
q3n+1

1 − (−1)nq3n+1
+

q3n+2

1 + (−1)nq3n+2

)

and

(8)


∑

n≥0

q(n2+n)/2




3

/
∑
n≥0

q3(n2+n)/2 = 1 + 3
∑
n≥0

(
q6n+1

1 − q6n+1
− q6n+5

1 − q6n+5

)
.
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Identities (7) and (8) have the following combinatorial interpretations.

Theorem 1. The number of representations of n as a sum of three squares is

6
(
d∗1,3(n) − d∗−1,3(n)

)
+ 12

∑
k>0

(
d∗1,3(n − 3k2) − d∗−1,3(n − 3k2)

)
+ 2δ

where for i = ±1 and n > 0,

d∗i,3(n) =
∑
d|n

d≡i (mod 3)

(−1)
n
d ( d−i

3 )

and δ = 0 unless n is three times a square, in which case δ = 1.

Theorem 2. The number of representations of n as a sum of three triangular numbers is

3
∑
k≥0

(
d1,6(n − 3(k2 + k)/2)− d−1,6(n − 3(k2 + k)/2)

)
+ δ

where for i = ±1 and n > 0

di,6(n) =
∑
d|n

d≡i (mod 6)

1

and δ = 0 unless n is three times a triangle, in which case δ = 1.

Theorem 2 was found by John A. Ewell [2].

2. Proofs

We have ∏
n≥1

(1 − qn)3 =
∑
n≥0

(−1)n(2n + 1)q(n2+n)/2,

which we cunningly write

∏
n≥1

(1 − qn)3 =
∞∑
−∞

(4n + 1)q2n2+n.

Now, it follows from (2) that

∞∑
−∞

a4n+1q2n2+n = a
∏
n≥1

(1 + a4q4n−1)(1 + a−4q4n−3)(1 − q4n).
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If we differentiate this with respect to a, then set a = 1, we find

∞∑
−∞

(4n+1)q2n2+n =
∏
n≥1

(1+q4n−3)(1+q4n−1)(1−q4n)


1 − 4

∑
n≥0

(
q4n+1

1 + q4n+1
− q4n+3

1 + q4n+3

)
 .

Thus we have

∏
n≥1

(1−qn)3 =
∏
n≥1

(1+q4n−3)(1+q4n−1)(1−q4n)


1 − 4

∑
n≥0

(
q4n+1

1 + q4n+1
− q4n+3

1 + q4n+3

)
 ,

which is (3).

We now proceed to prove (1) from (3).

The product on the left of (3) can be written

∏
n≥1

(1 − q2n−1)3(1 − q2n)3

and the product on the right can be written

∏
n≥1

(1+ q2n−1)(1− q4n) =
∏
n≥1

(1− q4n−2)(1− q4n)/(1− q2n−1) =
∏
n≥1

(1− q2n)/(1− q2n−1),

so we have

∏
n≥1

(1 − q2n−1)3(1 − q2n)3 =
∏
n≥1

(1 − q2n)
(1 − q2n−1)


1 − 4

∑
n≥0

(
q4n+1

1 + q4n+1
− q4n+3

1 + q4n+3

)
 .

Thus we find

∏
n≥1

(1 − q2n−1)4(1 − q2n)2 = 1 − 4
∑
n≥0

(
q4n+1

1 + q4n+1
− q4n+3

1 + q4n+3

)

or, ( ∞∑
−∞

(−1)nqn2

)2

= 1 − 4
∑
n≥0

(
q4n+1

1 + q4n+1
− q4n+3

1 + q4n+3

)
.
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If we put −q for q, we obtain

( ∞∑
−∞

qn2

)2

= 1 + 4
∑
n≥0

(
q4n+1

1 − q4n+1
− q4n+3

1 − q4n+3

)
,

which is (1), and the proof of Jacobi’s two-square theorem is complete!

We now show that (5) leads to (7), (6) to (8). We have from (2) that

∞∑
−∞

a6n+1q(3n2+n)/2 = a
∏
n≥1

(1 + a6q3n−1)(1 + a−6q3n−2)(1 − q3n).

If we differentiate this with respect to a, then set a = 1, we find

∞∑
−∞

(6n+1)q(3n2+n)/2 =
∏
n≥1

(1+q3n−2)(1+q3n−1)(1−q3n)


1 − 6

∑
n≥0

(
q3n+1

1 + q3n+1
− q3n+2

1 + q3n+2

)
 .

Thus (5) becomes

(9)

∏
n≥1

(1 − q2n−1)5(1 − q2n)3

=
∏
n≥1

(1 + q3n−2)(1 + q3n−1)(1 − q3n)


1 − 6

∑
n≥0

(
q3n+1

1 + q3n+1
− q3n+2

1 + q3n+2

)
 .

Now, the product on the right of (9) can be written

∏
n≥1

(1 + qn)(1 − q3n)
(1 + q3n)

=
∏
n≥1

(1 − q6n−3)(1 − q3n)
(1 − q2n−1)

=
∏
n≥1

(1−q6n−3)2(1−q6n)/
∏
n≥1

(1−q2n−1),

so (9) becomes

∏
n≥1

(1−q2n−1)6(1−q2n)3/
∏
n≥1

(1−q6n−3)2(1−q6n) = 1−6
∑
n≥0

(
q3n+1

1 + q3n+1
− q3n+2

1 + q3n+2

)
,

or, ( ∞∑
−∞

(−1)nqn2

)3

/

∞∑
−∞

(−1)nq3n2
= 1 − 6

∑
n≥0

(
q3n+1

1 + q3n+1
− q3n+2

1 + q3n+2

)
.
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If we now replace q by −q, we obtain (7).

Similarly, it follows from (2) that

∞∑
−∞

a3n+1q3n2+2n = a
∏
n≥1

(1 + a3q6n−1)(1 + a−3q6n−5)(1 − q6n).

If we differentiate this with respect to a, then set a = 1, we obtain

∞∑
−∞

(3n+1)q3n2+2n =
∏
n≥1

(1+q6n−5)(1+q6n−1)(1−q6n)


1 − 3

∑
n≥0

(
q6n+1

1 + q6n+1
− q6n+5

1 + q6n+5

)
 .

Thus (6) becomes

(10)

∏
n≥1

(1 − q4n−3)2(1 − q4n−2)(1 − q4n−1)2(1 − q4n)3

=
∏
n≥1

(1 + q6n−5)(1 + q6n−1)(1 − q6n)


1 − 3

∑
n≥0

(
q6n+1

1 + q6n+1
− q6n+5

1 + q6n+5

)
 .

The product on the left of (10) can be written

∏
n≥1

(1 − q2n−1)2(1 − q2n)3

(1 − q4n−2)2
=
∏
n≥1

(1 − q2n)3

(1 + q2n−1)2
,

while the product on the right can be written

∏
n≥1

(1 + q2n−1)(1 − q6n)
(1 + q6n−3)

so (10) becomes

∏
n≥1

(1 − q2n)3

(1 + q2n−1)3
/
∏
n≥1

(1 − q6n)
(1 + q6n−3)

= 1 − 3
∑
n≥0

(
q6n+1

1 + q6n+1
− q6n+5

1 + q6n+5

)
.

If we now put −q for q and use the fact that

∏
n≥1

(1 − q2n)
(1 − q2n−1)

=
∑
n≥0

q(n2+n)/2,



JACOBI’S TWO-SQUARE THEOREM AND RELATED IDENTITIES 7

we obtain (8).
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