ARITHMETIC CONSEQUENCES OF JACOBI'S TWO-SQUARES THEOREM

Michael D. Hirschhorn

(RAMA126-98)

Abstract

. There is a well-known formula due to Jacobi for the number $r_{2}(n)$ of representations of the number n as the sum of two squares. This formula implies that the numbers $r_{2}(n)$ satisfy elegant arithmetic relations. Conversely, these arithmetic properties essentially imply Jacobi's formula. So it is of interest to give direct proofs of these arithmetic relations, and this we do.

Keywords: Jacobi's two-squares theorem, representations, arithmetic relations

AMS Classification 11E25

1. Introduction.

Let $r_{k}(n)$ denote the number of representations of the positive integer n as the sum of k squares (of integers). Then, as Jacobi showed,

Theorem 1. For $n \geq 1$,

$$
r_{2}(n)=4\left(d_{1}(n)-d_{3}(n)\right),
$$

where $d_{i}(n)$ is the number of divisors of n congruent to i modulo 4 .
This theorem is equivalent to the q-series identity

$$
\left(\sum_{-\infty}^{\infty} q^{n^{2}}\right)^{2}=1+4 \sum_{n \geq 1}\left(\frac{q^{4 n-3}}{1-q^{4 n-3}}-\frac{q^{4 n-1}}{1-q^{4 n-1}}\right)
$$

which can be proved directly ([1]) from Jacobi's triple product identity

$$
\left(-a q ; q^{2}\right)_{\infty}\left(-a^{-1} q ; q^{2}\right)_{\infty}\left(q^{2} ; q^{2}\right)_{\infty}=\sum_{-\infty}^{\infty} a^{n} q^{n^{2}}
$$

or ([2]) from Jacobi's identity

$$
(q)_{\infty}^{3}=\sum_{n \geq 0}(-1)^{n}(2 n+1) q^{\left(n^{2}+n\right) / 2}
$$

Theorem 1 enables us to give a well-known explicit formula for $r_{2}(n)$ in terms of the prime factorisation of n. From this formula we can deduce the following result.

Theorem 2.

$$
\begin{gathered}
r_{2}(2 n)=r_{2}(n) \\
\text { if } p \equiv 1(\bmod 4) \text { is prime, } r_{2}(p n)=2 r_{2}(n)-r_{2}\left(\frac{n}{p}\right), \\
\text { if } p \equiv 3(\bmod 4) \text { is prime, } r_{2}(p n)=r_{2}\left(\frac{n}{p}\right) .
\end{gathered}
$$

The situation can be reversed. As we shall see, Theorem 2 together with $r_{2}(1)=4$ implies Theorem 1. This alone would be sufficient reason to look for a direct proof of Theorem 2, but it is also true that Theorem 2 is of great intrinsic interest. I have managed to find such a proof of Theorem 2, and shall present it here.

2. Theorems 1 and 2.

We start by showing that Theorem 1 yields Theorem 2.
From Theorem 1, we readily deduce that
if $n=2^{\alpha} p_{1}^{\alpha_{1}} \cdots p_{k}^{\alpha_{k}} q_{1}^{\beta_{1}} \cdots q_{l}^{\beta_{l}}$ where $p_{i} \equiv 1(\bmod 4), q_{j} \equiv 3(\bmod 4)$ are primes, then

$$
r_{2}(n)= \begin{cases}0 & \text { if any } \beta_{j} \text { is odd } \\ 4\left(\alpha_{1}+1\right) \cdots\left(\alpha_{k}+1\right) & \text { if all } \beta_{j} \text { are even }\end{cases}
$$

It follows immediately from (2.1) that

$$
r_{2}\left(2^{\alpha} n\right)=r_{2}(n)
$$

if $p \equiv 1(\bmod 4)$ is prime and n is p-free, that is, p does not divide n,

$$
r_{2}\left(p^{\alpha} n\right)=(\alpha+1) r_{2}(n)
$$

while if $p \equiv 3(\bmod 4)$ is prime and n is p-free,

$$
r_{2}\left(p^{\alpha} n\right)= \begin{cases}0 & \text { if } \alpha \text { is odd } \\ r_{2}(n) & \text { if } \alpha \text { is even }\end{cases}
$$

From (2.2) it is not hard to deduce Theorem 2, as follows.
It is clear that

$$
r_{2}(2 n)=r_{2}(n)
$$

and that if p is an odd prime and n is p-free, the remaining relations hold.
So we now suppose $n=p^{\alpha} m$, where $\alpha \geq 1$ and m is p-free. If $p \equiv 1(\bmod 4)$ then

$$
r_{2}(p n)=r_{2}\left(p^{\alpha+1} m\right)=(\alpha+2) r_{2}(m), \quad r_{2}(n)=(\alpha+1) r_{2}(m), \quad r_{2}\left(\frac{n}{p}\right)=\alpha r_{2}(m)
$$

and

$$
r_{2}(p n)=2 r_{2}(n)-r_{2}\left(\frac{n}{p}\right)
$$

while if $p \equiv 3(\bmod 4)$,

$$
r_{2}(p n)=r_{2}\left(p^{\alpha+1} m\right), \quad r_{2}\left(\frac{n}{p}\right)=r_{2}\left(p^{\alpha-1} m\right)
$$

and

$$
r_{2}(p n)=r_{2}\left(\frac{n}{p}\right)
$$

since both equal 0 or $r_{2}(m)$, according as α is even or odd.

Conversely, (2.2) follows easily from Theorem 2 by induction on α; (2.2) together with $r_{2}(1)=4$ yields (2.1), and this is equivalent to Theorem 1.

3. Proof of Theorem 2.

We shall establish Theorem 2 via generating functions. Indeed, we shall prove the equivalent result

$$
\begin{gather*}
\sum_{n \geq 0} r_{2}(2 n) q^{n}=\sum_{n \geq 0} r_{2}(n) q^{n} \tag{3.1}\\
\sum_{n \geq 0} r_{2}(p n) q^{n}+\sum_{n \geq 0} r_{2}(n) q^{p n}=2 \sum_{n \geq 0} r_{2}(n) q^{n} \quad \text { if } p \equiv 1 \quad(\bmod 4) \text { is prime } \\
\sum_{n \geq 0} r_{2}(p n) q^{n}=\sum_{n \geq 0} r_{2}(n) q^{p n} \text { if } p \equiv 3 \quad(\bmod 4) \text { is prime. }
\end{gather*}
$$

We have

$$
\sum_{-\infty}^{\infty} q^{n^{2}}=\sum_{n \text { even }} q^{n^{2}}+\sum_{n \text { odd }} q^{n^{2}}=\sum_{-\infty}^{\infty} q^{4 n^{2}}+\sum_{-\infty}^{\infty} q^{4 n^{2}+4 n+1}=T_{0}\left(q^{2}\right)+2 q T_{1}\left(q^{2}\right)
$$

where

$$
T_{0}(q)=\sum_{-\infty}^{\infty} q^{2 n^{2}} \text { and } T_{1}(q)=\sum_{n \geq 0} q^{2 n^{2}+2 n}
$$

Thus

$$
\sum_{n \geq 0} r_{2}(n) q^{n}=\left(\sum_{-\infty}^{\infty} q^{n^{2}}\right)^{2}=\left(T_{0}\left(q^{2}\right)+2 q T_{1}\left(q^{2}\right)\right)^{2}=\left(T_{0}\left(q^{2}\right)^{2}+4 q^{2} T_{1}\left(q^{2}\right)^{2}\right)+4 q T_{0}\left(q^{2}\right) T_{1}\left(q^{2}\right)
$$

It follows that

$$
\begin{aligned}
\sum_{n \geq 0} r_{2}(2 n) q^{n} & =T_{0}(q)^{2}+4 q T_{1}(q)^{2} \\
& =\left(\sum_{-\infty}^{\infty} q^{2 n^{2}}\right)^{2}+4 q\left(\sum_{n \geq 0} q^{2 n^{2}+2 n}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{m, n=-\infty}^{\infty} q^{2 m^{2}+2 n^{2}}+\sum_{m, n=-\infty}^{\infty} q^{2 m^{2}+2 m+2 n^{2}+2 n+1} \\
& =\sum_{m, n=-\infty}^{\infty} q^{(m+n)^{2}+(m-n)^{2}}+\sum_{m, n=-\infty}^{\infty} q^{(m+n+1)^{2}+(m-n)^{2}} \\
& =\sum_{k \equiv l(\bmod 2)} q^{k^{2}+l^{2}}+\sum_{k \neq l(\bmod 2)} q^{k^{2}+l^{2}} \\
& =\sum_{k, l=-\infty}^{\infty} q^{k^{2}+l^{2}}=\sum_{n \geq 0} r_{2}(n) q^{n} .
\end{aligned}
$$

Next, let p be an odd prime.
Then

$$
\begin{aligned}
\sum_{-\infty}^{\infty} q^{n^{2}} & =\sum_{n \equiv 0} q^{n^{2}}+\sum_{r=1}^{(p-1) / 2}\left(\sum_{n \equiv r(\bmod p)} q^{n^{2}}+\sum_{n \equiv-r(\bmod p)} q^{n^{2}}\right) \\
& =\sum_{-\infty}^{\infty} q^{(p n)^{2}}+\sum_{r=1}^{(p-1) / 2}\left(\sum_{-\infty}^{\infty} q^{(p n+r)^{2}}+\sum_{-\infty}^{\infty} q^{(p n-r)^{2}}\right) \\
& =\sum_{-\infty}^{\infty} q^{p^{2} n^{2}}+2 \sum_{r=1}^{(p-1) / 2} q^{r^{2}} \sum_{-\infty}^{\infty} q^{p^{2} n^{2}+2 p r n} \\
& =T_{0}\left(q^{p}\right)+2 \sum_{r=1}^{(p-1) / 2} q^{r^{2}} T_{r^{2}}\left(q^{p}\right)
\end{aligned}
$$

where

$$
T_{0}(q)=\sum_{-\infty}^{\infty} q^{p n^{2}} \text { and for } 1 \leq r \leq(p-1) / 2, T_{r^{2}}(q)=\sum_{-\infty}^{\infty} q^{p n^{2}+2 r n}
$$

Thus

$$
\sum_{n \geq 0} r_{2}(n) q^{n}=\left(\sum_{-\infty}^{\infty} q^{n^{2}}\right)^{2}=\left(T_{0}\left(q^{p}\right)+2 \sum_{r=1}^{(p-1) / 2} q^{r^{2}} T_{r^{2}}\left(q^{p}\right)\right)^{2}
$$

It follows that

$$
\sum_{n \geq 0} r_{2}(p n) q^{n}=T_{0}(q)^{2}+8 \sum_{\substack{\text { all pairs }\{r, s\} \text { with } \\ r, s \in\{1, \ldots,(p-1) / 2\}, r^{2}+s^{2} \equiv 0(\bmod p)}} q^{\left(r^{2}+s^{2}\right) / p} T_{r^{2}}(q) T_{s^{2}}(q)
$$

If $p \equiv 3(\bmod 4)$, the congruence $r^{2}+s^{2} \equiv 0(\bmod p)$ with $r, s \in\{1, \cdots,(p-1) / 2\}$ has no solution, and

$$
\sum_{n \geq 0} r_{2}(p n) q^{n}=T_{0}(q)^{2}=\left(\sum_{-\infty}^{\infty} q^{p n^{2}}\right)^{2}=\sum_{m, n=-\infty}^{\infty} q^{p\left(m^{2}+n^{2}\right)}=\sum_{n \geq 0} r_{2}(n) q^{p n}
$$

On the other hand if $p \equiv 1(\bmod 4)$ we have

$$
\begin{aligned}
\sum_{n \geq 0} r_{2}(p n) q^{n}+\sum_{n \geq 0} r_{2}(n) q^{p n} & =2 T_{0}(q)^{2}+8 \sum_{\substack{\text { all pairs }\{r, s\} \text { with } \\
r, s \in\{1, \cdots,(p-1) / 2\}, r^{2}+s^{2} \equiv 0(\bmod p)}} q^{\left(r^{2}+s^{2}\right) / p} T_{r^{2}}(q) T_{s^{2}}(q) \\
& =2\left\{T_{0}(q)^{2}+4 \sum_{\substack{\text { allpairs }\{r, s\} \text { with } \\
r, s \in\{1, \cdots,(p-1) / 2\}, r^{2}+s^{2} \equiv 0(\bmod p)}} q^{\left(r^{2}+s^{2}\right) / p} T_{r^{2}}(q) T_{s^{2}}(q)\right\}
\end{aligned}
$$

To complete the proof we need to show that

$$
\begin{equation*}
T_{0}(q)^{2}+4 \sum_{\substack{\text { all pairs }\{r, s\} \text { with } \\ r, s \in\{1, \cdots,(p-1) / 2\}, r^{2}+s^{2} \equiv 0(\bmod p)}} q^{\left(r^{2}+s^{2}\right) / p} T_{r^{2}}(q) T_{s^{2}}(q)=\sum_{n \geq 0} r_{2}(n) q^{n} \tag{3.3}
\end{equation*}
$$

We need to know that since $p \equiv 1(\bmod 4)$ we can write

$$
p=a^{2}+b^{2}
$$

with $a, b \in\{1, \cdots,(p-1) / 2\}$.
Thus we have

$$
\begin{aligned}
T_{0}(q)^{2} & =\left(\sum_{-\infty}^{\infty} q^{p n^{2}}\right)^{2}=\sum_{m, n=-\infty}^{\infty} q^{p m^{2}+p n^{2}}=\sum_{m, n=-\infty}^{\infty} q^{(a m+b n)^{2}+(b m-a n)^{2}} \\
& =\sum_{a k+b l \equiv 0(\bmod p)} q^{k^{2}+l^{2}}
\end{aligned}
$$

We now show that for each pair $\{r, s\}$ with $r, s \in\{1, \cdots,(p-1) / 2\}$ and $r^{2}+s^{2} \equiv 0$ $(\bmod p)$,

$$
\begin{aligned}
q^{\left(r^{2}+s^{2}\right) / p} T_{r^{2}}(q) T_{s^{2}}(q) & =\sum_{a k+b l \equiv r(\bmod p)} q^{k^{2}+l^{2}}=\sum_{a k+b l \equiv-r(\bmod p)} q^{k^{2}+l^{2}} \\
& =\sum_{a k+b l \equiv s(\bmod p)} q^{k^{2}+l^{2}}=\sum_{a k+b l \equiv-s(\bmod p)} q^{k^{2}+l^{2}}
\end{aligned}
$$

It then follows that

$$
\begin{aligned}
& T_{0}(q)^{2}+4 \sum_{\text {all relevant pairs }\{r, s\}} q^{\left(r^{2}+s^{2}\right) / p} T_{r^{2}}(q) T_{s^{2}}(q) \\
& =\sum_{a k+b l \equiv 0(\bmod p)} q^{k^{2}+l^{2}} \\
& \\
& \quad+\sum_{\text {all relevant pairs }\{r, s\}}\left(\sum_{a k+b l \equiv r(\bmod p)} q^{k^{2}+l^{2}}+\sum_{a k+b l \equiv-r(\bmod p)} q^{k^{2}+l^{2}}\right. \\
& \\
& \left.\quad+\sum_{a k+b l \equiv s(\bmod p)} q^{k^{2}+l^{2}}+\sum_{a k+b l \equiv-s(\bmod p)} q^{k^{2}+l^{2}}\right) \\
& =\sum_{k, l=-\infty}^{\infty} q^{k^{2}+l^{2}}=\sum_{n \geq 0} r_{2}(n) q^{n} .
\end{aligned}
$$

First observe that

$$
\begin{aligned}
\sum_{a k+b l \equiv r(\bmod p)} q^{k^{2}+l^{2}} & =\sum_{a k+b l \equiv r(\bmod p)} q^{(-k)^{2}+(-l)^{2}}=\sum_{a(-k)+b(-l) \equiv r(\bmod p)} q^{k^{2}+l^{2}} \\
& =\sum_{a k+b l \equiv-r(\bmod p)} q^{k^{2}+l^{2}}
\end{aligned}
$$

and similarly

$$
\sum_{a k+b l \equiv s(\bmod p)} q^{k^{2}+l^{2}}=\sum_{a k+b l \equiv-s(\bmod p)} q^{k^{2}+l^{2}}
$$

Also

$$
\sum_{a k+b l \equiv r(\bmod p)} q^{k^{2}+l^{2}}=\sum_{a k+b l \equiv r(\bmod p)} q^{l^{2}+(-k)^{2}}=\sum_{b k+a(-l) \equiv r(\bmod p)} q^{k^{2}+l^{2}}
$$

$$
=\sum_{b k-a l \equiv r(\bmod p)} q^{k^{2}+l^{2}}
$$

Now if $b k-a l \equiv r(\bmod p)$ then $\left(\operatorname{multiply}\right.$ by $\left.s r^{-1}(\bmod p)\right) a k+b l \equiv s$ or $-s(\bmod p)$. In either case, all four sums are equal.

So there is only one thing left to prove, and that is

$$
q^{\left(r^{2}+s^{2}\right) / p} T_{r^{2}}(q) T_{s^{2}}(q)=\sum_{a k+b l \equiv r(\bmod p)} q^{k^{2}+l^{2}}
$$

Suppose

$$
a k+b l \equiv r \quad(\bmod p)
$$

Then

$$
b k-a l \equiv s \quad \text { or } \quad-s \quad(\bmod p) .
$$

If $a k+b l=r+m p$ and $b k-a l=s+n p$ then

$$
\begin{gathered}
k=a m+b n+(a r+b s) / p, \quad l=b m-a n+(b r-a s) / p \\
k^{2}+l^{2}=p m^{2}+p n^{2}+2 r m+2 s n+\left(r^{2}+s^{2}\right) / p
\end{gathered}
$$

and

$$
\begin{aligned}
\sum_{a k+b l \equiv r(\bmod p)} q^{k^{2}+l^{2}} & =\sum_{m, n=-\infty}^{\infty} q^{p m^{2}+p n^{2}+2 r m+2 s n+\left(r^{2}+s^{2}\right) / p} \\
& =q^{\left(r^{2}+s^{2}\right) / p} T_{r^{2}}(q) T_{s^{2}}(q)
\end{aligned}
$$

On the other hand, if $a k+b l=r+m p$ and $b k-a l=-s-n p$ then

$$
\begin{gathered}
k=a m-b n+(a r-b s) / p, \quad l=b m+a n+(b r+a s) / p \\
k^{2}+l^{2}=p m^{2}+p n^{2}+2 r m+2 s n+\left(r^{2}+s^{2}\right) / p
\end{gathered}
$$

and again

$$
\sum_{a k+b l \equiv r(\bmod p)} q^{k^{2}+l^{2}}=q^{\left(r^{2}+s^{2}\right) / p} T_{r^{2}}(q) T_{s^{2}}(q)
$$

and the proof is complete.

References

[1] M. D. Hirschhorn, A simple proof of Jacobi's two-square theorem, Amer. Math. Monthly, 92 (1985), 579-580.
[2] M. D. Hirschhorn, Jacobi's two-square theorem and related identities, Ramanujan Journal, 3 (1999), 153-158.

School of Mathematics
UNSW
Sydney
Australia 2052
m.hirschhorn@unsw.edu.au

