ANOTHER SHORT PROOF OF RAMANUJAN'S

MOD 5 PARTITION CONGRUENCE, AND MORE

Michael D. Hirschhorn

We present another novel short proof of Ramanujan's partition congruence

$$
p(5 n+4) \equiv 0 \quad(\bmod 5)
$$

in addition to that given by John L. Drost [2], and go on to prove rather more.
Ramanujan made the remarkable observation from a table of values of $p(n)$, the number of partitions of n, that $p(5 n+4)$ is divisible by 5 . He observed and conjectured much more, and his conjectures turned out in the main to be correct. He gave a simple proof, based on identities of Euler and Jacobi, of the above conjecture, and his proof is essentially the one reproduced in Hardy and Wright [3] and referred to by Drost. Ramanujan's proof relies on manipulating power series, and considering coefficients modulo 5. It is my intention to give a proof of a similar sort, using only the identity of Jacobi mentioned above, and which is more transparent than that of Ramanujan. And further, with a little extra work including the use of Jacobi's triple-product identity, we prove remarkable congruences for the partition function due to Atkin and Swinnerton-Dyer.

As is usual, write $(q)_{\infty}=\prod_{n \geq 1}\left(1-q^{n}\right)$. Then

$$
\sum_{n \geq 0} p(n) q^{n}=\frac{1}{(q)_{\infty}}
$$

We begin with Jacobi's identity [3, Theorem 357],

$$
(q)_{\infty}^{3}=\sum_{n \geq 0}(-1)^{n}(2 n+1) q^{n(n+1) / 2}
$$

Each coefficient is congruent modulo 5 to $0, \pm 1$ or ± 2. Specifically, the coefficient is congruent to 1 when $n \equiv 0$ or $9(\bmod 10),-1$ when $n \equiv 4$ or $5(\bmod 10),+2$ when $n \equiv 1$
or $8(\bmod 10),-2$ when $n \equiv 3$ or $6(\bmod 10)$ and 0 when $n \equiv 2$ or $7(\bmod 10)$. Thus we find that, modulo 5 ,

$$
\begin{aligned}
& (q)_{\infty}^{3} \equiv \sum_{n \geq 0} q^{10 n(10 n+1) / 2}-\sum_{n \geq 0} q^{(10 n+4)(10 n+5) / 2}-\sum_{n \geq 0} q^{(10 n+5)(10 n+6) / 2}+\sum_{n \geq 0} q^{(10 n+9)(10 n+10) / 2} \\
& +2 \sum_{n \geq 0} q^{(10 n+1)(10 n+2) / 2}-2 \sum_{n \geq 0} q^{(10 n+3)(10 n+4) / 2}-2 \sum_{n \geq 0} q^{(10 n+6)(10 n+7) / 2}+2 \sum_{n \geq 0} q^{(10 n+8)(10 n+9) / 2} \\
& \equiv \sum_{n \geq 0} q^{50 n^{2}+5 n}-\sum_{n \geq 0} q^{50 n^{2}+45 n+10}-\sum_{n \geq 0} q^{50 n^{2}+55 n+15}+\sum_{n \geq 0} q^{50 n^{2}+95 n+45} \\
& +2 \sum_{n \geq 0} q^{50 n^{2}+15 n+1}-2 \sum_{n \geq 0} q^{50 n^{2}+35 n+6}-2 \sum_{n \geq 0} q^{50 n^{2}+65 n+21}+2 \sum_{n \geq 0} q^{50 n^{2}+85 n+36}
\end{aligned}
$$

Observe that in the first four sums the powers of q are congruent to $0(\bmod 5)$ while in the latter four sums the powers of q are congruent to $1(\bmod 5)$. Thus we have

$$
(q)_{\infty}^{3} \equiv X+2 q Y
$$

where each of X, Y is a series in powers of q^{5}.
Also
$(q)_{\infty}^{5}=\prod_{n \geq 1}\left(1-q^{n}\right)^{5}=\prod_{n \geq 1}\left(1-5 q^{n}+10 q^{2 n}-10 q^{3 n}+5 q^{4 n}-q^{5 n}\right) \equiv \prod_{n \geq 1}\left(1-q^{5 n}\right) \equiv\left(q^{5}\right)_{\infty}$.
Thus

$$
\begin{aligned}
\sum_{n \geq 0} p(n) q^{n} & =\frac{1}{(q)_{\infty}}=\frac{(q)_{\infty}^{9}}{(q)_{\infty}^{10}}=\frac{\left((q)_{\infty}^{3}\right)^{3}}{\left((q)_{\infty}^{5}\right)^{2}} \equiv \frac{\left((q)_{\infty}^{3}\right)^{3}}{\left(q^{5}\right)_{\infty}^{2}} \equiv \frac{(X+2 q Y)^{3}}{\left(q^{5}\right)_{\infty}^{2}} \\
& \equiv \frac{X^{3}+6 q X^{2} Y+12 q^{2} X Y^{2}+8 q^{3} Y^{3}}{\left(q^{5}\right)_{\infty}^{2}} \\
& \equiv \frac{X^{3}+q X^{2} Y+2 q^{2} X Y^{2}+3 q^{3} Y^{3}}{\left(q^{5}\right)_{\infty}^{2}}
\end{aligned}
$$

Comparing terms containing powers of q congruent to 4 modulo 5 on both sides, we see that

$$
\sum_{n \geq 0} p(5 n+4) q^{5 n+4} \equiv 0 \quad(\bmod 5)
$$

Notice that, at no extra cost, we obtain the congruences

$$
\begin{aligned}
& \sum_{n \geq 0} p(5 n) q^{5 n} \equiv X^{3} /\left(q^{5}\right)_{\infty}^{2}, \quad \sum_{n \geq 0} p(5 n+1) q^{5 n+1} \equiv q X^{2} Y /\left(q^{5}\right)_{\infty}^{2} \\
& \sum_{n \geq 0} p(5 n+2) q^{5 n+2} \equiv 2 q^{2} X Y^{2} /\left(q^{5}\right)_{\infty}^{2} \text { and } \sum_{n \geq 0} p(5 n+3) q^{5 n+3} \equiv 3 q^{3} Y^{3} /\left(q^{5}\right)_{\infty}^{2}
\end{aligned}
$$

It is not hard to show that each of X, Y is an infinite product. Indeed, as we shall see,

$$
\begin{aligned}
& X=\prod_{n \geq 1}\left(1-q^{25 n-15}\right)\left(1-q^{25 n-10}\right)\left(1-q^{25 n}\right), \\
& Y=\prod_{n \geq 1}\left(1-q^{25 n-20}\right)\left(1-q^{25 n-5}\right)\left(1-q^{25 n}\right) .
\end{aligned}
$$

It follows that

$$
\begin{gathered}
\sum_{n \geq 0} p(5 n) q^{n} \equiv \prod_{n \geq 1} \frac{\left(1-q^{5 n-3}\right)\left(1-q^{5 n-2}\right)\left(1-q^{5 n}\right)}{\left(1-q^{5 n-4}\right)^{2}\left(1-q^{5 n-1}\right)^{2}}, \\
\sum_{n \geq 0} p(5 n+1) q^{n} \equiv \prod_{n \geq 1} \frac{\left(1-q^{5 n}\right)}{\left(1-q^{5 n-4}\right)\left(1-q^{5 n-1}\right)}, \sum_{n \geq 0} p(5 n+2) q^{n} \equiv 2 \prod_{n \geq 1} \frac{\left(1-q^{5 n}\right)}{\left(1-q^{5 n-3}\right)\left(1-q^{5 n-2}\right)} \\
\text { and } \sum_{n \geq 0} p(5 n+3) q^{n} \equiv 3 \prod_{n \geq 1} \frac{\left(1-q^{5 n-4}\right)\left(1-q^{5 n-1}\right)\left(1-q^{5 n}\right)}{\left(1-q^{5 n-3}\right)^{2}\left(1-q^{5 n-2}\right)^{2}} .
\end{gathered}
$$

These remarkable results are due to Atkin and Swinnerton-Dyer [1, Theorem 1].
We now show that X, Y are infinite products as claimed.
We have

$$
X=\sum_{n \geq 0} q^{50 n^{2}+5 n}-\sum_{n \geq 0} q^{50 n^{2}+45 n+10}-\sum_{n \geq 0} q^{50 n^{2}+55 n+15}+\sum_{n \geq 0} q^{50 n^{2}+95 n+45} .
$$

In the first sum, replace n by $-n$, in the third replace n by $-n-1$ and in the fourth replace n by $n-1$. Then we find

$$
\begin{aligned}
X & =\sum_{n \leq 0} q^{50 n^{2}-5 n}-\sum_{n \geq 0} q^{50 n^{2}+45 n+10}-\sum_{n \leq-1} q^{50 n^{2}+45 n+10}+\sum_{n \geq 1} q^{50 n^{2}-5 n} \\
& =\sum_{-\infty}^{\infty} q^{50 n^{2}-5 n}-\sum_{-\infty}^{\infty} q^{50 n^{2}+45 n+10} \\
& =\sum_{-\infty}^{\infty}(-1)^{n} q^{\left(25 n^{2}-5 n\right) / 2}
\end{aligned}
$$

(The terms for n even in the final sum correspond to the first sum on the line above, the terms for n odd to the second sum.)
In the same way, we find

$$
\begin{aligned}
Y & =\sum_{n \geq 0} q^{50 n^{2}+15 n}-\sum_{n \geq 0} q^{50 n^{2}+35 n+5}-\sum_{n \geq 0} q^{50 n^{2}+65 n+20}+\sum_{n \geq 0} q^{50 n^{2}+85 n+35} \\
& =\sum_{n \leq 0} q^{50 n^{2}-15 n}-\sum_{n \geq 0} q^{50 n^{2}+35 n+5}-\sum_{n \leq-1} q^{50 n^{2}+35 n+5}+\sum_{n \geq 1} q^{50 n^{2}-15 n} \\
& =\sum_{-\infty}^{\infty} q^{50 n^{2}-15 n}-\sum_{-\infty}^{\infty} q^{50 n^{2}+35 n+5} \\
& =\sum_{-\infty}^{\infty}(-1)^{n} q^{\left(25 n^{2}-15 n\right) / 2}
\end{aligned}
$$

To complete the proof, we now invoke Jacobi's triple product identity [3, Theorem 352], in the form

$$
\sum_{-\infty}^{\infty}(-1)^{n} a^{n} q^{\left(n^{2}-n\right) / 2}=\prod_{n \geq 1}\left(1-a q^{n-1}\right)\left(1-a^{-1} q^{n}\right)\left(1-q^{n}\right)
$$

with q replaced by q^{25} and a replaced by q^{10} and q^{5} respectively.

References

1. A. O. L. Atkin and P. Swinnerton-Dyer, Some properties of partitions, Proc. London Math. Soc. 4 (1954), 84-106.
2. John L. Drost, A shorter proof of the Ramanujan congruence mod 5, This MONTHLY 104 (1997), 963-964.
3. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th edition, Clarendon Press, Oxford 1979.

School of Mathematics, UNSW, Sydney 2052, NSW, Australia
m.hirschhorn@unsw.edu.au

