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Abstract.
There is a well-known formula due to Jacobi for the number r2(n) of representations of the number

n as the sum of two squares. This formula implies that the numbers r2(n) satisfy elegant arithmetic

relations. Conversely, these arithmetic properties essentially imply Jacobi’s formula. So it is of interest to

give direct proofs of these arithmetic relations, and this we do.
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1. Introduction.

Let rk(n) denote the number of representations of the positive integer n as the sum of
k squares (of integers). Then, as Jacobi showed,

Theorem 1. For n ≥ 1,
r2(n) = 4(d1(n)− d3(n)),

where di(n) is the number of divisors of n congruent to i modulo 4.

This theorem is equivalent to the q-series identity

( ∞∑
−∞

qn2

)2

= 1 + 4
∑
n≥1

(
q4n−3

1− q4n−3
− q4n−1

1− q4n−1

)
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which can be proved directly ([1]) from Jacobi’s triple product identity

(−aq; q2)∞(−a−1q; q2)∞(q2; q2)∞ =
∞∑
−∞

anqn2

or ([2]) from Jacobi’s identity

(q)3∞ =
∑
n≥0

(−1)n(2n+ 1)q(n2+n)/2.

Theorem 1 enables us to give a well-known explicit formula for r2(n) in terms of the prime
factorisation of n. From this formula we can deduce the following result.

Theorem 2.

r2(2n) = r2(n),

if p ≡ 1 (mod 4) is prime, r2(pn) = 2r2(n)− r2(
n

p
),

if p ≡ 3 (mod 4) is prime, r2(pn) = r2(
n

p
).

The situation can be reversed. As we shall see, Theorem 2 together with r2(1) = 4
implies Theorem 1. This alone would be sufficient reason to look for a direct proof of
Theorem 2, but it is also true that Theorem 2 is of great intrinsic interest. I have managed
to find such a proof of Theorem 2, and shall present it here.

2. Theorems 1 and 2.

We start by showing that Theorem 1 yields Theorem 2.

From Theorem 1, we readily deduce that

(2.1)

if n = 2αpα1
1 · · · pαk

k qβ1
1 · · · qβl

l where pi ≡ 1 (mod 4), qj ≡ 3 (mod 4) are primes, then

r2(n) =
{
0 if any βj is odd
4(α1 + 1) · · · (αk + 1) if all βj are even.
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It follows immediately from (2.1) that

(2.2)

r2(2αn) = r2(n),

if p ≡ 1 (mod 4) is prime and n is p-free, that is, p does not divide n,

r2(pαn) = (α+ 1)r2(n),

while if p ≡ 3 (mod 4) is prime and n is p-free,

r2(pαn) =
{
0 if α is odd
r2(n) if α is even.

From (2.2) it is not hard to deduce Theorem 2, as follows.
It is clear that

r2(2n) = r2(n).

and that if p is an odd prime and n is p-free, the remaining relations hold.
So we now suppose n = pαm, where α ≥ 1 and m is p-free. If p ≡ 1 (mod 4) then

r2(pn) = r2(pα+1m) = (α+ 2)r2(m), r2(n) = (α+ 1)r2(m), r2(
n

p
) = αr2(m),

and
r2(pn) = 2r2(n)− r2(

n

p
),

while if p ≡ 3 (mod 4),

r2(pn) = r2(pα+1m), r2(
n

p
) = r2(pα−1m),

and
r2(pn) = r2(

n

p
),

since both equal 0 or r2(m), according as α is even or odd. �

Conversely, (2.2) follows easily from Theorem 2 by induction on α; (2.2) together with
r2(1) = 4 yields (2.1), and this is equivalent to Theorem 1.
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3. Proof of Theorem 2.

We shall establish Theorem 2 via generating functions. Indeed, we shall prove the
equivalent result

(3.1)

∑
n≥0

r2(2n)qn =
∑
n≥0

r2(n)qn,

∑
n≥0

r2(pn)qn +
∑
n≥0

r2(n)qpn = 2
∑
n≥0

r2(n)qn if p ≡ 1 (mod 4) is prime,

∑
n≥0

r2(pn)qn =
∑
n≥0

r2(n)qpn if p ≡ 3 (mod 4) is prime.

We have

∞∑
−∞

qn2
=
∑

n even

qn2
+
∑

n odd

qn2
=

∞∑
−∞

q4n2
+

∞∑
−∞

q4n2+4n+1 = T0(q2) + 2qT1(q2)

where

T0(q) =
∞∑
−∞

q2n2
and T1(q) =

∑
n≥0

q2n2+2n.

Thus

(3.2)

∑
n≥0

r2(n)qn =

( ∞∑
−∞

qn2

)2

=
(
T0(q2) + 2qT1(q2)

)2
=
(
T0(q2)2 + 4q2T1(q2)2

)
+4qT0(q2)T1(q2).

It follows that∑
n≥0

r2(2n)qn = T0(q)2 + 4qT1(q)2

=

( ∞∑
−∞

q2n2

)2

+ 4q


∑

n≥0

q2n2+2n




2
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=
∞∑

m,n=−∞
q2m2+2n2

+
∞∑

m,n=−∞
q2m2+2m+2n2+2n+1

=
∞∑

m,n=−∞
q(m+n)2+(m−n)2 +

∞∑
m,n=−∞

q(m+n+1)2+(m−n)2

=
∑

k≡l (mod 2)

qk2+l2 +
∑

k �≡l (mod 2)

qk2+l2

=
∞∑

k,l=−∞
qk2+l2 =

∑
n≥0

r2(n)qn.

Next, let p be an odd prime.
Then

∞∑
−∞

qn2
=

∑
n≡0 (mod p)

qn2
+

(p−1)/2∑
r=1


 ∑

n≡r (mod p)

qn2
+

∑
n≡−r (mod p)

qn2




=
∞∑
−∞

q(pn)2 +
(p−1)/2∑

r=1

( ∞∑
−∞

q(pn+r)2 +
∞∑
−∞

q(pn−r)2

)

=
∞∑
−∞

qp2n2
+ 2

(p−1)/2∑
r=1

qr2
∞∑
−∞

qp2n2+2prn

= T0(qp) + 2
(p−1)/2∑

r=1

qr2
Tr2(qp)

where

T0(q) =
∞∑
−∞

qpn2
and for 1 ≤ r ≤ (p − 1)/2, Tr2(q) =

∞∑
−∞

qpn2+2rn.

Thus

∑
n≥0

r2(n)qn =

( ∞∑
−∞

qn2

)2

=


T0(qp) + 2

(p−1)/2∑
r=1

qr2
Tr2(qp)




2

.

It follows that∑
n≥0

r2(pn)qn = T0(q)2 + 8
∑

all pairs {r,s} with
r,s∈{1,··· ,(p−1)/2},

r2+s2≡0 (mod p)

q(r2+s2)/pTr2(q)Ts2(q).
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If p ≡ 3 (mod 4), the congruence r2 + s2 ≡ 0 (mod p) with r, s ∈ {1, · · · , (p − 1)/2} has
no solution, and

∑
n≥0

r2(pn)qn = T0(q)2 =

( ∞∑
−∞

qpn2

)2

=
∞∑

m,n=−∞
qp(m2+n2) =

∑
n≥0

r2(n)qpn.

On the other hand if p ≡ 1 (mod 4) we have
∑
n≥0

r2(pn)qn +
∑
n≥0

r2(n)qpn = 2T0(q)2 + 8
∑

all pairs {r,s} with
r,s∈{1,··· ,(p−1)/2},

r2+s2≡0 (mod p)

q(r2+s2)/pTr2(q)Ts2(q)

= 2




T0(q)2 + 4
∑

allpairs {r,s} with
r,s∈{1,··· ,(p−1)/2},

r2+s2≡0 (mod p)

q(r2+s2)/pTr2(q)Ts2(q)




.

To complete the proof we need to show that

(3.3)

T0(q)2 + 4
∑

all pairs {r,s} with
r,s∈{1,··· ,(p−1)/2},

r2+s2≡0 (mod p)

q(r2+s2)/pTr2(q)Ts2(q) =
∑
n≥0

r2(n)qn.

We need to know that since p ≡ 1 (mod 4) we can write

p = a2 + b2

with a, b ∈ {1, · · · , (p − 1)/2}.
Thus we have

T0(q)2 =

( ∞∑
−∞

qpn2

)2

=
∞∑

m,n=−∞
qpm2+pn2

=
∞∑

m,n=−∞
q(am+bn)2+(bm−an)2

=
∑

ak+bl≡0 (mod p)

qk2+l2 .
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We now show that for each pair {r, s} with r, s ∈ {1, · · · , (p − 1)/2} and r2 + s2 ≡ 0
(mod p),

q(r2+s2)/pTr2(q)Ts2(q) =
∑

ak+bl≡r (mod p)

qk2+l2 =
∑

ak+bl≡−r (mod p)

qk2+l2

=
∑

ak+bl≡s (mod p)

qk2+l2 =
∑

ak+bl≡−s (mod p)

qk2+l2 .

It then follows that

T0(q)2 + 4
∑

all relevant pairs {r,s}
q(r2+s2)/pTr2(q)Ts2(q)

=
∑

ak+bl≡0 (mod p)

qk2+l2

+
∑

all relevant pairs {r,s}


 ∑

ak+bl≡r (mod p)

qk2+l2 +
∑

ak+bl≡−r (mod p)

qk2+l2

+
∑

ak+bl≡s (mod p)

qk2+l2 +
∑

ak+bl≡−s (mod p)

qk2+l2




=
∞∑

k,l=−∞
qk2+l2 =

∑
n≥0

r2(n)qn.

First observe that∑
ak+bl≡r (mod p)

qk2+l2 =
∑

ak+bl≡r (mod p)

q(−k)2+(−l)2 =
∑

a(−k)+b(−l)≡r (mod p)

qk2+l2

=
∑

ak+bl≡−r (mod p)

qk2+l2 ,

and similarly ∑
ak+bl≡s (mod p)

qk2+l2 =
∑

ak+bl≡−s (mod p)

qk2+l2 .

Also ∑
ak+bl≡r (mod p)

qk2+l2 =
∑

ak+bl≡r (mod p)

ql2+(−k)2 =
∑

bk+a(−l)≡r (mod p)

qk2+l2
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=
∑

bk−al≡r (mod p)

qk2+l2 .

Now if bk − al ≡ r (mod p) then (multiply by sr−1 (mod p)) ak + bl ≡ s or −s (mod p).
In either case, all four sums are equal.

So there is only one thing left to prove, and that is

q(r2+s2)/pTr2(q)Ts2(q) =
∑

ak+bl≡r (mod p)

qk2+l2 .

Suppose
ak + bl ≡ r (mod p).

Then
bk − al ≡ s or − s (mod p).

If ak + bl = r +mp and bk − al = s+ np then

k = am+ bn+ (ar + bs)/p, l = bm − an+ (br − as)/p,

k2 + l2 = pm2 + pn2 + 2rm+ 2sn+ (r2 + s2)/p

and

∑
ak+bl≡r (mod p)

qk2+l2 =
∞∑

m,n=−∞
qpm2+pn2+2rm+2sn+(r2+s2)/p

= q(r2+s2)/pTr2(q)Ts2(q).

On the other hand, if ak + bl = r +mp and bk − al = −s − np then

k = am − bn+ (ar − bs)/p, l = bm+ an+ (br + as)/p,

k2 + l2 = pm2 + pn2 + 2rm+ 2sn+ (r2 + s2)/p

and again ∑
ak+bl≡r (mod p)

qk2+l2 = q(r2+s2)/pTr2(q)Ts2(q),

and the proof is complete. �
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